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Abstract.
Using notions of Minkowski geometry (i.e., of the geometry of finite
dimensional Banach spaces) we find new characterizations of centrally
symmetric convex bodies, equiframed curves, bodies of constant width
and certain convex bodies with modified constant width property. In
particular, we show that straightforward extensions of some properties
of bodies of constant Euclidean width are also valid for bodies of con-
stant Minkowskian width if the underlying Minkowskian circle is an
equiframed curve. All obtained characterizations are restricted to the
case of the plane and involve certain measures of boundary arcs that
join antipodal points of a planar convex body.
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1. Introduction

We refer to the next section for all standard notations from Euclidean and convex
geometry. It should be noticed that our standard notations are mostly borrowed
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from [29]. Let B be a convex body in E2 centered at the origin o. Then M2(B)
denotes the Minkowski plane (i.e., two-dimensional real normed space) with unit
ball B. The norm of M2(B) is denoted by ‖ . ‖B. Basic information on Minkowski
spaces can be found in [31] and the surveys [27] and [25]. A homothetical copy of
B is called a Minkowskian ball in M2(B), the corresponding homothety coefficient
the Minkowskian radius of this Minkowskian ball. The isoperimetrix B̃ in M2(B)
is defined as the dual body of B rotated by the angle π

2
. Obviously, the body B

is the isoperimetrix in the Minkowski plane M2(B̃), i.e., ˜̃B = B. Let K be an
arbitrary convex body in M2(B). If u ∈ M2(B) \ {o}, then the Minkowskian
distance between the two different supporting lines orthogonal to the direction u
is called the Minkowskian width of K at direction u (notation: wK,B(u)). It is
known that

wK,B(u) =
wK(u)

hB(u)
. (1)

See [18] and [5] for results on cross-section measures in Minkowski spaces as well
as [19] for computational problems for Minkowskian cross-section measures.

Given a Euclidean unit vector u in E2, let αB(u) > 0 be such that 4αB(u) is
the minimal area of a parallelogram which is circumscribed about B and has two
opposite sides orthogonal to u. The quantity αB(u) is expressed analytically by

αB(u) = hB(u)rB(v), (2)

where v is a Euclidean unit vector orthogonal to u. Clearly, (2) yields

αB(u) =
hB(u)

hB̃(u)
. (3)

It is easy to see that the boundary of every planar convex body can be param-
eterized by a Lipschitz function. Indeed, let K be a planar convex body in E2,
let perim(K) be the Euclidean perimeter of bd K, and p(t), t ∈ [0, perim(K)],
be a parameterization of bd K by arc length (that is, t is the length of the arc
{p(s) : 0 ≤ s ≤ t}). Since |t1−t2| is the length of a boundary arc of K joining p(t1)
with p(t2) we infer that |p(t1) − p(t2)| ≤ |t1 − t2| for every t1, t2 ∈ [0, perim(K)],
which implies that p(t) is a Lipschitz function. In this paper a parameterization
p(t), t ∈ [t0, t1] (t0 < t1), of a curve γ ⊆ E2 is defined as a Lipschitz continu-
ous function such that for every point x from {p(t) : t0 < t < t1} the pre-image
{t ∈ [t0, t1] : p(t) = x} of the point x is a segment in R probably degenerate to a
singleton, i.e., for t ranging from t1 to t2, the point p(t) moves on γ from p(t0) to
p(t1) according to some orientation of γ.

Two boundary points p and q of a convex body K ⊆ E2 are said to be antipodal
if they lie in different parallel supporting lines of K. A chord of K joining two
antipodal points of K is called an affine diameter of K. A parameterization
p(t), t ∈ [0, 2π], of bd K is called antipodality preserving if p(t) is antipodal to
p(t + π) for every t ∈ [0, π]. It turns out that the following lemma holds.

Lemma 1. The boundary of every planar convex body possesses an antipodality
preserving parameterization.
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Given a Minkowski plane M2(B), a convex body K ⊆ E2, and an antipodality
preserving parameterization p(t) of bd K, we introduce the following functions of
t. (For definiteness we assume that p(t) has counterclockwise orientation.) For
t ∈ [0, 2π] let u(t) be an outward Euclidean unit normal of K at the point p(t) (if K
is non-smooth, u(t) is discontinuous). By wB(t) we shall denote the Minkowskian
width of K ⊆ M2(B) at direction u(t). Let γ(t) denote the counterclockwise
oriented boundary arc of K starting at p(t) and terminating at p(t + π), see
Figure 1. By lB(t) we denote the length of γ(t) measured in M2(B), and by
v(t) the area of conv γ(t) (see Figure 1). Further on, let αB(t) := αB(u(t)), see
Figure 2. The above functions depending on t can be extended periodically. Hence
they will be considered for t ranging over the whole real axis.

K

γ(t)

u(t)

u(t + π)

B
o

u(t)

u(t + π)

Figure 1: conv γ(t) is filled by
gray color

Figure 2: Illustration to αB(t)

The following theorem presents two differential relations involving the functions
v(t), wB(t), lB(t), lB̃(t), and αB(t). The abbreviation a.e. stands for almost every-
where. It is used to mark those relations which are fulfilled for almost all values
(in the sense of measure) of the parameter involved in the relation.

Theorem 2. Let K be an arbitrary convex body in a Minkowski plane M2(B),
and p(t) be an antipodality preserving parameterization of bd K. Then the quan-
tities wB(t), lB(t), lB̃(t), αB(t) and v(t), associated with p(t), are related by the
following two equalities:

wB(t)l′
B̃
(t)− 2v′(t)

a.e.
= 0 (t ∈ R), (4)

αB(t)wB(t)l′B(t)− 2v′(t)
a.e.
= 0 (t ∈ R). (5)

A convex body K ⊆M2(B) is said to be of constant Minkowskian width if K has
the same Minkowskian width at any direction. We introduce a modification of the
notion constant width, which is involved in the statements of our main results.
A vector u ∈ E2 \{o} is an extreme normal of K if u is either left or right or
unique normal of K at some point p ∈ bd K (cf. also [29, p. 74]). Any quantity
wK,B(u), where u is an extreme normal of K, is said to be a tangential width of
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K in M2(B). A convex body K ∈ M2(B) is said to be of constant tangential
width in M2(B) if its tangential width in M2(B) is determined uniquely, i.e.,
wK,B(u) = const for each extreme normal u ∈ S1 of DK (where DK denotes the
difference body of K). Given an antipodality preserving parameterization p(t) of
bd K, it is not hard to prove that K ∈ M2(B) is of constant tangential width in

M2(B) if and only if wB(t)
a.e.
= const. It is known that K is of constant width

λ > 0 in M2(B) if and only if DK = λB. In contrast to this, K is of constant
tangential width in M2(B) if and only if DK is a tangential body of λB (for the
definition of tangential body see [29, pp. 69–70]). Clearly, strictly convex bodies of
constant tangential width are necessarily of constant width in the classical sense.

The results on bodies of constant width in Euclidean and Minkowski spaces
are surveyed in [10], [13], [21, Section 5], and [25]. Let λ > 0 and p1, p2, p3 be
points in M2(B) such that ‖pi − pj‖ = λ for i, j ∈ {1, 2, 3}, i 6= j. Then the
intersection of three Minkowskian circles of radius λ centered at p1, p2, and p3 is
called a Minkowskian Reuleaux triangle. Reuleaux triangles are the best known
non-trivial examples of planar bodies of constant width (we shall need Reuleaux
triangles in the proof of one of our theorems). Applying Theorem 2 we obtain the
following characterizations of planar convex bodies of constant width and constant
tangential width.

Theorem 3. Let K ⊆ E2 be a planar convex body, and p(t) be an antipodality
preserving parameterization of bd K. Then for functions lB̃(t), lB(t), wB(t), αB(t),
and v(t), associated with p(t), the following statements hold:

I. The body K is of constant tangential width in Md(B) if and only if

wB(t)lB̃(t)− 2v(t)
a.e.
= const (t ∈ R). (6)

II. The body K is of constant width in M2(B) if and only if

wB(t)lB̃(t)− 2v(t)
a.e.
=

1

2
wB(t)2V (B)− V (K) (t ∈ R). (7)

III. The body K is of constant tangential width in M2(B̃) if and only if

αB(t)wB(t)lB(t)− 2v(t)
a.e.
= const (t ∈ R).

IV. The body K is of constant width in M2(B̃) if and only if

αB(t)wB(t)lB(t)− 2v(t)
a.e.
=

1

2
αB(t)2wB(t)2V (B̃)− V (K) (t ∈ R).

Let M2(B) be a Minkowski plane with strictly convex B and let K be a planar
strictly convex body. Further on, let p(t) denote the antipodality preserving pa-
rameterization of K for which u(t) = (cos t, sin t). Then, by Theorem 3 (Part I),
K is of constant width in M2(B) if and only if wB(t)lB̃(t) − 2v(t) = const. In
the Euclidean plane this characterization of planar bodies of constant width was
proved in [10, p. 41], the necessity for the Euclidean plane was derived in [11].
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Other recent characterizations of constant Minkowskian width are presented in
[2], [1], [4], and [7].

We also derive the following characterization of planar centrally symmetric
convex bodies.

Theorem 4. A convex body K in a Minkowski plane M2(B) is centrally sym-
metric if and only if every chord of K that bisects the Minkowskian perimeter of
K is necessarily an affine diameter of K.

The Euclidean version of the above theorem was established in [32] for the case
that K is strictly convex and bd K has continuous curvature and in [22] for an
arbitrary convex body K ⊆ E2. Also, in [22] it was stated without proof that
Theorem 4 holds for an arbitrary Minkowski plane. Further characterizations of
centrally symmetric convex bodies are collected in [21, Section 4] and [9, §14].

Theorem 4 can be applied for deriving characterizations of centrally symmetric
members within classes of special convex bodies (e.g., characterizations of unit
Minkowskian balls within the class of planar bodies of constant Minkowskian
width). Some characterizations of Minkowskian unit balls within the class of
planar convex bodies of constant Minkowskian width that were obtained in [14]
are straightforward corollaries of Theorem 4 (see also [20] for the Euclidean version
of the mentioned results from [14]). The statement of Theorem 4 for an arbitrary
convex body in E2 was obtained by several authors using various methods, cf.
[8], [30], and [24]. The statement of Theorem 4 has recently been carried over
to convex bodies in Minkowski spaces of any dimension (cf. [3]). The Euclidean
version of some of the results in Minkowski spaces obtained in [3] was presented
in [28].

Let M2(B) be a Minkowski plane such that the isoperimetrix B̃ is a homoth-
etical copy of B. Then the homothetical copies of bd B are called Radon curves,
cf. [31, p. 128]. If every boundary point p of B is touched by a circumscribed
parallelogram of B having minimal area, then the homothetical copies of bd B
are called equiframed curves, cf. [26]. It is known that every Radon curve is
necessarily equiframed, and that the converse is not true in general.

Let p(t) be an arbitrary antipodality preserving parameterization of a planar
convex body K ⊆M2(B). In view of the results from [26, Section 4], bd B is an
equiframed curve if and only if αB(t)

a.e.
= const (t ∈ R).

The following theorem presents some characterizations of equiframed curves
and related characteristic properties of bodies of constant width and constant tan-
gential width in Minkowski planes whose unit Minkowskian circle is an equiframed
curve. See also [16] and [17] for a related characterization of Radon and equiframed
curves and [15] for a characterization of ellipsoids in terms of equiframed sections.

Theorem 5. Let M2(B) be an arbitrary Minkowski plane. Then the following
statements hold true.

I. The following conditions are equivalent:

(i) The boundary of B is an equiframed curve.
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(ii) There exists a constant α > 0 such that for every convex body K in

M2(B) and every antipodality preserving parameterization p(t) of bd K
we have

αwB(t)l′B(t)− 2v′(t)
a.e.
= 0 (t ∈ R). (8)

(iii) For every convex body K and every antipodality preserving parameter-
ization p(t) of bd K there exists a constant αK > 0 such that

αKwB(t)l′B(t)− 2v′(t)
a.e.
= 0 (t ∈ R). (9)

(iv) For some convex body K in M2(B) whose boundary possesses an an-
tipodality preserving parameterization p(t) with l′B(t) 6= 0 almost every-
where and for some αK > 0 we have:

αKwB(t)lB(t)− 2v(t)
a.e.
= const (t ∈ R). (10)

II. If bd B is an equiframed curve, α := αB(t), and K is an arbitrary convex
body in M2(B̃), then

(a) the equality

αlB(t)wB(t)− 2v(t)
a.e.
= const (t ∈ R)

holds if and only if K is of constant tangential width in M2(B̃);

(b) the equality

αlB(t)wB(t)− 2v(t)
a.e.
=

1

2
α2wB(t)2V (B̃)− V (K) (t ∈ R)

holds if and only if K is of constant width in M2(B̃).

2. Preliminaries

The Euclidean plane is denoted by E2, o stands for the origin and | . | for the norm
in E2. We also use | . | to denote the absolute value of scalars. The length in E2

is denoted by µ. In analytic expressions the elements of E2 will be identified with
pairs of real numbers. By S1 we denote the unit circle in E2. Given x, y ∈ E2, by
[x, y] we denote the segment joining x and y. A convex body in E2 is a compact,
convex set with nonempty interior, cf. [9] and [29]. The area of a convex body
K ⊆ E2 is denoted by V (K). The Minkowski sum K1 + K2 of two convex bodies
K1 and K2 in E2 is given by K1 + K2 := {x1 + x2 : x1 ∈ K1, x2 ∈ K2}. If K is a
convex body in E2, then the Minkowski sum K + (−K) is denoted by DK and
called the difference body of K. The abbreviations conv and bd stand for convex
hull and boundary, respectively. The support and width functions of a convex
body K ⊆ E2 are given by the formulas hK(u) := max {〈x, u〉 : x ∈ K} and
wK(u) := hK(u) + hK(−u), u ∈ E2), respectively. If we assume that the origin
is contained in the interior of K, then the radius function of K is introduced
by rK(u) := max {α > 0 : αu ∈ K} , u ∈ E2 \{o}, and the dual body of K is



G. Averkov: On Boundary Arcs Joining Antipodal Points . . . 495

defined by K∗ := {u ∈ E2 : hK(u) ≤ 1}. It can be shown that K∗∗ = K and
rK∗(u)hK(u) = 1 for every u ∈ E2 \{o}.

Let I be a segment in R. Then a scalar function f(t), t ∈ I, is said to be a
Lipschitz function if for some α ≥ 0 and every t1, t2 ∈ I we have |f(t1)− f(t2)| ≤
α|t1 − t2|. It is known that Lipschitz functions possess derivatives which are
Lebesgue integrable functions, cf. [23]. Analogously, a vector function p(t), t ∈ I,
with values in E2 is called a Lipschitz function if for some C ≥ 0 and every
t1, t2 ∈ I we have

|p(t1)− p(t2)| ≤ C|t1 − t2|.

It is not hard to verify that p(t) is a Lipschitz vector function if and only if both
its coordinates are Lipschitz scalar functions.

For a Lebesgue measurable subset ω of S1 the reverse spherical image τ(K, ω)
of ω with respect to a convex body K ⊆ E2 is the set of those boundary points
p of K that have an outward normal belonging to ω (cf. [29, p. 78]). Let SK(ω)
denote the length (i.e., one-dimensional measure) of τ(K, ω). It is known that for
any measurable ω ⊆ S1 and any convex bodies K1 and K2 in E2 we have

SK1+K2(ω) = SK1(ω) + SK2(ω), (11)

cf. [29, Section 4.3]
Given x, y ∈ E2, det(x, y) stands for the determinant of the 2× 2 matrix with

columns x and y (in that order). Geometrically, det(x, y) is twice the signed area
of the triangle conv{o, x, y} with the sign determined by the orientation of the
system of vectors x, y.

Let us consider an arbitrary convex body K ⊆ E2 and a parameterization
x(t), t ∈ [t0, t1] (t0 < t1), of bd K. Then by Green’s formula the area of K can be
expressed by

V (K) =
1

2

∫ t1

t0

det(x(t), x′(t)) dt. (12)

If x(t) and y(t) are Lipschitz vector functions taking values in E2, then it is well
known that

d

dt
det(x(t), y(t))

a.e.
= det(x′(t), y(t)) + det(x(t), y′(t)) (t ∈ R). (13)

Let T be a triangle in a Minkowski plane M2(B), I be a side of T , and u be a
Euclidean normal of I. By ã we denote the length of I measured inM2(B̃), and by
h the quantity wT,B(u), i.e., the Minkowskian width of T at direction u measured
in M2(B). The quantity h is called the Minkowskian height of T corresponding
to the base I. Then the area of T can be given by the Minkowskian formula

V (T ) =
1

2
hã, (14)

for the proof see [31, Section 4.6] and [6, Section 5]. We remark that (14) is a
Minkowskian analogue of the Euclidean formula 1

2
height × base for the area of a

triangle.
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The mixed area V (K1, K2) is a functional depending on planar convex bodies
K1 and K2 in E2 and determined by the equality

V (K1 + K2) = V (K1) + 2V (K1, K2) + V (K2).

One can show that for any positive scalars α1, α2 and any K1 and K2 we have
V (α1K1, α2K2) = α1α2V (K1, K2). Furthermore, it is easy to see that for every
planar convex body K ⊆ E2 we have V (K,K) = V (K). More detailed information
on the theory of mixed volumes and mixed areas can be found in the monograph
[29] and [12, Chapter 4]. The Minkowskian perimeter perimB(K) of K is the
Minkowskian length of bd K ⊆M2(B). It is known that

perimB(K) = 2V (K, B̃), (15)

see equality (4.8) in [31]. On can show that the Minkowskian perimeters of K
and DK are related by

perimB(DK) = 2 perimB(K). (16)

The Euclidean perimeter of K ⊆ E2 will be denoted by perim(K).

3. The proofs

The following proof of Lemma 1 is rather technical and relatively long, so it can
be skipped by the readers not interested in technical details.

Proof of Lemma 1. Let q0 be a boundary point of DK and q(t), t ∈ [0, π], be a
parameterization of a boundary arc of DK such that q(t) starts at q0, terminates
at −q0, has the counterclockwise orientation with respect to DK and the scaled
parameterization q( π

perim(K)
s), s ∈ [0, perim(K)], is a parameterization by the

Euclidean arc length. Clearly, q(t) is a Lipschitz function and, moreover, for

every t1, t2 ∈ [0, π] we have |p(t1) − p(t2)| ≤ perim(K)
π

· |t1 − t2|. For every t ∈
[0, π] let I(t) denote the minimal (with respect to inclusion) exposed face of DK
containing the point q(t). Since DK is two-dimensional, I(t) is a segment probably
degenerate to a singleton. Let a1(t) and a2(t) be the endpoints of I(t) chosen so
that for a1(t) 6= a2(t) the vectors a1(t), a2(t) (in that order) form a right system.
Let b1(t), b2(t), b1(t + π), b2(t + π) be the uniquely determined boundary points
of K such that ai(t) = bi(t) − bi(t + π), where i = 1, 2. Then then segments
J(t) := [b1(t), b2(t)] and J(t + π) := [b1(t + π), b2(t + π)] are exposed faces of
K such that I(t) = J(t) − J(t + π). If a1(t) 6= a2(t), the segment I(t) is split

by q(t) in the ratio λ(t) : (1 − λ(t)), where λ(t) := |q(t)−a1(t)|
|a2(t)−a1(t)| . Consequently,

q(t) = (1 − λ(t)) · a1(t) + λ(t) · a2(t). For the case when a1(t) = a2(t) the scalar
λ(t) can be defined arbitrarily. Let us introduce the points p(t) and p(t + π) such
that J(t) and J(t + π) are split by p(t) and p(t + π), respectively, in the same
ratio as I(t) by the point q(t). More precisely, we put

p(t) := (1− λ(t)) · b1(t) + λ(t) · b2(t)

p(t + π) := (1− λ(t)) · b1(t + π) + λ(t) · b2(t + π).
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By construction p(t) is antipodal to p(t + π) for every t ∈ [0, π]. Thus, it only
remains to verify that p(t) is a Lipschitz function.

First we extend p(t), b1(t), and b2(t) periodically to the whole real axis. We
also extend λ(t) by the equality λ(t + π) := λ(t) (t ∈ [0, π]) to the segment [0, 2π]
and then periodically to the whole real axis. The function q(t) is extended to
[0, 2π] by q(t + π) := −q(t) (t ∈ [0, π]) and then periodically to R. The functions
I(t), a1(t), and a2(t) are extended in the same manner as q(t).

In order to show that p(t) is a Lipschitz function we take arbitrary distinct
values t1, t2 in [0, 2π] and show that |p(t1) − p(t2)| ≤ α · |t1 − t2|, where α is a
constant independent on t1 and t2. Without loss of generality let t1 < t2. Then
bd K is split by the points p(t1) and p(t2) into two boundary arcs p(I1) and p(I2),
where I1 := [t1, t2] and I2 := [t2, 2π + t1]. Then the length of one of the above
two segments does not exceed π; for definiteness we assume that this holds for I1.
Consequently, the segments I1 and I ′

1 := I1+π = [t1+π, t2+π] are disjoint. Let us
show that the length of the boundary arc q(I1) of DK is equal to the total length
of the boundary arcs p(I1) and p(I ′

1) of K. For t ∈ R let u(t) denote the outward
Euclidean unit vector such that τK({u(t)}) = J(t). Let ω denote the set of those
Euclidean unit vectors that lie inside the angle between u(t1) and u(t2) (i.e., lie
in the positive hull of u(t1) and u(t2)). Then the reverse spherical image τK(ω)
can be represented by τK(ω) = p(I1) ∪ [b1(t1), p(t1)] ∪ [p(t2), b2(t2)], see Figure 3.

K

b1(t1)

b2(t1)

p(t1)

b1(t2)b2(t2)

p(t2)

b1(t1 + π)

b2(t1 + π)

p(t1 + π)

b1(t2 + π) b2(t2 + π)

p(t2 + π)

Figure 3

Hence
SK(ω) = µ(p(I1)) + |b1(t1)− p(t1)|+ |p(t2)− b(t2)|

or, equivalently,

SK(ω) = µ(p(I1)) + λ(t1) · |b1(t1)− b2(t1)|+ (1− λ(t2)) · |b1(t2)− b2(t2)|. (17)

In the same manner we can derive the following two equalities:

SK(−ω) = µ(p(I ′
1)) + λ(t1) · |b1(t1 + π)− b2(t1 + π)|

+(1− λ(t2)) · |b1(t2 + π)− b2(t2 + π)|, (18)

SDK(ω) = µ(q(I1)) + λ(t1) · |a1(t1)− a2(t1)|
+(1− λ(t2)) · |a1(t2)− a2(t2)|. (19)
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Summing up (17) with (18) and then applying (11) (for bodies K and −K) we
get

SDK(ω) = µ(p(I1))+µ(p(I ′
1))+λ(t1) ·(|b1(t1)−b2(t1)|+ |b1(t1+π)−b2(t1+π)|)+

(1− λ(t2)) · (|b1(t2)− b2(t2)|+ |b1(t2 + π)− b2(t2 + π)|).

In view of the equality I(t) = J(t)− J(t + π) the latter amounts to

SDK(ω) = µ(p(I1)) + µ(p(I ′
1)) + λ(t1) · |a1(t1)− a2(t1)|

+(1− λ(t2)) · |a1(t2)− a2(t2)|.

Thus, taking into account (19), we arrive at

µ(q(I1)) = µ(p(I1)) + µ(p(I ′
1)).

Consequently, we have

|p(t1)− p(t2)| ≤ µ(p(I1)) ≤ µ(p(I1)) + µ(p(I ′
1))=µ(q(I1)) ≤

perim(K)

π
· |t1 − t2|,

which shows that p(t) is a Lipschitz function.

Proof of Theorem 2. It can be proved that for an arbitrary Minkowski plane

M2(B) we have

lB(t) =

∫ t+π

t

‖p′(s)‖B ds.

Consequently, differentiating the above equality we get

l′B(t)
a.e.
= ‖p′(t + π)‖B − ‖p′(t)‖B (t ∈ R). (20)

Now let us evaluate v(t), which was defined as V (conv γ(t)). The domain conv γ(t)
is bounded by the boundary arc γ(t) and the segment [p(t), p(t+π)]. The arc γ(t)
is parameterized by p(s), where s ∈ [t, t + π], while [p(t), p(t + π)] can be parame-
terized by the vector function (1− s) · p(t) + s · p(t + π) with s ranging over [0, 1].
Thus, arranging the parameterization of bd conv γ(t) from the parameterizations
of γ(t) and [p(t), p(t + π)] indicated above, and then using Green’s formula for
this specific parameterization, we get

2v(t) =

∫ t+π

t

det(p(s), p′(s)) ds− det(p(t), p(t + π)).

Differentiating with respect to t we arrive at

2v′(t)
a.e.
= det(p(t + π), p′(t + π))

− det(p(t), p′(t))− det(p′(t), p(t + π))− det(p(t), p′(t + π)),

which is equivalent to

2v′(t)
a.e.
= det(p(t + π)− p(t), p′(t + π)) + det(p(t + π)− p(t), p′(t)). (21)
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We express the determinants appearing in (21) by areas of the triangles T (t) :=
conv{o, p′(t), p(t + π)− p(t)} and reformulate (21) in the form

2v′(t)
a.e.
= 2V (T (t + π))− 2V (T (t)).

For t ∈ [0, 2π] the Minkowskian height of the triangle T ⊆ M2(B) with respect
to the base [o, p′(t)] is obviously equal to wB(t). Therefore, we use (14) and get

2v′(t)
a.e.
= ‖p′(t + π)‖B̃wB(t)− ‖p′(t)‖B̃wB(t).

Further on, applying (20) for B replaced by B̃, we obtain the equality

2v′(t)
a.e.
= l′

B̃
(t)wB(t),

which is equivalent to (4).
Now let us prove (5). Interchanging in (4) B and B̃ we get wB̃(t)l′B(t)−2v′(t) =

0. Consequently, in order to prove (5) it is sufficient to obtain the equality

wB̃(t) = αB(t)wB(t), (22)

which can be done as follows:

wB̃(t)
(1)
=

wK(u(t))

hB̃(u(t))
=

wK(u(t))

hB(u(t))
· hB(u(t))

hB̃(u(t))

(1),(3)
= wB(t)αB(t).

Proof of Theorem 3. I. Suppose K is of constant tangential width in M2(B).
Then wB(t)

a.e.
= const (t ∈ R). Consequently, integrating (4) we get the neces-

sity. Conversely, let c(K) = wB(t)lB̃(t)− 2v(t) for some c(K) ∈ R and almost all
t ∈ R. Replacing t by t + π we get c(K) = wB(t + π)lB̃(t + π)− 2v(t + π). Sum-
ming up the above two expressions for c(K) and applying the trivial equalities
wB(t)

a.e.
= wB(t + π), lB̃(t) + lB̃(t) = perimB̃(K), v(t) + v(t + π) = V (K), we arrive

at

c(K)
a.e.
=

1

2
wB(t) perimB̃(K)− V (K) (t ∈ R).

In view of (15) and (16) the latter amounts to

c(K)
a.e.
=

1

2
wB(t)V (DK,B)− V (K) (t ∈ R), (23)

and it follows that wB(t)
a.e.
= const, i.e., K of constant tangential width in M2(B).

From the above considerations we see that (23) is valid for every K of constant
tangential width in M2(B) and an appropriate c(K) ∈ R.

II. Let K be of constant width λ in M2(B). Every body of constant width in

M2(B) is necessarily of constant tangential width in M2(B). Hence (23) holds.
Applying DK = λB and the properties of mixed area we transform (23) to (7).
Conversely, if (7) holds, let us sum up (7) together with (7) applied for t replaced
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by t + π. We obtain wB(t) perimB̃(K)− 2V (K)
a.e.
= w(t)2V (B)− 2V (K), and, in

view of perimB̃(K) = V (DK,B), we have

V (DK,B)
a.e.
= wB(t)V (B). (24)

Hence wB(t) = λ for λ := V (DK,B)/V (B) and almost all t ∈ R, and by this K is
of constant tangential width in M2(B). The latter is equivalent to the fact that
DK is a tangential body of λB. Then

V (DK,B) ≥ V (λB,B) = λV (B)
a.e.
= wB(t)V (B) (25)

where the inequality from (25) is degenerate to equality if and only if DK = λB
(i.e., if and only if K is of constant Minkowskian width in M2(B)). But, in view
of (24), the equality in (25) is attained. Hence K is indeed of constant width in

M2(B).

III, IV. In view of (22) Parts III and IV follow directly from Parts I and II,
respectively.

Proof of Theorem 4. The necessity is obvious. Let us show the suffciency. As-
sume that every chord bisecting the Minkowskian perimeter of K is necessarily
an affine diameter. Let p0(t), t ∈ [0, perimB(K)], be a parameterization of bd K
by the Minkowskian arc length with respect to M2(B). Then, by assumption,

the parameterization p(t) := p0(
perimB(K)

2π
· t), t ∈ [0, 2π], is antipodality preserv-

ing. Furthermore, it is easy to see, that for lB(t), associated with p(t), we have
lB(t) = const = 1

2
perimB(K). Without loss of generality we suppose that

p(π) = −p(0). (26)

We have l′B(t) = 0 and hence by (20)

‖p′(t + π)‖B
a.e.
= ‖p′(t)‖B (t ∈ R). (27)

Obviously, p′(t) and p′(t+π) are tangent vectors of K at points p(t) and p(t+π),
respectively. The points p(t) and p(t + π) lie in two different supporting lines of
K. Therefore p′(t) and p′(t + π) are parallel and have opposite directions (almost
everywhere). In view of (27), the latter implies that

p′(t + π)
a.e.
= −p′(t) (t ∈ R). (28)

Integrating (28) from 0 to s ∈ [0, π] and taking into account (26), we get the
equality p(s + π) = −p(s) for an arbitrary s ∈ [0, π], which shows the central
symmetry of K.

Proof of Theorem 5. The implication (i) ⇒ (ii) follows directly from (5) (we recall
that bd B is equiframed if and only if αB(t)

a.e.
= const).

The implication (ii) ⇒ (iii) is trivial.
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Let us show (iii) ⇒ (iv). We wish to construct a convex body K having
constant Minkowskian width and find an antipodality preserving parameterization
p(t) of K such that l′B(t) 6= 0 almost everywhere. Assuming that (iii) is fulfilled
we may take K to be a Minkowski sum of a Reuleaux triangle of Minkowskian
width λ > 0 and a Minkowskian ball of radius r > 0. Then the boundary of
K can be represented as the union γ1 ∪ γ2, where γ1 and γ2 are the unions of
Minkowskian circle arcs of radius r1 := r and r2 := λ+ r, respectively. We choose
the parameterization p(t) of bd K such that ‖p′(t)‖B = ri almost everywhere for
p(t) ∈ γi (i = 1, 2).

It is easy to see that for such p(t) we have |l′B(t)| = |r1 − r2| = λ 6= 0 almost
everywhere. Since wB(t) = const, the integration of (9) yields (10).

Let us show (iv) ⇒ (i). We assume that

c1(K) = αKwB(t)lB(t)− 2v(t) (29)

for some c1(K) ∈ R and almost every t ∈ R. Replacing t by t + π we transform
(29) to c1(K)

a.e.
= αK lB(t + π)wB(t)− 2v(t + π). Summing up (29) and the latter

equality we get
2c1(K) := αKwB(t) perimB(K)− 2V (K),

which implies that wB(t)
a.e.
= λ for some λ > 0, i.e., K is of constant tangential

width λ in M2(B). Thus, (29) amounts to

c1(K) = αKλlB(t)− 2v(t),

and differentiating we get αKλl′B(t) − 2v′(t)
a.e.
= 0. On the other hand, by (5) we

obtain λαB(t)l′B(t)− 2v′(t)
a.e.
= 0. Taking the difference of the above two equalities

we arrive at
λ(αB(t)− αK)l′B(t) = 0

Since l′B(t) 6= 0 almost everywhere, we obtain that αB(t)
a.e.
= αK . Consequently,

bd B is an equiframed curve.

Part II of the theorem follows directly from Parts III and IV of Theorem 3.
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