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Illumination of Direct Sums
of Two Convex Figures
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Abstract. In this article we solve the problem of finding all possible
values of the illumination number for the direct vector sum of two com-
pact, convex planar figures which are not assumed to be smooth. It is
proved that the possible values are only 7, 8, 9, 12, and 16. Keywords:
direct vector sum, convex body, illumination number

Let M ⊂ Rn be a compact, convex body (i.e., a closed convex set with nonempty
interior). A boundary point x of the body M is illuminated by a vector a 6= 0 if
for any sufficiently small number λ > 0 the point x + λa belongs to the interior
of M .

By c(M) denote the illumination number of the body M , i.e., the least integer
c for which there exist c nonzero vectors a1, a2, . . . , ac which illuminate the whole
boundary of the body M . The problem of finding of the integer c(M) was formu-
lated in [1]. For more background information we refer to [5] and [8], see also [2]
and [3].

For example, when n = 2, i.e., for a planar compact, convex figure M we have
c(M) = 4 if M is a parallelogram, and c(M) = 3 for any other compact planar
convex figure M , see [1] and [7].

It is known [1] that c(M) = n + 1 for an arbitrary smooth compact, convex
body M (that is, for a body all boundary points of which are regular, i.e., through
any boundary point of M passes only one support hyperplane), and moreover
c(M) = n + 1 if M has no more than n non-regular boundary points. More
general results are contained in [6] and [9].
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In [4] the following theorem is proved.

Theorem 1. Let Rn = L1 ⊕ · · · ⊕ Lk be a decomposition of the space Rn into
the direct sum of its subspaces, and for every i = 1, 2, . . . , k in the subspace Li a
compact, convex body Mi is given. Then the inequality c(M1 ⊕M2 ⊕ · · · ⊕Mk) ≤
c(M1) · c(M2) · c(Mk) holds.

It seems intuitively clear (in connection with a very simple proof of Theorem 1)
that also the converse inequality holds, i.e., it seems that always the equality
c(M1 ⊕M2 ⊕ · · · ⊕Mk) = c(M1) · · · c(Mk) holds. Nevertheless, here our intuition
is wrong. More detailed, in [4] the following theorem is proved.

Theorem 2. For arbitrary 2-dimensional smooth compact, convex bodies M1, M2

the equality c(M1 ⊕M2) = 7 holds, i.e., c(M1 ⊕M2) < c(M1) · c(M2).

In this article we consider the problem of finding the integer c(M) when M is
the direct sum of two compact planar convex figures which are not assumed to be
smooth.

Lemma 1. For arbitrary 2-dimensional compact, convex bodies M1, M2 the in-
equality c(M1 ⊕M2) > 6 holds.

Proof. Let ai, bi be arbitrary unit vectors in R2, i = 1, 2, . . . , 6. Consider six vectors
ai + bi ∈ R4. Let x1, x2 be two boundary points of M1 which are situated in two
different support lines of the figure M1 parallel to the vector a1. We can suppose
(changing the numeration of the points x1, x2 and the vectors aj, j = 2, 3, 4, 5, 6,
if necessary) that the vectors a2, a3, a4 do not illuminate the point x1. The vector
a1 does not illuminate the point x1, too. Furthermore, let y1 be a boundary point
of the figure M2 which is not illuminated by none of the vectors b5, b6. Then none
of the vectors aj +bj, j = 1, 2, . . . , 6, illuminates the boundary point x1 +y1 of the
body M1⊕M2. Thus, any six vectors in R4 do not illuminate the whole boundary
of the body M1 ⊕M2. �

Definition 1. Let M ⊂ Rn be a compact, convex body. Boundary points x1, x2

of M are said to be antipodal if there are two distinct parallel support hyperplanes
Γ1 and Γ2 of the body M such that x1 ∈ Γ1, x2 ∈ Γ2.

It is clear that if x1 and x2 are antipodal boundary points of M , then no vector
a 6= 0 illuminates both these points.

Definition 2. Let M ⊂ Rn be a compact, convex body and c = c(M) be its illumi-
nation number. We say that the body M is antipodal in the sense of illumination
if there exist c boundary points of this body which are pairwise antipodal.

For example, every parallelogram is a planar figure being antipodal in the sense
of illumination. As another example of a planar figure that is antipodal in the
sense of illumination we may indicate any Reuleaux triangle, i.e., the intersection
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of three circular disks of radius h centered at the vertices of an equilateral triangle
with the side length h.

The following theorem describes a case when in Theorem 1 equality holds (a
weaker result is contained in [4]).

Theorem 3. Let Rn = L1 ⊕ · · · ⊕ Lk be a decomposition of the space Rn into
the direct sum of its subspaces, and for every i = 1, 2, . . . , k in the subspace Li a
compact, convex body Mi is given. If the bodies M1, . . . ,Mk−1 are antipodal in the
sense of illumination, then c(M1 ⊕M2 ⊕ · · · ⊕Mk) = c(M1) · c(M2) · · · c(Mk).

Proof. Denote by c1, c2, . . . , ck−1 the illumination numbers of the bodies M1, M2,

. . . , Mk−1, and let x
(i)
1 , x

(i)
2 , . . . , x

(i)
ci be pairwise antipodal points of the body Mi,

i = 1, 2, . . . , k − 1. Then x
(1)
i1

+ x
(2)
i2

+ · · · + x
(k−1)
ik−1

are pairwise antipodal points
of the body M1 ⊕ M2 ⊕ · · · ⊕ Mk−1, and the number of these points is equal to
c(M1) · c(M2) · · · c(Mk−1). Thus, using induction over k, we obtain that the body
M1⊕M2⊕· · ·⊕Mk−1 is antipodal in the sense of illumination. Hence it is sufficient
to consider in Theorem 3 only the case k = 2.

Thus, consider compact, convex bodies M1 and M2, the first of which is an-
tipodal in the sense of illumination. Let c(Mi) = ci, i = 1, 2, and x1, x2, . . . , xc1

be pairwise antipodal boundary points of the body M1. Assume c(M1 ⊕M2) <
c(M1) · c(M2), and let g1, g2, . . . , gq be vectors illuminating the whole bound-
ary of the body M1 ⊕ M2, where q < c(M1) · c(M2). Then for an index i ∈
{1, 2, . . . , c(M1)} we have among g1, g2, . . . , gq less than c(M2) vectors illuminat-
ing the boundary points of the set xi ⊕M2, and hence there is a point of this set
that is not illuminated by any of the vectors g1, g2, . . . , gq, what is contradictory.
Thus c(M1 ⊕ M2) ≥ c(M1) · c(M2), and consequently, by Theorem 1, equality
holds. �

We can now prove the main result on the illumination number of direct vector
sums of two planar compact convex figures (which are not assumed to be smooth).

Theorem 4. For arbitrary 2-dimensional compact, convex figures M1, M2 the
number c(M1 ⊕M2) can take only the values 7, 8, 9, 12, 16.

Proof. If the figure M1 is a parallelogram, then, by Theorem 3, we have c(M1 ⊕
M2) = 4 · c(M2), i.e., c(M1 ⊕M2) is equal to 12 or 16. The same holds if M2 is a
parallelogram.

Let now none of the figures M1, M2 be a parallelogram. Then, by Lemma 1
and Theorem 1, the inequality 7 ≤ c(M1 ⊕ M2) ≤ 9 holds. It remains to prove
that all values 7, 8, 9 are possible. Theorem 2 establishes the possibility of the
equality c(M1 ⊕M2) = 7. The possibility of the equalities c(M1 ⊕M2) = 8 and
c(M1 ⊕M2) = 9 is proved in the following two lemmas. �

Lemma 2. Assume that M1 = M2 is a Reuleaux triangle. Then the equality
c(M1 ⊕M2) = 9 holds.
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Proof. The Reuleaux triangle M1 = M2 is a planar figure that is antipodal
in the sense of illumination. Applying Theorem 3, we obtain c(M1 ⊕ M2) =
c(M1) · c(M2) = 9. �

Lemma 3. Assume that M1 = M2 is a regular pentagon. Then the equality
c(M1 ⊕M2) = 8 holds.

Proof. To illuminate the boundary of the polytope M1 ⊕ M2 it is sufficient to
illuminate all its vertices. Assume that c(M1⊕M2) = 7, and let ai + bi be vectors
which illuminate all vertices of the polytope M1 ⊕M2, where ai, bi are some unit
vectors in R2, i = 1, 2, . . . , 7. Since any of the vectors a1, a2, . . . , a7 illuminates no
more than two vertices of the polygon M1, then, by the inequality 2 · 7 < 3 · 5,
there is a vertex x of the polygon M1 that is illuminated by no more than two
of the vectors a1, a2, . . . , a7. Assume that the vertex x is illuminated only by the
vectors a1 and a2. Each vector b1, b2 illuminates no more than two vertices of the
polygon M2, and hence there is a vertex y ∈ M2 that is not illuminated by any of
the vectors b1, b2, i.e., the vertex x+y of the polytope M1⊕M2 is not illuminated
by any of the vectors ai + bi, i = 1, 2, . . . , 7. This contradiction shows that any
seven vectors in R4 do not illuminate all vertices of the polytope M1 ⊕M2.

We now show that there are eight vectors in R4 which illuminate the whole
boundary of M1 ⊕ M2. Denote by x1, x2, . . . , x5 the successive vertices of the
pentagon M1 and by y1, y2, . . . , y5 the successive vertices of M2. By aij denote a
vector which illuminates the neighboring vertices xi and xj of the pentagon M1,
and by bpq a vector which illuminates the neighboring vertices yp and yq of the
pentagon M2. Then it is easily shown that the eight vectors

a15 + b12, a15 + b45, a12 + b23, a45 + b34,

a23 + b15, a23 + b34, a34 + b23, a34 + b15

illuminate all vertices (hence the whole boundary) of the polytope M1 ⊕M2. �

Lemma 3 considers a particular case of the problem on the illumination number
of the 4-dimensional polytope Mk ⊕ Mk, where Mk is a regular polygon. An
analogous reasoning shows that the following more general result holds.

Theorem 5. Let Mk be a regular polygon with k vertices. Then, depending on
k, the 4-dimensional polytope Mk ⊕Mk has the following illumination numbers:

c(Mk ⊕Mk) = 9 for k = 3 or 6;
c(Mk ⊕Mk) = 16 for k = 4;
c(Mk ⊕Mk) = 8 for k = 5, 8, 10 or 12;
c(Mk ⊕Mk) = 7 for k = 7, 9, 11 and for all k ≥ 13.

Proof. The proof is analogous to the previous one. Let, for example, M1 = M2

be a regular polygon with 12 vertices. To illuminate bd(M1 ⊕M2) it is sufficient
to illuminate the vertices. Assume that c(M1 ⊕ M2) = 7, and let ai + bi be
vectors which illuminate all vertices of the polytope M1 ⊕M2, where ai, bi ∈ R2,
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i = 1, 2, . . . , 7. Every vector a1, a2, . . . , a7 illuminates no more than five vertices
of M1, and hence, by the inequality 5 · 7 < 3 · 12, there is a vertex x ∈ M1 that
is illuminated by no more than two vectors a1, a2, . . . , a7. Therefore, as above,
the vectors ai + bi, i = 1, 2, . . . , 7, do not illuminate all vertices of the polytope
M1 ⊕M2. �

We note that if we change a small part of the boundary of one of the figures
M1, M2, then the number c(M1 ⊕M2) may be changed. For example, let M1 be
a regular hexagon and M2 be a smooth planar figure. Then c(M1 ⊕M2) = 9. If
even we change one of the sides of the hexagon M1 by a suitable circular arc (of
any radius), then the obtained figure M ′

1 satisfies the equality c(M ′
1 ⊕M2) = 8.

Moreover, if all angles of M1 will be changed by inscribed circular arcs, then the
obtained figure M ′′

1 satisfies the equality c(M ′′
1 ⊕M2) = 7.

In conclusion we formulate some problems.

Problem 1. It is proved in [4] that if M1, M2, . . . ,Mk are smooth 2-dimensional
compact, convex bodies, then the equality

c(M1 ⊕M2 ⊕ · · · ⊕Mk) = 2k+1 − 1

holds, i.e.,

c(M1 ⊕M2 ⊕ · · · ⊕Mk) < 2 ·
(

2

3

)k

· c(M1) · c(M2) · · · c(Mk).

Is it true that for smooth n-dimensional compact, convex bodies M1, M2, . . . ,Mk

the inequality

c(M1 ⊕M2 ⊕ · · · ⊕Mk) < q λk · c(M1) · c(M2) · · · c(Mk)

holds, where q and λ < 1 are positive numbers?

Problem 2. What are possible values of the number c(M1 ⊕M2 ⊕ · · · ⊕Mk) for
2-dimensional compact, convex bodies M1, M2, . . . ,Mk which are not assumed to
be smooth?

Problem 3. Find the number c(M1 ⊕ M2 ⊕ · · · ⊕ Mk) for arbitrary smooth
n-dimensional compact, convex bodies M1, M2, . . . ,Mk.

Problem 4. Find the number c(M1 ⊕ M2 ⊕ · · · ⊕ Mk) for arbitrary smooth
compact, convex bodies M1, M2, . . . ,Mk of given dimensions n1, n2, . . . , nk.
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