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Abstract. We establish that, over certain ground fields, the set of
osculating tangents of Cayley’s ruled cubic surface gives rise to a (max-
imal partial) spread which is also a dual (maximal partial) spread. It
is precisely the Betten-Walker spreads that allow for this construction.
Every infinite Betten-Walker spread is not an algebraic set of lines, but
it turns into such a set by adding just one pencil of lines.
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1. Introduction

1.1 In this paper we deal with a spread which was discovered independently, and
approximately at the same time, by D. Betten [2] and M. Walker [28].

Betten used the concept of a transversal homeomorphism in order to describe
and classify topological translation planes in terms of partitions of the vector space
R4 into 2-dimensional subspaces. What we call the Betten-Walker spread (BW-
spread) is described in [2, Satz 3]. Betten’s paper contains also a short remark
that the construction of this spread works also for finite fields of characteristic 6= 3
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without a primitive third root of unity [2, pp. 338–339]. We refer to [15] or [21]
for the connection between spreads and translation planes; it is due to J. André
and was found independently by R. H. Bruck and R. C. Bose.

Walker adopted the projective point of view, which leads to spreads of lines
in a projective 3-space. He focussed on the case of a finite ground field GF(q),
q ≡ −1 (mod 6), and on the reguli contained in the spread. Thereby he laid the
cornerstone for a concept which is now called the Thas-Walker construction. It
links spreads with flocks of quadrics via the Klein mapping.

The BW-spread corresponds to a flock of a quadratic cone. In the finite case
this flock is due to C. Fisher and J. A. Thas, who weakened Walker’s condition
q ≡ −1 (mod 6). We refer to [25, pp. 334–338] for further details. Some authors
use the term “FTW-spread” for a finite BW-spread.

The BW-spread and its corresponding translation plane were revisited by
A. G. Spera [23]. The comprehensive paper by V. Jha and N. L. Johnson [13]
(which should be read together with its second part [14]) contains more informa-
tion about the BW-spread and its associated flock. In both papers the existence
of the BW-spread is established for an arbitrary ground field K with characteristic
6= 3 subject to the condition that each element of K has precisely one third root
in K. We add in passing that the BW-spread is among the “likeable structures”
of W. M. Kantor; see [7].

Finally, there is a neat connection, found by J. A. Thas, between flocks of
quadratic cones over finite fields and certain generalized quadrangles; see [25,
p. 334], [26], and the references given there. The infinite case was treated by
F. De Clerck and H. Van Maldeghem [5]. However, this connection with gener-
alized quadrangles is beyond the scope of the present paper. Let us just add the
following remark: In the finite case, the BW-spread corresponds to a generalized
quadrangle discovered by W. M. Kantor; cf. [24, p. 398]. Thus some authors speak
of the “FTWKB generalized quadrangle” in order to bring together the names of
all the involved mathematicians; see, for example, [18, p. 222].

1.2 One aim of the present note is to present a short, direct, and self-contained
approach to the BW-spread, thereby establishing a connection with an algebraic
surface which was discovered already in the 19th century, namely Cayley’s ruled
cubic surface. According to [17, p. 181] this name is not completely appropriate,
since M. Chasles published his discovery of that surface in 1861, three years before
A. Cayley.

Our starting point is a Cayley surface F , say, in the projective 3-space over an
arbitrary field K. At each simple point of F there is a unique osculating tangent
other than a generator. The set of all those osculating tangents, together with one
particular line on F , gives then a set of lines, say O, which easily turns out to be
a spread if K satisfies the conditions mentioned above (characteristic 6= 3, each
element of K has precisely one third root in K). Moreover, when “precisely” is
replaced with “at most” then O is a maximal partial spread; see Theorem 3.3 and
cf. [13, Theorem 6.3]. By our approach the maximality of such a partial spread
follows from the observation that all points of a distinguished plane are incident
with a line of the partial spread.
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By a classical result, there exists a duality which maps the Cayley surface
(as a set of points) onto the set of its tangent planes. Any mapping of this kind
fixes O, as a set of lines. Therefore, all our results hold together with their dual
counterparts. So, depending on the ground field, O will be a (maximal partial)
spread and at the same time a (maximal partial) dual spread.

In case of characteristic three there is a line of nuclei for the Cayley surface.
The existence of that line was noted by M. de Finis and M. J. de Resmini [6]
without giving a geometric interpretation. We show in Theorem 4.7 that the line
of nuclei is the axis of a parabolic congruence which contains all lines of O.

1.3 The transversal homeomorphism used in [2] to describe the BW-spread is
given in terms of polynomial functions. This raises the question whether or not the
BW-spread is algebraic, i.e., its image under the Klein mapping is an algebraic
variety. In the finite case every set of points is an algebraic variety (by [11,
Lemma 3.5 (a)], even a hypersurface), whence we exclude that case from our
investigation. On the other hand, infinite algebraic spreads seem to be rare.
The only examples known to the authors are the regular spreads (or, in other
words, the elliptic linear congruences) and some spreads found by the second
author; see [19, Table 1]. Unfortunately, our hope to find another example of
an algebraic spread did not come true. However, the BW-spread is very close
to being algebraic. We establish in Theorem 4.3 that the union of the BW-
spread and one pencil of lines is algebraic. More precisely, the Klein image of
that set is the smallest algebraic variety containing the Klein image of the BW-
spread (Theorem 4.5). When looking for equations describing that variety (in
terms of Plücker coordinates) the thesis of R. Koch [16] turned out extremely
useful, even though we could not directly implement his results in our work. It
is worth mentioning that the BW-spread (over R) is ubiquitous in Koch’s thesis
under the German name “Schmiegtangentenkongruenz” (congruence of osculating
tangents), but the property of being a spread never seems to be mentioned in the
text. Likewise, the authors were unable to find a remark on this property in the
older literature on the Cayley surface.

2. The Cayley surface

2.1 We consider the three-dimensional projective space P3(K) over a commu-
tative field K. As we shall use column vectors, a point has the form Kp with
(0, 0, 0, 0)T 6= p = (p0, p1, p2, p3)

T ∈ K4×1. The set of lines of P3(K) is written
as L.

Let X := (X0, X1, X2, X3) be a family of independent indeterminates over K.
We refer to [10, pp. 48–51] for those basic notions of algebraic geometry which
will be used in this paper. However, in contrast to [10], we write

V
(
g1(X), g2(X), . . . , gr(X)

)
:=

{
Kp ∈ P3(K) | g1(p)=g2(p)= · · · = gr(p)=0

}
for the set of K-rational points of the variety given by homogeneous polynomials
g1(X), g2(X), . . . , gr(X) ∈ K[X].
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Each matrix M = (mij)0≤i,j≤3 ∈ GL4(K) acts on the column space K4×1 by
multiplication from the left hand side and therefore as a projective collineation
on P3(K). Moreover, M acts as a K-algebra isomorphism on K[X] via Xi 7→∑3

j=0 mijXj for i ∈ {0, 1, 2, 3}. Given a form g(X) ∈ K[X] and its image under

M , say h(X), the collineation induced by M takes V
(
h(X)

)
to V

(
g(X)

)
.

In what follows the plane ω := V(X0) will be considered as plane at infinity;
thus we turn P3(K) into a projectively closed affine space.

2.2 We refer to [1], [3], [4], [8], [20], and [22] for the definition and basic properties
of Cayley’s ruled cubic surface or, for short, the Cayley surface. It is, to within
projective collineations, the point set F := V

(
f(X)

)
, where

f(X) := X0X1X2 −X3
1 −X2

0X3 ∈ K[X].

Let ∂i := ∂
∂Xi

. Hence we obtain

∂0f(X) = X1X2 − 2X0X3, ∂1f(X) = X0X2 − 3X2
1 ,

∂2f(X) = X0X1, ∂3f(X) = −X2
0 .

(1)

These partial derivatives vanish simultaneously at (p0, p1, p2, p3)
T ∈ K4×1 if, and

only if, at least one of the following conditions holds:

p0 = p1 = 0; (2)

p0 = p2 = 0 and Char K = 3. (3)

The parametrization

K2 → P3(K) : (u1, u2) 7→ K(1, u1, u2, u1u2 − u3
1)

T =: P (u1, u2)

is injective, and its image coincides with F \ ω (the affine part of F ). According
to (1), all points of F \ ω are simple. The tangent plane at P (u1, u2) equals

V
(
(2u3

1 − u1u2)X0 + (−3u2
1 + u2)X1 + u1X2 −X3

)
. (4)

The points subject to (2) comprise the line V(X0, X1) = F ∩ ω =: g∞. They are
easily seen to be double points of F . The tangent cone (or tangent space [10,
p. 49]) at a point U := K(0, 0, s2, s3)

T, (s2, s3) 6= (0, 0), is

V
(
X0(s2X1 − s3X0)

)
; (5)

this is either a pair of distinct planes (if U 6= Z := K(0, 0, 0, 1)T) or a repeated
plane (if U = Z). We call each of these planes a tangent plane at U . The point
Z is a so-called pinch point [17, p. 76], and its tangent plane is ω. See Figure 1
which displays the Cayley surface in P3(R) in an affine neighbourhood of Z. (The
plane V(X3) is at infinity in this illustration.)

The tangent plane of F at P (0, 0) is V(X3); this plane meets F along the line
V(X1, X3) and the parabola

l := V(X0X2 −X2
1 , X3). (6)
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For each (s0, s1) ∈ K2 \ {(0, 0)} the line

g(s0, s1) := K(s2
0, s0s1, s

2
1, 0)T + K(0, 0, s0, s1)

T

is a generator of F . There are no other lines on F . The line g(0, 1) = g∞ is
not only a generator of F , but also a directrix, as it has non-empty intersection
with every generator. Each point of g∞, except the point Z, is on precisely two
generators of F ; each affine point of F is incident with precisely one generator
(Figure 2).

Z
g∞ω

F

Z
g∞

F

Figure 1 Figure 2

Next we describe the automorphic projective collineations of F : The set of all
matrices

Ma,b,c :=


1 0 0 0
a c 0 0
b 3 ac c2 0

ab− a3 bc ac2 c3


where a, b ∈ K and c ∈ K \ {0} is a group, say G, under multiplication. Each
matrix in G leaves invariant the cubic form f(X) = X0X1X2 − X3

1 − X2
0X3 to

within the factor c3. Consequently, the group G acts on F as a group of projective
collineations. Under the action of G, the points of F fall into three orbits: F \ ω,
g∞ \ {Z}, and {Z}. Except for the case when |K| ≤ 3, the group G yields all
projective collineations of F ; see [8, Section 3].

Observe that the following holds irrespective of the characteristic of K.

Lemma 2.3. There exists a duality which maps the set of points of the Cayley
surface F onto the set of its tangent planes. Thus the set of all tangent planes of
F is a Cayley surface in the dual projective space.

Proof. By (4) and (5), a plane V
(∑3

i=0 aiXi

)
, where ai ∈ K, is a tangent plane

of F if, and only if, a1a2a3 − a3
2 − a0a

2
3 = 0. Consequently, the linear bijection

K4×1 → K1×4 : (x0, x1, x2, x3)
T 7→ (x3, x2, x1, x0)

gives a duality of P3(K) with the required properties. �

We note that the duality from the above takes, for all (u1, u2) ∈ K2, the point
P (u1, u2) to the tangent plane at the point P (−u1, 3u

2
1 − u2).
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3. Osculating tangents and the Betten-Walker spread

3.1 If a line t meets F at a simple point P with multiplicity ≥ 3 then it is called
an osculating tangent at P . Such a tangent line is either a generator or it meets
F at P only. In the latter case it will be called a proper osculating tangent of F .
Observe that we are not dealing with those lines which meet F with multiplicity
≥ 3 at a double point. In fact, g∞ is the set of double points, and at any point
U ∈ g∞, the lines meeting F at U with multiplicity ≥ 3 comprise two pencils
(one pencil if U = Z) lying in the two tangent planes at U (only tangent plane at
U = Z); see formula (5). The following is part of the folklore:

Lemma 3.2. At each point P (u1, u2) ∈ F \g∞ there is a unique proper osculating
tangent, namely the line which joins P (u1, u2) with the point K(0, 1, 3u1, u2)

T.

Proof. Let (u1, u2) = (0, 0). The tangent plane at P (0, 0) is V(X3). Any proper
osculating tangent through P (0, 0) is necessarily incident with this plane, and it
meets F at P (0, 0) only. By (6), only the tangent t of the parabola l at P (0, 0)
can be a proper osculating tangent, since every other tangent of F at P (0, 0)
meets l residually at a point 6= P (0, 0). The point at infinity of t is K(0, 1, 0, 0).
It is straightforward to verify that t meets F at P (0, 0) with multiplicity three.
By the action of the matrix Mu1,u2,1 ∈ G the assertion follows for any point
P (u1, u2) ∈ F \ g∞. �

Theorem 3.3. Let

O := {t ∈ L | t is a proper osculating tangent of F} ∪ {g∞}.

This set of lines has the following properties:

(a) O is a partial spread of P3(K) if, and only if, Char K 6= 3 and K does not
contain a third root of unity other than 1.

(b) If O is a partial spread then it is maximal, i.e., it is not a proper subset of
any partial spread of P3(K).

(c) O is a covering of P3(K) if, and only if, Char K 6= 3 and each element of
K has a third root in K.

Proof. (a) It is immediate from Lemma 3.2 that all proper osculating tangents
of F are skew to g∞. So it suffices to discuss whether or not two distinct proper
osculating tangents of F have a point in common. As the group G acts transitively
on F \ g∞, all proper osculating tangents of F are in one orbit of G. So it is
enough consider the osculating tangents at distinct points P (0, 0) and P (u1, u2).
By Lemma 3.2, these lines are skew if, and only if,

det


1 0 1 0
0 1 u1 1
0 0 u2 3u1

0 0 u1u2 − u3
1 u2

 = u2
2 − 3u2

1u2 + 3u4
1 6= 0. (7)
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If u1 = 0 then u2 6= 0, whence (7) holds irrespective of the ground field. Otherwise
we substitute u2 = (2+ y)u2

1 with y ∈ K. Hence (7) turns into u4
1(y

2 + y +1) 6= 0.
Observing (X2 + X + 1)(X − 1) = X3 − 1 ∈ K[X], we see that X2 + X + 1 has
a zero in K precisely when the following holds: Either Char K = 3, since in this
case X2 + X + 1 = (X − 1)2, or Char K 6= 3 and there exists a third root of unity
w 6= 1 in K, since then 12 + 1 + 1 6= 0.

(b) We infer from (a) that Char K 6= 3. Thus Lemma 3.2 implies that each point
at infinity is incident with a proper osculating tangent or just with the line g∞.
As every line of P3(K) has a point in common with the plane at infinity and each
point of the plane at infinity is on a line of the partial spread, the partial spread
O is maximal.

(c) First, let Char K = 3. It suffices to show that O cannot be a covering of
P3(K). By Lemma 3.2, all proper osculating tangents meet the line

n := V(X0, X2). (8)

Clearly, there exists a point in ω \ (n ∪ g∞). This point is not incident with any
line of O.

Next, assume Char K 6= 3. By the proof of (b), we may restrict ourselves to
affine points. A point K(1, p1, p2, p3) is on a line of O if, and only if, there is a
pair (u1, u2) ∈ K2 and an s ∈ K such that

(1, p1, p2, p3)
T = (1, u1, u2, u1u2 − u3

1)
T + s(0, 1, 3u1, u2)

T.

So we obtain the following system of equations in the unknowns u1, u2, s:

u1 = p1 − s, u2 = p2 − 3s(p1 − s), s3 = p3 − (p1p2 − p3
1).

This system has a solution precisely when p3 − (p1p2 − p3
1) has a third root in K.

As p3 − (p1p2 − p3
1) can assume any value in K, the assertion follows. �

3.4 By the above, an affine point lies on a line of O if, and only if, it can be
written in the form K(1, p1, p2, p1p2 − p3

1 + s3) with p1, p2, s ∈ K.
The results of Theorem 3.3 were established in [13, Theorem 6.1] and [23,

Teorema 1] in a completely different way. In those papers the reader will also find
conditions for a field K to meet one of the algebraic conditions given in (a), (b),
or (c).

We noted in Lemma 2.3 that F admits a duality which is easily seen to fix
O, as a set of lines. Hence the dual counterparts of the characterizations given in
Theorem 3.3 hold as well. Thus O is a (maximal partial) spread if, and only if,
it is a (maximal partial) dual spread. Observe that the point Z = K(0, 0, 0, 1)T

takes over the role of the plane ω in the dual setting.

3.5 Let Char K = 3. Recall from (8) that n = V(X0, X2). By (3), every point
of n \ {Z} is a nucleus of F , i.e. a point off F , where all partial derivatives (1)
vanish; see [10, p. 50]. We refer also to [6, Proposition 3.17], where nuclei are
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defined in a slightly different way (including double points of F ). Even though Z
is not a nucleus according to our definition, we shall refer to n as being the line of
nuclei. We established in the proof of Theorem 3.3 (c) that all proper osculating
tangents meet the line of nuclei. This result will be improved in Theorem 4.7.

3.6 Let K = R so that O is a spread. In order to show that this is in fact the
BW-spread, as described in [2, Satz 3], we apply the collineation

α : P3(K) → P3(K) : K(x0, x1, x2, x3)
T 7→ K

(
x0, x1,

x2

3
,
x3

3

)T

which fixes the line g∞. By Lemma 3.2, any line of α(O \ {g∞}) has the form

K

(
1, u1,

u2

3
,
u1u2

3
− u3

1

3

)T

+ K
(
0, 1, u1,

u2

3

)T

with (u1, u2) ∈ R2. By joining this line with Z = K(0, 0, 0, 1)T and K(0, 0, 1, 0)T,
we obtain two distinct planes with equations

x2 =
(u2

3
− u2

1

)
x0 + u1x1 and x3 = −u3

1

3
x0 +

u2

3
x1,

respectively. The substitutions x0 =: x, x1 =: y, x2 =: u, x3 =: v, u2/3− u2
1 =: t,

and u1 =: s turn these equations into

u = tx + sy and v = −s3

3
x + (s2 + t)y.

These are the formulas from [2, Satz 3]. In particular, we have the transversal
homeomorphism of R2 with (t, s) 7→ (−s3/3, s2 + t).

V(X1)

F

g(1, s)

R−(s)

Figure 3
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It is also easy to see that our results coincide with [28], where homogeneous
coordinates with indices running from 1 to 4, say x′1, x

′
2, x

′
3, x

′
4, were used. The

appropriate transformation from our coordinates x0, x1, x2, x3 is given by x′1 =
x3/3, x′2 = x2/3, x′3 = x1, and x′4 = x0. The group S1 used in [28] is a subgroup of
our group G, whereas the reguli Ri from [28] arise in our setting as follows: Take
the set of all proper osculating tangents at the points of a generator g(1, s), s ∈ K,
together with g∞. This is easily seen to be a regulus, say R−(s), which clearly
is contained in O. In affine terms each such regulus is one family of generators
on a hyperbolic paraboloid. These hyperbolic paraboloids have g∞ as a common
generator and they share a common tangent plane at each point of g∞. Thus, for
example, each such paraboloid meets the plane V(X1) ⊃ g∞ residually in a line;
all these lines are parallel, as they pass through K(0, 0, 1, 0)T. This is depicted in
Figure 3.

3.7 Assume Char K 6= 3. Then the lines of O other than g∞ define (by intersec-
tion) an injective mapping ω \ g∞ → V(X1) \ g∞; compare with the construction
of a spread via a transversal mapping due to N. Knarr [15, pp. 26–29]. An illus-
tration is given in Figure 4, where temporarily V(X0 + X1) takes over the role of
the plane at infinity. (The curves in V(X1) are semicubical parabolas.)

ω

V(X1)

Figure 4

4. The Klein image of the Betten-Walker spread

4.1 In terms of coordinates, the exterior square K4×1∧K4×1 coincides with K6×1

by setting

p ∧ q = (p0, p1, p2, p3)
T ∧ (q0, q1, q2, q3)

T = (y01, y02, y03, y12, y13, y23)
T

where yij = piqj − pjqi. Given that p, q are linearly independent the entries of
the column vector (y01, y02, . . . , y23)

T are the well known Plücker coordinates of
the line Kp + Kq. The Klein mapping κ : L → Q : Kp + Kq 7→ K(p ∧ q) is a
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bijection from the line set L of P3(K) onto Klein quadric Q := V(k(Y )) ⊂ P5(K),
where Y = (Y01, Y02, . . . , Y23) denotes a family of six independent indeterminates
over K and

k(Y ) := Y01Y23 − Y02Y13 + Y03Y12.

The polarity of the Klein quadric will be denoted by ⊥. Observe that ⊥ is sym-
plectic if, and only if, Char K = 2. Table 15.10 in [9, pp. 29–31] contains all
the information on the Klein mapping which we shall use in this section without
further reference.

A set of lines in P3(K) is said to be algebraic if its Klein image is the set of
K-rational points of an algebraic variety in P5(K).

4.2 Let us first calculate the Klein image of the set of generators of F : We obtain,
for all (s0, s1) ∈ K2 \ {(0, 0)}, that

κ(g(s0, s1)) = K(0, s3
0, s

2
0s1, s

2
0s1, s0s

2
1, s

3
1)

T ∈ P5(K). (9)

So we get a twisted cubic [9, Chapter 21] lying in the three-dimensional subspace

C := V(X01, X03 −X12) ⊂ P5(K).

The intersection C ∩ Q is a quadratic cone with vertex W∞ := κ(g∞) = Kw∞,
where

w∞ := (0, 0, 0, 0, 0, 1)T. (10)

This cone is the Klein image of a parabolic linear congruence with axis g∞, which
contains all generators of F . The subspace C⊥ is the line spanned by W∞ and
W := Kw, where

w := (0, 0, 1,−1, 0, 0)T.

This line meets the Klein quadric at W∞ only. We have C⊥ ∩ C = {W∞} for
Char K 6= 2, but C⊥ ⊂ C otherwise.

In the subsequent theorem we exhibit algebraic equations which are satisfied
by the Klein image of O; we shall explain in 4.4 how these equations were found.

Theorem 4.3. Suppose Char K 6= 3. Let O be given as in Theorem 3.3, and let
L[Z, ω] be the pencil of lines in the plane ω = V(X0) with centre Z = K(0, 0, 0, 1)T.
Consider the polynomials

h1(Y ) := 3Y01(Y12 + Y03)− Y 2
02, (11)

h2(Y ) := 3Y02Y13 − (Y12 + Y03)
2, (12)

h3(Y ) := 9Y01Y13 − Y02(Y12 + Y03). (13)

Then κ(O ∪ L[Z, ω]) equals the intersection of the variety

J := V(h1(Y ), h2(Y ), h3(Y )) ⊂ P5(K)

with the Klein quadric Q = V(k(Y )).
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Proof. (a) For all (u1, u2) ∈ K2, the Klein image of the only proper osculating
tangent at P (u1, u2) is the point with coordinates

(1, 3u1, u2, 3u
2
1 − u2, u

3
1, 3u

4
1 − 3u2

1u2 + u2
2)

T. (14)

The Klein image of the pencil L[Z, ω] is the line spanned by K(0, 0, 0, 0, 1, 0) and
Kw∞ = κ(g∞); see (10). Now a direct verification shows κ(O∪L[Z, ω]) ⊂ (J∩Q).

(b) In order to show (J ∩Q) ⊂ κ(O ∪ L[Z, ω]) we determine all vectors

y := (y01, y02, y03, y12, y13, y23)
T ∈ K6×1

subject to h1(y) = h2(y) = h3(y) = k(y) = 0.
In a first step we determine all such vectors with y01 6= 0. Without loss of

generality we may assume y01 = 1; also we let y02 =: u1 and y03 =: u2. From
h1(y) = 3y12 + 3u2 − 9u2

1 follows y12 = 3u2
1 − u2 which can be substituted in

h3(y) = 9y13−9u3
1. This gives y13 = u3

1. We calculate k(y) = y23−3u4
1+u2(u

2
1−u2)

which yields y23 = 3u4
1 − 3u2

1u2 + u2
2. Altogether, we obtain precisely the vectors

given in (14), whence h2(y) = 0 holds too.
The second step is to look for all solutions with y01 = 0. We infer from

h1(y) = −y2
02 that y02 = 0, from which we obtain h2(y) = −(y12 + y03)

2. So
y12 = −y03. Now k(y) = −y2

03 gives y03 = −y12 = 0. Summing up we obtain

y := (0, 0, 0, 0, y13, y23)
T ∈ K6×1

which is either the zero vector or a representative of a point in κ(L[Z, ω]). Con-
sequently, also h3(y) = 0 is satisfied. �

4.4 Let us shortly describe how the polynomials hi(Y ) were found: We noted
already in 3.7 that all proper osculating tangents at the points of a generator
g(1, s), s ∈ K, together with g∞ form a regulus R−(s) ⊂ O. The opposite
regulus R+(s), say, contains the generator g(1, s). Both reguli lie on a hyperbolic
paraboloid which is known in differential line geometry under the name Lie quadric
of F along the generator g(1, s); cf., among others, [12, pp. 33–37] or [22, pp. 67–
68]. In Figure 5 some reguli R−(s) are visualized in an affine neighbourhood of
the point Z. In this picture the plane V(X3) appears at infinity. See also Figures 3
and 4 for a different view of these reguli.

Given a point κ(g(1, s)) of the twisted cubic (9) let us denote by π(s) the
osculating plane at this point. The plane π(s) meets the cone C ∩ Q in a conic
which is the Klein image of the regulus R+(s). The Klein image of its opposite
regulus R−(s) is a conic lying in the plane π(s)⊥ ⊃ C⊥. We choose the three-
dimensional subspace

B := V(Y03, Y23)

which is skew to C⊥. Thus π(s)⊥ meets B at a unique point. We obtain this
point by letting u1 = s in (14) and by projecting through C⊥ to B. This gives
(for every u2 ∈ K)
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Z

?
g∞

Figure 5

K(1, 3 s, 0, 3 s2, s3, 0)T. (15)

Now we consider s ∈ K to be variable. Up to the exceptional case when Char K =
3, the planes π(s) belong to a cubic developable, so that the points of intersection
π(s)⊥ ∩ B will belong to a twisted cubic. This is also immediate from (15).
It is well known, that a twisted cubic can be obtained as the intersection of
three quadrics in B. (We used two quadratic cones projecting the cubic from two
different points, and a hyperbolic quadric.) Each of these three quadrics in B gives
rise to a quadratic cone in P5(K) by joining it with the line C⊥. The quadratic
polynomials in Theorem 4.3 describe these three quadratic cones in P5(K) so that
J actually is a cone with vertex C⊥ having a twisted cubic in B as its base.

We wish to emphasize that our approach is motivated by the Thas-Walker
construction linking flocks of cones with spreads: The osculating planes π(s) yield
a flock of the quadratic cone C ∩Q if, and only if, the set O is a spread of P3(K).
See [25, pp. 334–338] and [13, Theorem 6.2].

It should be noted here that we did not use results from the thesis of R. Koch
[16, pp. 18–19]. He described, over the real numbers, the congruence of osculating
tangents in terms of a cubic and a quadratic form (equations (2.27) and (2.28)
loc. cit.). In fact, his equation (2.28) corresponds, up to a change of coordinates,
to our polynomial (11). However, the two equations of Koch are also satisfied by
the Plücker coordinates of all lines through the point Z, whereas our system of
equations yields less lines through that point.

The next result says that, from an algebraic point of view, our system of
equations (11) – (13) is the best possible:

Theorem 4.5. Suppose that K is an infinite field with Char K 6= 3. Let O and
L[Z, ω] be given as in Theorems 3.3 and 4.3, respectively. If h(Y ) ∈ K[Y ] is a
form such that κ(O) ⊂ V(h(Y )) then κ(L[Z, ω]) ⊂ V(h(Y )).

Proof. Given such a form h(Y ) ∈ K[X] we obtain from (14) the identity

h((1, 3u1, u2, 3u
2
1 − u2, u

3
1, 3u

4
1 − 3u2

1u2 + u2
2)

T) = 0 for all (u1, u2) ∈ K2. (16)



H. Havlicek, R. Riesinger: The Betten-Walker Spread . . . 539

Due to Char K 6= 3 there exists a field extension K/K of degree [K : K] ≤ 2
containing a third root of unity w 6= 1. We infer from a standard result on zeros
of polynomials over an infinite domain (see, for example, [27, § 28]) that (16) holds

also for all (u1, u2) ∈ K
2
. We allow u1 ∈ K and replace u2 with (1− w)u2

1 + mu1

in (14), where m ∈ K is fixed, but arbitrary. Thus (14) turns into

(1, 3u1, (1− w)u2
1 + mu1, (2 + w)u2

1 −mu1, u
3
1,−(2w + 1)mu3

1 + m2u2
1)

T.

This is for u1 ∈ K a rational parametrization of all but one points of a twisted
cubic which is contained in the variety of P3(K) determined by h(Y ) considered
as an element of K[Y ]. As K is infinite, also the remaining point of the twisted
cubic, namely

K(0, 0, 0, 0, 1,−(2w + 1)m)T,

is a point of that variety. We claim that 2w+1 6= 0: This is trivial when Char K =
2. For Char K 6= 2 the assertion holds, because our assumption Char K 6= 3
guarantees that (−1/2)3 6= 1, whence w 6= −1/2.

Thus, for appropriate values of m ∈ K, we see that all points of the line
κ(L[Z, ω]) except κ(g∞) belong to the variety V(h(Y )). Finally, since K is infinite,
we obtain κ(g∞) ∈ V(h(Y )). �

Corollary 4.6. Infinite Betten-Walker spreads are not algebraic sets of lines.

We now turn to the remaining case of characteristic 3. Here the situation is
completely different:

Theorem 4.7. Let Char K = 3. Then O∪L[Z, ω] is a subset of a parabolic linear
congruence N whose Klein image equals the quadratic cone Q ∩D, where

D := V(X02, X03 + X12)

is a three-dimensional subspace of P5(K). The axis of the congruence N is the
line n of nuclei. The congruence N coincides with O ∪ L[Z, ω] if, and only if,
each element of K has a third root in K.

Proof. The polar subspace D⊥ (with respect to the Klein quadric Q) is the line
joining

κ(n) = K(0, 0, 0, 0, 1, 0)T ∈ Q and K(0, 0, 1, 1, 0, 0)T 6∈ Q.

So D⊥ 6⊂ Q is a tangent of the Klein quadric and D ∩Q is a quadratic cone with
vertex κ(n). For all (u1, u2) ∈ K2, the Klein image of the only proper osculating
tangent at P (u1, u2) is the point with coordinates

(1, 0, u2,−u2, u
3
1, u

2
2)

T. (17)

The Klein image of the pencil L[Z, ω] is the line spanned by κ(n) and Kw∞ =
κ(g∞); see (10). Now a direct verification shows (O ∪ L[Z, ω]) ⊂ N .

We read off from the penultimate coordinate in (17) that N = O ∪ L[Z, ω]
holds precisely when every element of K has a third root in K. �
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Of course, when K is finite with characteristic 3 then each of its elements has a
third root in K.

The line D⊥ has yet another natural interpretation: Formula (9) can be rewrit-
ten in the form

κ(g(s0, s1)) = K(s3
0v0 + s2

0s1v1 + s0s
2
1v2 + s3

1v3) (18)

with linearly independent vi ∈ K6×1. By the above, we obtain a twisted cubic as
(s0, s1) 6= (0, 0) varies in K2. Due to Char K = 3 all osculating planes of this cubic
belong to the pencil of planes (see [9, Theorem 21.1.2]) with axis Kv1+Kv2 = D⊥.
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