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Abstract. A convex body R in a normed d-dimensional space Md is
called reduced if the Md-thickness ∆(K) of each convex body K ⊂ R
different from R is smaller than ∆(R). We present two characterizations
of reduced polytopes in Md. One of them is that a convex polytope
P ⊂ Md is reduced if and only if through every vertex v of P a hyper-
plane strictly supporting P passes such that the Md-width of P in the
perpendicular direction is ∆(P ). Also two characterization of reduced
simplices in Md and a characterization of reduced polygons in M2 are
given.
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If every convex body properly contained in a convex body R of Euclidean space
Ed has the thickness smaller than the thickness of R, we call R a reduced body.
Results about reduced bodies were obtained successively in [8], [6], [4], [5], [14],
[10], [13] and [11]. In [12] this notion is generalized for the d-dimensional real
normed space Md (called also d-dimensional Banach space or Minkowski space).
A few properties of reduced bodies in Md are established there. The present paper
gives two characterizations of reduced polytopes in Md and a characterization of
reduced polygons in M2.

The symbol || · || stands for the norm of the space Md. As usual, we write
bd for the boundary, and conv for the convex hull. By ab we denote the segment
with endpoints a, b, and by |ab| we denote the Md-length ||b− a|| of ab.
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Let H1 and H2 be different parallel hyperplanes in Md. Then S = conv(H1 ∪
H2) is called a strip. If H1 and H2 are perpendicular (in Euclidean sense) to
a direction m, then we say that S is a strip of direction m. We call H1 and
H2 the bounding hyperplanes of S. If H1 and H2 support a convex body C,
then S is called a C-strip. By the Md-width w(S) of S we have in mind the
smallest value of |h1h2| over all h1 ∈ H1 and h2 ∈ H2. If a point x ∈ bd(C)
belongs to one of the bounding hyperplanes of a C-strip S, we say that S passes
through x. The C-strip of direction m is denoted by S(C, m). By the Md-width
w(C, m) of a convex body C ⊂ Md in a direction m we mean w(S(C, m)). The
number ∆(C) = minmw(C, m) is called the Md-thickness of C. If a chord c1c2

of a convex body C ⊂ Md connects the opposite hyperplanes bounding a C-strip
of Md-width ∆(C) and if |c1c2| = ∆(C), we call c1c2 a thickness chord of C.
Denote by Γ(C, m) the Md-length of a longest chord of C in direction m and put
Γ(C) = minmΓ(C, m).

Lemma 1. For every convex body C ⊂ Md and every direction m we have
Γ(C, m) ≤ w(C, m). For every convex body C ⊂ Md the equality Γ(C) = ∆(C)
holds true.

The proof of Lemma 1 for Md is analogous to the short proof of the well known
fact that Lemma 1 holds true in Ed: an easy proof of this fact can be found for
instance in [15], pp. 157–158. Comp. also (1.5) of [7] and Theorem 3 of [1].

Let us recall the definition of a reduced body in Md.

Definition. A convex body R ⊂ Md is called reduced if ∆(K) < ∆(R) for every
convex body K ⊂ R different from R.

From Lemma 1 we obtain the following reformulation of the definition of a reduced
body in terms of its chords (clearly, in particular, Claim holds true for reduced
bodies in Ed).

Claim. A convex body R ⊂ Md is reduced if and only if for every convex body
K ⊂ R different from R there is a direction m such that all chords of K in
direction m are of Md-length smaller than Γ(R).

For many problems concerning the Md-thickness of convex bodies it is sufficient
to consider only reduced bodies; still every convex body in Md contains a reduced
body of equal Md-thickness. This is why our subject is also of applied nature.
Such applications of reduced bodies in Md are considered in [2] and [3].

We denote the body 1
2
[C + (−C)] by C∗.

Lemma 2. Let C ⊂ Md be a convex body. For every direction m we have
w(C∗, m) = w(C, m).

Lemma 2 immediately follows from the well known fact that it holds true in Ed

and from the definition of the Md-width of C in direction m.
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Lemma 3. The Md-thickness of every convex polytope P ⊂ Md is attained for a
direction perpendicular to a facet of the polytope P ∗.

Proof. Since C∗ is centrally-symmetric, from Lemma 2 we see that it is sufficient to
show that the Md-thickness of every centrally-symmetric convex polytope Q ⊂ Md

is attained for a direction perpendicular to a facet of it. Let us show this. Take
into account the largest ball BQ of Md contained in Q whose center is the center
of Q. Of course, BQ touches the boundary of Q at a point q, and q belongs to
a facet F of Q. The hyperplane H containing F supports both Q and BQ at q.
The symmetric hyperplane also supports Q and BQ. So the Md-thickness of Q is
attained for the direction perpendicular to H. �

Theorem 1. A convex polytope P ⊂ Md is reduced if and only if through every
vertex v of P a strip of Md-width ∆(P ) passes whose bounding hyperplane through
v strictly supports P .

Proof. Let P ⊂ Md be a convex polytope.

(⇒) Assume that P is reduced. Consider a vertex v of P . There exists a sequence
H1, H2, . . . of hyperplanes such that

(1) H1, H2, . . . are parallel,

(2) every Hi passes through an internal point of every edge of P whose endpoint
is v,

(3) the distances between Hi and v tend to 0 as i →∞.

Let i ∈ {1, 2, . . .}. The closed half-space bounded by Hi which does not contain
v is denoted by H+

i . Put Pi = P ∩H+
i . Since P is reduced, ∆(Pi) < ∆(P ). By

Lemma 3 there is a Pi-strip Si of direction perpendicular to a facet of P ∗
i such

that w(Si) = ∆(Pi). Of course, v 6∈ Si. Denote by Gi the bounding hyperplane
of Si which separates v from Pi.

From (1) and (2) we deduce that between the faces of every two polytopes Pi

and Pj from amongst P1, P2, . . . there is the following correspondence: for every
k-dimensional face of Pi, a parallel k-dimensional face is in Pj. Consequently, for
every facet of P ∗

i , there is a parallel facet in P ∗
j . This and the choice of S1, S2, . . .

imply that between the directions perpendicular to the hyperplanes G1, G2, . . .
there is only a finite number of different directions. This, the fact that G1, G2, . . .
do not pass through v, and (3) lead to the conclusion that from the sequence
G1, G2, . . . we can select a subsequence convergent to a hyperplane G which strictly
supports P at v. Moreover, from (3) we deduce that lim

i→∞
∆(Pi) = ∆(P ). Both

these facts and w(Si) = ∆(Pi) for i ∈ {1, 2, . . .} imply that the Md-width of the
P -strip bounded by G is equal to ∆(P ).

(⇐) Let K ⊂ P be an arbitrary convex body different from P . Of course, there
is a vertex v of P which does not belong to K. By the “only if” assumption of
Theorem 1 there exists a P -strip of Md-width equal to ∆(P ) such that one of its
bounding hyperplanes strictly supports P at v. Clearly, this hyperplane is disjoint
with K. Consequently, ∆(K) < ∆(P ). The arbitrarines of K implies that P is
reduced. �
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The following Theorem 2 is formulated only in terms of chords of a polytope
and of their directions. So it is often more intuitive and more convenient than
Theorem 1 to apply for checking if a polytope is reduced.

Theorem 2. A convex polytope P ⊂ Md is reduced if and only if for every vertex
v of P there is a direction such that the longest chord of P in this direction is
unique, has Md-length Γ(P ) and v as its endpoint.

Proof. Let P ⊂ Md be a convex polytope.

(⇒) Assume that P is reduced and let v be a vertex of P . By Theorem 1 there
is a strip S of Md-width ∆(P ) which passes through v such that its bounding
hyperplane H1 through v strictly supports P . Denote by H2 the opposite bounding
hyperplane of S. By Lemma 3 of [12] there is a thickness chord vw of P with
w ∈ H2. Since H1 strictly supports P , there is no translate of vw in P . So vw
is the unique chord of P of its own direction and of the Md-length ∆(P ). By
Lemma 1 we have ∆(P ) = Γ(P ).

(⇐) Let K ⊂ P be an arbitrary convex body different from P . Of course, K does
not contain a vertex v of P . By the “only if” assumption of Theorem 2 there exists
a direction m and a chord vw of P of direction m and Md-length Γ(P ) such that
no translate of this chord is contained in P . Since moreover v 6∈ K, we conclude
that K does not contain a chord of the direction m and of the Md-length at least
|vw|. Consequently, by Claim we see that the polytope P is reduced. �

Theorems 1 and 2 are not true for a convex body C instead of a polytope P when
we take an extreme point of C in the part of a vertex of P in their formulations.
Just take into account the extreme point p of the reduced body Z ⊂ E3 presented
in Figure 2 of [10].

Example 1. Consider the space M3 with the norm max3
i=1 |xi|. Its unit ball B

is a cube. Denote the successive vertices of the bottom base by a, b, c, d and the
opposite vertices by a′, b′, c′, d′ (see Figure 1). Of course, B itself is a reduced body
and ∆(B) = 2. In Figures 1–3 we see polytopes T , A and D which are reduced.
In each case this can be easily checked applying Theorem 1 or Theorem 2. We can
also use the definition of a reduced body or the reformulated definition presented
in Claim. For the tetrahedron T = acb′d′ we have ∆(T ) = 4

3
. More general,

also the tetrahedron acb′′d′′ is reduced, where b′′d′′ is any “vertical” (i.e. parallel
to ac′) translation of b′d′ such that the M3-length of the segment connecting the
centers of ac and b′′d′′ is at least 1. For the pyramid A with base abcd and vertex
o we have ∆(A) = 1. The bottom base of the right prism D is the convex hull of
two intersecting segments: of a horizontal translate a1c1 of ac and of a horizontal
translate b2d2 of bd. The top base c′1d

′
2a
′
1b
′
2 is a translate of the bottom base by

2 units “vertically” up. Of course, ∆(D) = 2. A natural task is to describe all
reduced bodies in the space with the norm maxd

i=1 |xi|. Since its unit ball is a
d-dimensional cube, from Corollary 1 of [12] we see that they are some polytopes
with at most 2d vertices.
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Figure 1 Figure 2 Figure 3

By the way, we let the reader to show that if Ri is a reduced body in a normed
space Mdi

i with the unit ball Bi, where i ∈ {1, . . . , k}, and if ∆(R1) = . . . = ∆(Rk),
then Πk

i=1Ri is a reduced body in the space Πk
i=1M

di
i with the norm whose unit ball

is Πk
i=1Bi.
Recall that the paper [9] asks if there exist reduced polytopes in Ed, where

d ≥ 3. In [14] and [13] it is proved that all simplices in every Ed, where d ≥ 3, are
not reduced. From [12] we also know that in every M2 for every direction there
exists a reduced triangle whose side is parallel to this direction. We see that a
natural question is in which spaces Md there exist reduced simplices.

Corollary 1. A simplex S ⊂ Md is reduced if and only if S∗ contains a concentric
ball of Md which touches all facets of S∗ which are parallel to the facets of S.

Proof. Assume that S ⊂ Md is a reduced simplex. By Theorem 1 through every
vertex vi of S, where i ∈ {0, . . . , d}, an S-strip of Md-width ∆(S) passes whose one
bounding hyperplane strictly supports S at vi; the opposite hyperplane supports
S at points (or at one point) of the opposite facet. Lemma 2 implies that S∗

contains a concentric ball of M3 touching all facets of S∗ parallel to the facets
of S.

Assume that S∗ contains a concentric ball BS∗ of Md touching all pairs of
opposite facets Fi, F ′

i of S∗ parallel to the facets of S, where i ∈ {0, . . . , d}. For
every i ∈ {0, . . . , d}, we provide parallel hyperplanes containing facets Fi and F ′

i ;
the Md-width of the strip between these hyperplanes is equal to ∆(BS∗) = ∆(S∗).
From Lemma 2 we deduce that for every vertex of S an S-strip of Md-width
∆(S∗) = ∆(S) passes whose one bounding hyperplane strictly supports S at this
vertex. By Theorem 1 the simplex S is reduced. �

In particular, Corollary 1 implies that the simplex T with vertices (1, 1, 1), (−1,

−1, 1), (1,−1,−1) and (−1, 1,−1) in the space M3 with the norm (
∑3

i=1 |xi|p)1/p

(i.e. in lp3) is reduced if and only if p ≥ ln 3
ln 1.5

(≈ 2.7095). We omit an easy
calculation showing this. It is based on the fact that T ∗ is a cuboctahedron and
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that the (Euclidean) distance of opposite triangular facets of T ∗ is 2
3

√
3 times the

distance between opposite square facets.
Applying Theorem 1 and the fact that the strips of Md-width ∆(S) con-

structed in the second part of the proof of Corollary 1 are parallel to the facets of
S, we obtain the following

Corollary 2. A simplex S ⊂ Md is reduced if and only if for every facet of S the
Md-width of S in the perpendicular direction is equal to ∆(S).

Lemma 4. For a planar convex body C consider two different C-strips S(C, n1)
and S(C, n2). Let xiyi be a segment contained in C and connecting the lines
bounding S(C, ni), where i = 1, 2. Then the segments x1y1 and x2y2 intersect.

If the oriented positive angle from a direction n1 to a different direction n2 in M2

is smaller than π, then we write n1 ≺ n2.

Corollary 3. For every side of any reduced polygon P ⊂ M2 the M2-width in the
perpendicular direction is equal to ∆(P ).

Proof. Let t1t2 be a side of P , where t2 is after t1 when we go counterclockwise
on bd(P ) (see Figure 4).

Figure 4

Consider the strip S(P, m) whose bounding line contains t1t2. By Theorem 1
through ti a strip S(P, mi) of M2-width ∆(P ) passes whose bounding line through
ti strictly supports P , where i ∈ {1, 2}. Saying about directions m, m1 and m2

above we have in mind the outer directions of P perpendicular to the mentioned
supporting lines. We have m1 ≺ m ≺ m2. Since w(S(P, mi)) = ∆(P ) and since
both the bounding lines of S(P, mi) support P , by Lemma 3 of [12] we see that
there is a thickness chord tiui of P such that ui is in the other bounding line
of S(P, mi) than the line containing ti, where i ∈ {1, 2}. The bounding line of
S(P, m) not containing t1t2 passes through a vertex v of P . Theorem 1 of [12]
guarantees that v is an endpoint of a thickness chord vw of P .

From m1 ≺ m ≺ m2 and from Lemma 4 we conclude that when we go coun-
terclockwise on bd(P ), after u1 we meet first v and next u2 (in particular, it is
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possible that u1 = v or v = u2). Hence, again from Lemma 4, the segment vw
intersects both t1u1 and t2u2. This and w ∈ bd(P ) imply w ∈ t1t2. So vw con-
nects opposite lines bounding S(P, m). Since vw is a thickness chord of P , we get
w(S(P, m)) = ∆(P ), which ends the proof. �

The following Example 2 shows that Corollary 3 is not true in M3 if in the part
of sides of a polygon we have in mind facets of a polytope. It also shows that
Corollaries 1 and 2 are not true for arbitrary convex polytopes in place of simplices.

Example 2. Let the unit ball B of M3 be the convex hull of a regular octagon
T and of a perpendicular segment wz whose centers coincide (see Figure 5). Take
into account two different squares W and Z with vertices at the vertices of T .
Translate Z in the direction parallel to wz such that the new position Z ′ of Z is
in a distance from W larger than the distance between w and z. The polytope
P = conv(W ∪ Z ′) presented in Figure 6 is reduced. This easily follows from
Theorem 1 or from Theorem 2. The width of P in the direction perpendicular to
W is over ∆(P ).

Figure 5 Figure 6

Proposition. A convex polygon P ⊂ M2 is reduced if and only if the polygon P ∗

is circumscribed about a ball of M2.

Proposition follows from Corollary 3. The reduced polytope P presented in Ex-
ample 2 (see Figure 6) shows that Proposition does not hold true in higher di-
mensions.
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