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1. Introduction and motivation

The geometry of lines is a classical topic (see e.g. [24]) which is of interest not only
for its own sake. Given the nature of its object of study — the lines of Euclidean or
projective three-space — it is natural that frequently problems on the borderlines
between mathematics, computer science, and engineering are solved with line-
geometric methods. Especially we would like to mention recent work in Computer
Vision [12, 22, 27], on reverse engineering and reconstruction of kinematic surfaces
[10, 11, 17, 19, 21}, on approximation and interpolation in line space, [1, 5, 13,
16, 18], and in general, on geometric computing with lines [8, 15]. Examples of
applications of line geometry are also collected in the monograph [20]. The number
of applications where lines and points on them (i.e., line elements) appear together
raises interest in the geometry of line elements. This paper generalizes the concept
of Pliicker coordinates to the case of line elements and establishes some basic facts.
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(a) (b) ()

Figure 1. (a) Spiral surfaces possess a smooth family (A(%), a(t), a(t)) of automor-
phic equiform motions. The velocity vector field v(y) illustrated in this figure is
almost tangent to the shell of a specimen of sazidomus nutalli, showing that this
shell is almost an exact spiral surface. (b) Surface recognition and classification
by means of point cloud data obtained from the marine snail bulla ampulla. The
spiral axis has been found by numerically estimating surface normals and finding
an equiform motion which fits these the surface normal elements. (see [4]). (c)
Surface reconstruction. A spiral surface approximating the given point cloud data
has been computed (see [4])

We emphasize the relation with equiform kinematics, thus generalizing the well
known relations between Euclidean kinematics [6] and classical line geometry [20].

Our interest in the geometry of line elements has its origin in our investigation
of problems related to the recognition, classification and segmentation of surfaces
given by point cloud data, typically obtained by laser scanning. For such data,
surface normals can be estimated numerically, or are even delivered by software
used for modern 3D photography. The methods used in the Computer Vision
community for recognition and reconstruction of special surface types often employ
the Hough transform [7], augmented by geometric tools like the Gaussian image,
Laguerre geometry [14], and line geometry [2, 20, 17].

These methods have recently been extended to the geometry of line elements
[4], which the present paper provides mathematical basis for. The paper [4] con-
tains many examples of the use of line element geometry for surface recognition,
reconstruction, and segmentation. One example is given by Figure 1.
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2. The group of equiform transformations

This section describes equiform transformations, which means affine transforma-
tions whose linear part is composed from an orthogonal transformation and a ho-
mothetical transformation. Such an equiform transformation maps points z € R?
according to

v aAr+a, AcSOs acR® acR'. (1)

A smooth one-parameter equiform motion moves a point x via y(t) = a(t)A(t)x +
a(t). The velocity y(t), if expressed in terms of y(t), has the form

v(y) = AATy + gy — AATq — ga +a. (2)

Such a velocity vector field is also illustrated in Figure 1. Since A is orthogonal,
the matrix AAT := C* is skew-symmetric and the product C*z can be written
in the form ¢ x x:

o(y) =X y+yy+¢ (vzg,E:AATa—ga+d). (3)
This expression for the velocity vector field is similar to the well known Euclidean
case (see e.g. [20], §3.4.1). It follows from the general theory of Lie transformation
groups [3] that any triple (c,¢,v) € R defines a unique uniform equiform motion
(a one-parameter subgroup of the equiform group) (A(t), a(t), a(t)) which has the
property that the velocities in (3) do not depend on ¢, and A(0) = Ej3, a(0) = 0,
a(0) =1

2.1. Uniform equiform motions

In the following we give a complete list of normal forms of uniform equiform
motions, where ‘normal form’ refers to equiform equivalence. The classification is
similar to the well known Euclidean case. An equiform coordinate transformation
y = 7Tz + t transforms the velocity vector field (3) into

9(z)=dxz+d+dwithd=T""c, d=T ext+c+qt), 6= (4

We are going to choose 7,7, ¢ such that d,d have simple coordinates. The corre-
sponding subgroup will be denoted by (B(t), b(t), B(t)).

Casel. y=0, c#0
This is the Euclidean case. We choose ¢ such that d || d and T such that d =
(0,0,w)t, d = (0,0,v)T. Then

0 0 1 vt

coswt —sinwt 0 0
B(t) = [ sinwt  coswt 0 ], b(t) = [ 0 ], Bt)=1 (w##0). (5)
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For v # 0 this is a helical motion (see Figure 2, left), otherwise a rotation.

Figure 2. Uniform equiform motions with paths z(t),2’(¢) and invariant surfaces
A, A’. Left: Helical motion with axis A. Right: Spiral motion with center o and
axis O.

Case2. y=0,c=0,¢c#0

We have d = (0,0,0)7, § = 0, and it is easy to find 7" such that d = (0,0,v)".
Then B(t) = Fs, 5(t) = 1, and b(t) = (0,0,vt)T. This is the case of a uniform
translation.

Case 3. v#0, ¢c#0

The equation ¢ x t + ¢+t = 0 has the unique solution t = —(C* + vE3)~'¢, as
det(C* +~vE3) = v(v*+ {(c,c)) # 0. Thus we can achieve d = 0, and we choose T
such that d = (0,0,w)?. It follows that B(t) is the same as in (5), b(t) = 0, and
B(t) = exp(7yt). This is the generic case of a uniform spiral motion, as illustrated
in Figure 2, right.

The orbits of curves under such one-parameter subgroups are spiral surfaces
[26], which nature approximates in shells whose growth is governed by scale-
invariant processes. This is one of the rare physical manifestations of equiform
geometry (see Figure 1).

Case 4. v#£0, c=0
It is easy to find ¢ such that d = 0. Then B(t) = Es, 3(t) = exp(vt), and b(t) = 0.
This is a subgroup of central similarities.
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3. Pliicker coordinates of line elements

Let L be a line in Euclidean three-space passing through a point z. In order to
assign coordinates to the line element (L, ), we extend the familiar definition of
Pliicker coordinates [20, 24]:

Definition 1. The triple (1,1,\) € R" is called the Plicker coordinates of the line
element (L,x) in R3, if 1 # 0 is parallel to L, | = x x I, and X\ = (x,1).

Obviously these coordinates are homogeneous. It is elementary to verify that

v =p(lT)+ ﬁz, with p(i,7) = ﬁz 1 (6)

The point p(l,1) is the pedal point of the origin on the line L. It is well known
that Pliicker coordinates satisfy (I,I) = 0, and that all ({,1) with (/,I) = 0 and
I # 0 occur as coordinates of lines in R3. Thus, (I,1,)) is the Pliicker coordinate
vector of a line element, if and only if

LIy =0, 1#0. (7)

Equation (7) describes part of a quadratic cone in projective space P® whose base
is the Klein quadric. Note that in this paper we do not consider line elements
whose constitutents are “at infinity”. In fact it is not so easy to extend Pliicker
coordinates of lines to Pliicker coordinates of line elements — some aspects of this
problem are discussed in Section 5 below. We therefore do not follow an approach
similar to [25], where Euclidean line geometry is treated from the viewpoint of
projective extension.

A line element becomes oriented, if the corresponding line has an orientation.
In coordinates, this is realized by identifying (1,1, \) and wu(l,1,\) if and only if
w > 0, or alternatively by the restriction ||| = 1.

The equiform transformation (1) transforms the line element (I,1,\) into
(I, 1, N) with ' = aAx +a, I' = Al I' = 2’ xI',) N = (2/,I'). In block ma-
trix form, this transformation reads

I A 0 0 [
' | =] A%A aA 0 I (A%z =a x x). (8)
N a’A 07 « A

Equation (8) obviously applies to oriented line elements as well, for both ways of
coordinatizing them. When considering orientation-reversing equiform mappings
as well, one allows that A € Og. Still, (8) is valid.

3.1. The geometric meaning of I, I, and A

By construction, the set of line elements (L,z) = (I,1,\) with [, )\ fixed is de-
scribed by L || [ and x contained in the plane with equation (x,l) = A. We
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recognize (—\,[) as homogeneous coordinates for that plane. If (1,1, \) is consid-
ered oriented, so is the plane.

Now suppose that [ # 0 and A are given, and we are looking for the set of line
elements (L, z) = (1,1, \) with given [ and \. The lines whose Pliicker coordinates
(1,1) have the given [, are those contained in the plane I*. The footpoint p = p(l, 1)
and the point x of (6) satisfy the relations

_ Al

2]
12l = I = pll = 7=+
il

Il
We see that the mapping p — [ is an equiform transformation within I, but the
mapping p +— x is not. It is obvious that the set of line elements (L, z) = (I,1, \)
with fixed [ # 0 and \ is invariant under rotations about the axis L and so is
a union of Kasner’s turbines [9, 23]. This notion means the set of line elements
generated by rotating one line element (L, z) about an axis orthogonal to L. The
case [ = 0 leads to all line elements (L, x) with 0 € L. If we think of oriented line

elements, the results are similar: we get the set of oriented lines contained in the
plane [+ which are oriented such that det(p(l,1),1,1) > 0.

3.2. Generalized bundles

It is interesting to study certain linear subspaces of the (quadratic) coordinate
space of line elements. The term ‘bundle of lines’ employed in the definition
below means either the set of lines which pass through a point of R3, or the set
of lines parallel to a given line.

Definition 2. A set of line elements (L, x) is called a generalized bundle, if its
lines constitute a bundle and its coordinates are contained in a three-dimensional
linear subspace of R”.

In view of homogeneity of line element coordinates, a bundle of line elements
has dimension two. In case the bundle of Definition 2 has a proper vertex ¢, we
may choose lines parallel to the canonical basis vectors eq,es,e3 and see that the
corresponding coordinate subspace is spanned by the columns of a matrix of the
form

€1 €9 €3 ES
mimy m3 | = | ¢ | eR”P, my;=gqXe. (9)
p" P
If all lines of the bundle are parallel to v € R3, there is an analogous matrix of
the form
v 0 0
0 mo M3 c R7X3, (10)
a 0 0
L

where ms, ms € R3 span v+,
For a given generalized bundle of line elements (L, x) it is interesting to observe
the location of all points x:
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Lemma 3.1. A generalized bundle of line elements (L, x) either consists of the
lines incident with a point ¢ € R® such that x is contained in a sphere with center
(p+q)/2 and radius ||p — q||/2, with p,q from (9); or of the lines parallel to a
vector v € R?® such that x is contained in the plane with equation (x,v) = «, with
v, a from (10).

Proof. We first consider the case (9). With p = (p1, s, p3)?, the general line
element (L, z) in the bundle has coordinates (I,q X I,>_ l;p;). By construction,
> lix; = > lip;, which implies that x — p L [. It follows that x is contained in a
Thales sphere with diameter pg. In the case (10), the general line element (L, x)
has coordinates (1,1, \) with [ =~v, A=~a. Obviously, (z,v)= %(x, )= %/\:a. O

The result of Lemma 3.1 is illustrated in Figure 4, left.

3.3. Linear mappings of Pliicker coordinates

A linear automorphism of R” which transforms the set
(LI € R | (1) = 0} (11)

into itself, is called a linear mapping of line elements. Similar to the phenomenon
that restricting an automorphism of a projective space P to an affine space A C P
does not map A into A, also a linear mapping of line elements will in general
map some coordinate vectors of line elements to coordinate vectors of the type
(0,1, \) which no longer represent line elements. Note that a linear mapping of
line elements is not, in general, induced by a point-to-point mapping of affine of
projective three-space.

An example of a linear mapping of line elements which is induced by a point-
to-point mapping (by an equiform transformation, to be precise) is given by (8).
It turns out that a general affine transformation does not give rise to a linear
mapping of line elements in the same way:

Lemma 3.2. An affine mapping v — Az + a with A € R*3 induces a linear
mapping of line elements if and only if it is a similarity transformation.

Proof. Assume that line element coordinates are mapped according to (1,1, A) —
(k, %, 5). Then k = Al, k = K'l + K"I, but by (6),

I x 1+ M 1
XA Al = ——
oy e =

This dependence is linear if and only if AT Al is a multiple of [, for all [, i.e., if
and only if AT A is a multiple of Es. U

w=(A det(l,1, AT Al + X1, AT Al)) + aT Al
< ( (77 M

Lemma 3.3. A linear automorphism ¢ of RT with block matriz representation

f
U K L a
V| =| P Q@
N ul T w

is a linear mapping of line elements, if and only if a = b = 0, both KT P and L*Q
are skew-symmetric, and KTQ + PTL = »xE5 with s # 0.

(=

l
z], (12)

>
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Proof. The mapping ¢ is a linear mapping of line elements, if and only if it leaves
the relation (I,I) = 0 invariant. It is straightforward to describe the group of
linear automorphisms of a quadratic surface. For the convenience of the reader,
we describe the argument here:

With the canonical projection 7 : R7 — RS & : (I,I)r—7 o ¢(I,1,0) is a
linear automorphism of the Klein quadric, whence the conditions on K, L, P, and

Q. Especially the upper left 2 x 2 block [[IECLQ is regular. The expression (', ')
7 T 1T PQ [ 2 /AT 7

expands to s(l, )+ A[a" b']- ARl +A%{a,b). Now (I',l") =0 <= ([,I)=0

for all I, I, A, if and only if a = b = 0. O

Corollary 1. A linear mapping @ of line elements with the block matriz repre-
sentation (12) determines a unique automorphism ¢ of the Grassmann manifold
of lines in projective space P3, which in Pliicker coordinates reads

l s K L l
li P Q||1}]
The mapping @ in turn is induced by either a projective automorphism s of P3

or a correlation s»* of P? onto its dual. Conwversely, for all such @, there is a
siz-dimensional affine space of ¢’s.

Proof. This is obvious from the coordinate representation given in the previous
lemma and from the well known coordinate representations of automorphisms of
line space: the conditions on the matrices K, L, P, () are the same in both cases.
For given @ we may choose u,v € R?, w # 0 arbitrarily. O

Lemma 3.4. The linear mapping ¢ of Lemma 3.3 maps generalized bundles with
proper vertices to generalized bundles with proper vertices, if and only if the ma-
trices K, L, P, Q) coincide with those of a similarity transformation, as given by

(8).

Proof. First it is obvious that such mappings have the required properties. In
order to show the reverse implication, we consider the mapping ¢ of Corollary
1. It is induced by an affine mapping, as ¢ maps bundles with proper vertices to
bundles with proper vertices. It follows that in the block matrix (12), L = 0 and
K is regular. The image of a subspace of type (9) is given by

K o
P+QC | ~ | K-Y(P+QC) |,
* *

where the symbol ‘~’ means that the linear span of the columns of the matrix
does not change. This is a subspace of type (9), if and only if the second block is
skew-symmetric. This means that K(P + QC)? = —(P + QC)K? for all choices
of skew-symmetric matrices C, i.e., KPT + KCTQT + PKT + QCKT = 0. As
K PT is skew-symmetric anyway, this condition reduces to the skew symmetry of
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QCKT for all skew-symmetric C. By Lemma 3.3, KTQ = »FE3, and consequently
we have KT = Q~!/3. The above condition now reads: QCQ ™! skew-symmetric,
ie., C(QTQ) = (QTQ)C. Tt is easy to verify that a matrix which commutes with
all skew-symmetric ones, is a multiple of Es. Thus we have shown Q7Q = puFs,
and the result follows. O

4. Linear complexes of line elements

The set of lines whose Pliicker coordinates (Z,Z) satisfy a homogeneous linear
equation (l,¢) + ([,c) = 0 is called the linear line complex with coordinates (¢, ¢)
20, 24]. We generalize this and define:

Definition 3. The set of line elements (1,1, \) which satisfy
(e,) + (& 1) +yA =0 (13)
is called the linear complex of line elements with coordinates (c,¢,).

If a complex C with equation (13) is given, and v # 0, then for every line L = (,1)
in Euclidean space there is a point = € L such that (L, z) € C. In case v # 0, the
condition that (L,z) € C refers to the line L alone, and (L,z) € C if and only
if L is contained in the complex of lines whose equation is (13). Thus the set of
lines associated to the line elements of a complex in the sense of Definition 3 can
have dimensions 3 or 4, depending on ~.

In Euclidean kinematics, the path normals of a smooth motion at a fixed
instant comprise a linear line complex. This connection between Euclidean mo-
tions and line complexes generalizes to equiform motions and line elements: We
call (L,y) a path normal element at y, if L is orthogonal the velocity vector v(y)

(cf. (3)).

Theorem 1. At any reqular instant of a smooth one-parameter equiform motion
with velocity vector field v(y) from (3), the set of path normal elements of points
equals the linear complex of line elements with coordinates (c,¢, 7).

Proof. The condition that the line element (I,1,\) is orthogonal to 0(y), reads
0= (v(y),l) = {exy+ectqyl) =det(c,y,l) + &) +7(y,[) = (¢, ]) + (&) +
YA O

Obviously, all linear complexes of line elements occur in this way. The group of
equiform transformations x +— 77Tz 4 t acts on the set of linear complexes of line
elements in a natural way. In view of Theorem 1, this action is given by equation
(4), and the classification of complexes is reduced to that of velocity vector fields:

Theorem 2. Up to equiform equivalence, there are the following homogeneous
coordinates of linear complexes of line elements:

(67677) = (0,0,1,0,0,p,0) (p€R>7 (14)
(0767 ’7) - (07 O’ 07 07 07 17 O)? (15)
(¢;e,7) = (0,0,1;0,0,0;p) (p #0), (16)
(¢,%,7) = (0,0,0;0,0,0;1). (17)



576  B. Odehnal et al.: Equiform Kinematics and the Geometry of Line Elements

Proof. The list of normal forms of velocity vector fields given earlier in this paper
corresponds to the four cases above. Two different cases cannot be equivalent,
because neither the action of the equiform group nor multiplication with a factor
changes the vanishing of ||c|| or 7. Likewise p is an invariant in both (14) and

(16). O

A linear complex (¢, ¢, ) of line elements corresponds to a spiral motion if ¢ # 0
and v # 0, as demonstrated in Section 2.1: The spiral center, which after the
coordinate transformation to normal form has coordinates (0,0,0)”, obviously is
given by 0 = —(C* + yE3)~'¢. Tt is elementary to verify that this expression is
the same as

1
0= —(ycx¢—~%—{(c,®)c), with u=~*4+(c,c). (18)
o1t
The spiral axis is parallel to ¢, and so we get the following line element coordinates
for the axis element consisting of axis and center:

<qoxe4@@):(g;«g@z—<gac+ycxa%—%¢jg. (19)

In the case v = 0, (19) is replaced by the well known expression (c, i((c, c)e —
(¢,¢)c)) = (¢,c— EC@ ¢) for the Pliicker coordinates of the axis of a helical motion

c,c

~

(see Figure 2).

4.1. Concurrent and co-planar line elements in a complex

The intersection of a linear complex of lines with a planar field of lines is a pencil,
i.e., the set of path normals of a Euclidean motion within that plane. It turns out
that the latter formulation generalizes to line elements:

Figure 3. Path normal elements of a planar spiral motion. Left: planar section of
a linear complex of line elements. Right: point paths.
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Theorem 3. The line elements of a linear complex contained in a plane are the
path normal elements of a planar spiral motion.

Proof. Without loss of generality we consider only the plane z3 = 0. The Pliicker
coordinates of line elements (L, z) in that plane have the form (I1,12,0;0,0,l3; \)
with [3 = x1ly — x5l;. The line elements belonging to a linear complex satisfy

Elll + 5212 + 0323 + ’Y)\ =0. (20)
The velocity vector v(x) of a point = under a general planar spiral motion reads
U(.T) = (51, EQ, O)T + 03(—1’2, xy, O)T + ’Y(l’l, T, O)T (21)

The condition that the line element (L, x) above is orthogonal to v(z) is expressed
by
<U(l’), l> = Elll + EQZQ -+ Cg(ﬂ?llg - lll'g) + ’7([, .I’> = 0, (22)

which is the same as (21). 0

Lemma 4.1. IfC = (¢,¢,7) is a linear complez of line elements with vy # 0, then
for all lines L there is a unique point x such that (L, x) € C.

If v =0, we consider the linear complex C' = (¢, ¢) of lines. If L € C', for all
x € L we have (L,x) € C, otherwise there is no x with (L,z) € C.

Proof. We have to solve the equation (¢, 1) + (I,e) +9XA =0. With L € C <=
(¢,1y 4+ (I, c) = 0 the result follows. O

The point x referred to in Lemma 4.1 is easily computed with (6):

xzﬁ(lXi—%((e,DﬂL(l,a)). (23)

Lemma 4.2. The set of points x such that (L,x) is contained in the complex
(¢,¢,7) and L is parallel to a fived vector | # 0, is a plane, except in the case that
vy=0andl]| c.

Proof. For any point x, the line element (L,x) parallel to [ has coordinates
(I, x 1, {(x,1)). It is contained in the complex if and only if 0 = (¢,1) + (¢, z x
Iy +~{x,l) = (¢,1) + (x,l x ¢+ ~l). This is a nontrivial linear equation, if v # 0
orlxc#0. O
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7
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o 7/4‘\\%
20\

Figure 4. Left: Line elements in a generalized bundle. Right: See proof of Theo-
rem 4.

The condition that a line (I, 1) is incident with a point ¢ is linear of rank 2. Thus by
counting linear equations we see that the line elements (L, x) of a given complex
with ¢ € L in general comprise a generalized bundle in the sense of Definition 2.
In analogy to Lemma 3.1 we show:

Theorem 4. Assume that ¢ € R® and C = (¢,¢,v) (v # 0) is a linear complex
of line elements. Then the set of x such that there is (L,z) € C with ¢ € L is
the sphere with diameter qq', where ¢ = q — %v(q) is expressed in terms of the

velocity vector field (3).

Proof. Without loss of generality we let ¢ = 0, so v(q) = ¢. The conditions
imposed on the line element (L,z) = (1,1, \) are [ = 0 and

(€ l) +yA2=0. (24)
Then (6) implies -
1 (1

T (25)

Obviously, = is the pedal point of the point —%YE =q-— %v(q) on the line L. It

follows that the set of points x is the Thales sphere with diameter qq’ (see Figure
4, right). O

Corollary 2. With the complex C from Theorem 4, the set of points x such that
there is (L,z) € C' with L contained in a given pencil, is a circle.

Proof. The circle in question is found by intersecting the sphere of Theorem 4
with the carrier plane of the pencil. U
4.2. Intersection of a complex with a line congruence

Recall that a hyperbolic linear congruence of lines with skew axes Ay, Ay consists
of the lines which intersect both A; and Ay [20, 24].
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Ay

T k
/V

Figure 5. Left: Axes of a hyperbolic linear line congruence and the coordinate
system used in the proof of 5. Right: The surface ® of Theorem 5 with two
one-parameter families of circles.

Theorem 5. Let C = (¢,¢,v) be a linear complex of line elements with v # 0.
Consider the set ® of points v € R3 such that there is (L,x) € C with L contained
i a giwen hyperbolic line congruence. ® is a cubic surface which carries two
one-parameter families of circles.

Proof. Without loss of generality we assume that the axes A; and A, of the
hyperbolic linear line congruence are parametrized linearly by

Aq(u) = (2ku, 2u, d), Ay (v) = (2kv, —2v, —d) (k,d #0). (26)

The congruence is in Pliicker coordinates parametrized by L(u, v)= (l(u,v), l(u,v))
with I(u, v) = 3(As(v) — A1 (u) = (k(u—v),u+v,d), [(u,v) = 3(As(v)+ A1 (u))) X
l(u,v) = (d(u—v),—dk(u+v), 4kuv). The point z(u,v) such that the line element
(L(u,v),z(u,v)) is contained in C' is computed with (23). By Lemma 4.1, it is
unique. Implicitization of this surface yields the equation kvy(2% + 22+ z2)z3+- - -,
where the dots indicate lower order terms. Since k,y # 0, ® is of degree three. For
any plane € D A;, the intersection ® Ne consists of A; plus a degree two curve R..
By Corollary 2, those lines L(u,v) which lie in ¢ lead to a circle of points z(u, v),
which is now identified with R.. It follows that the parametrization x(u,v) covers
® entirely. O

From the equation of ® and also from the fact that ® carries circles it is obvious
that the projective and complex extension of ® contains the absolute conic.

4.3. Intersection of complexes

In this short paragraph we consider the intersection of two complexes of line
elements. It has already become apparent above that a complex (¢, ¢, ) with v = 0
has special properties, which is also the case here. Assume that C; = (¢;, ¢, v:)
(1 = 1,2) are linearly independent coordinate vectors of then different complexes



580  B. Odehnal et al.: Equiform Kinematics and the Geometry of Line Elements

with (y1,72) # (0,0). The linear combination C' := (c¢,¢,v) = 712C; — 1Cs
describes the complex with equation

’72(<la61> + <Za Cl)) = ’Yl<<l762> + <Zv C2>)7 (27)

and obviously has v = 0. It is actually the equation of a linear complex D of
lines. If L = (I,1) is a line in D, then there is A such that (I,1,\) € C; N Cy: We
have A = —({I, &) + (I,&)) /v whenever v; # 0. It follows that the intersection
C1 N Oy consists of a set of line elements whose corresponding set of lines is a
linear complex.

5. Projective closure

In line geometry it is well known that the simple definition of Pliicker coordinates
of lines in Euclidean space via moment vectors is elegantly extended to lines at
infinity. The Pliicker coordinates (I,1) of lines are precisely those pairs (I,1) € RS
with [ # 0 and (I,I) = 0. It turns out that the lines at infinity can be added
without difficulty — they get coordinates with [ = 0.

In the case of line elements, this extension is not as simple. All coordinate
7-tuples (I,1,\) € R” with [ # 0 and (I,1) = 0 describe a line element (L, x) with
x € R® and L not at infinity. Projective extension adds, among others, the line
elements (L, x) with L proper and z at infinity. The limit  — oo along the line L
leads to coordinates “(,1,00)”, or, when employing homogeneity, the coordinate
vector (0,0,1) € R7, regardless of [ and [. This alone shows that the quadratic

surface (I,I) = 0 in six-dimensional projective space P is not an appropriate
model.
The point in P? with homogeneous coordinates (o, ..., x3) = (x,z) € R* is

contained in the line with Pliicker coordinates ([,1) if and only if (z,{) = 0 and
x x | = zol. These two equations together with (I,1) = 0 define a point model
of the set of line elements within P? x P°. We leave the investigation of lower-
dimensional point models which perhaps have a simpler definition as a topic for
future research.

Conclusion

We have introduced Pliicker coordinates for line elements and considered certain
sets of line elements which are given by linear equations of Pliicker coordinates:
Linear complexes of line elements, and generalized bundles. Further, we discussed
linear mappings of line elements. The relation between Euclidean kinematics and
complexes of lines has been generalized to equiform kinematics and complexes
of line elements, which also leads to a classification of the linear complexes with
respect to the equiform group. In order to better understand the geometry of line
elements, we studied the intersection of linear complexes with bundles, fields, and
linear congruences, in one case also giving a kinematic interpretation.
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