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A Surface which has a Family of
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Abstract. We will study a surface in R3 without any umbilical point
such that the integral curves of some principal distribution are geodesics.
In particular, the lines of curvature of such a surface will be character-
ized intrinsically and extrinsically: the semisurface structure of such
a surface will be characterized in terms of local representation of the
first fundamental form; the curvatures and the torsions of the lines of
curvature as space curves will be characterized.
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1. Introduction

Let S be a surface in R3 and Umb(S) the set of umbilical points of S. Let D

be a smooth one-dimensional distribution on S \Umb(S) which gives a principal
direction of S\Umb(S) at each point. Such a distribution as D is called a principal
distribution on S. Each integral curve of a principal distribution is called a line
of curvature of S. Principal distributions are interesting objects of study from
several viewpoints.

The behavior of principal distributions can be complicated around an isolated
umbilical point. The index of an isolated umbilical point p0 is a quantity in
relation to the behavior of principal distributions around p0 ([16, pp. 137]). It is
known that an umbilical point of a surface with constant mean curvature which is
not totally umbilical is isolated and has negative index ([16, pp. 139]). The same
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result holds on a special Weingarten surface ([15]). By Hopf-Poincaré’s theorem,
we see that if S is a compact, orientable surface of genus zero and with constant
mean curvature, then S is a round sphere. The index of an isolated umbilical point
on a Willmore surface is less than or equal to 1/2 and this estimate is sharp ([11]).
Thus, in contrast to a surface with constant mean curvature, a Willmore surface
can have an isolated umbilical point with positive index. As is expected from
such a difference between a surface with constant mean curvature and a Willmore
surface, there exists a compact, orientable Willmore surface of genus zero different
from any round sphere: any Willmore sphere is obtained from a complete minimal
surface in R3 with finite total curvature such that each end is embedded and flat
(see [14], [18]).

It is conjectured that the index of an isolated umbilical point on a surface in
R3 is less than or equal to one. This is called the index conjecture or the local
Carathéodory’s conjecture. If the index conjecture is true, then by Hopf-Poincaré’s
theorem, we see that there exist at least two umbilical points on a compact,
orientable surface of genus zero. Therefore if we can affirmatively solve the index
conjecture, then we can also affirmatively solve Carathéodory’s conjecture, which
asserts that there exist at least two umbilical points on a compact, convex surface.
The author discussed the index of an isolated umbilical point on the graph of a
homogeneous polynomial of two variables in [1]–[4]. In addition, he discussed the
index of an isolated umbilical point on a real-analytic or smooth surface in [6]–[8].

Let f be a smooth function on a domain D of R2 and set ∂z :=
(
∂/∂x +√

−1∂/∂y
)/

2. Then Loewner’s conjecture for a positive integer n ∈ N asserts

that if a vector field V
(n)
f := Re(∂n

z f)∂/∂x + Im(∂n
z f)∂/∂y has an isolated zero

point, then its index with respect to V
(n)
f is less than or equal to n. Loewner’s

conjecture contains the index conjecture, i.e., Loewner’s conjecture for n = 2 is
equivalent to the index conjecture (see [20]). In [10], the author introduced and
studied a conjecture which is different from Loewner’s conjecture and contains
the index conjecture.

In further study of the behavior of principal distributions, the author has
interest in the relation between a pair of principal distributions and the first
fundamental form of a surface. In [12], he studied the relation among the first
fundamental form, principal distributions and principal curvatures. Let M be a
smooth two-dimensional manifold and g a Riemannian metric on M . Let D1,
D2 be two smooth one-dimensional distributions on M . A Riemannian manifold
(M, g) equipped with (D1, D2) is called a semisurface if D1 and D2 are orthogonal
to each other at any point of M with respect to g. If (M, g,D1, D2) is a semisur-
face, then a triplet (g,D1, D2) is called a semisurface structure of M . For example,
a surface S in R3 without any umbilical point is considered as a semisurface: the
first fundamental form and two principal distributions on S form a semisurface
structure of S. Let (M, g,D1, D2) be a semisurface. Suppose that M is oriented.
For each point p ∈ M , there exist local coordinates (u, v) on a neighborhood Up

of p which satisfy ∂/∂u ∈ D1 and ∂/∂v ∈ D2, and give the orientation of M .
Such coordinates are said to be compatible with (D1, D2). The metric g and the
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curvature K are locally represented as

g = A2du2 + B2dv2, K = − 1

AB

{(
Av

B

)
v

+

(
Bu

A

)
u

}
,

respectively, where A and B are positive-valued. Suppose K 6= 0 on M . Then the
first Codazzi-Mainardi polynomial PI of (M, g,D1, D2) is defined by

PI(X1, X2) := cI20X
2
1 + cI11X1X2 + cI02X

2
2 ,

where

cI20 :=
1

AB

{(
log |K|A2

)
v
(log B)u − (log B)uv

}
,

cI11 :=
1

AB
{(log |K|AB)uv − 4(log A)v(log B)u},

cI02 :=
1

AB

{(
log |K|B2

)
u
(log A)v − (log A)uv

}
.

Notice that PI is determined by the semisurface structure (g,D1, D2) of M and
does not depend on the choice of (u, v). Let S be a surface in R3 without any
umbilical point. Then S has a semisurface structure which consists of the first
fundamental form and two principal distributions D1, D2. Suppose that the Gaus-
sian curvature K of S is nowhere zero and that S is oriented. Let PI be the first
Codazzi-Mainardi polynomial determined by the above semisurface structure of
S and k1, k2 the principal curvatures of S corresponding to D1, D2, respectively.
Then PI(k1, k2) = 0 on S ([12]). Therefore noticing K = k1k2, we see that if
PI 6≡ 0, then k1 and k2 are represented by cI20, cI11, cI02 and K. In [12], the author
showed that if PI,q ≡ 0 for any point q of a domain U of S, then U is determined
by the semisurface structure and a pair of principal curvatures at an arbitrarily
chosen point of U and that if (M, g,D1, D2) is a semisurface with nowhere zero
curvature satisfying PI,q ≡ 0 for any q ∈ M , then (M, g) can be locally and isomet-
rically immersed in R3 so that D1 and D2 give two principal distributions. Hence
we see that the relation PI(k1, k2) = 0 between the semisurface structure and a
pair of principal curvatures motivates us to consider a surface S as a semisurface
such that the first fundamental form and a pair of two principal distributions D1,
D2 are connected by some good relation.

When we consider a surface without any umbilical point as a semisurface,
we can consider the equations of Codazzi-Mainardi as a general representation
of the good relation between the first fundamental form and a pair of principal
distributions. The author expects that according to each property which a sur-
face can have, we can have a more concrete representation than the equations of
Codazzi-Mainardi, by describing an intrinsic characterization of lines of curvature
(for example, in terms of local representation of the first fundamental form). Then
we can find, as a fundamental object of study, a surface S which has a family of
geodesics of curvature, i.e., a surface S such that the integral curves of some prin-
cipal distribution on S are geodesics. The first purpose of the present paper is
to characterize the lines of curvature of S intrinsically: we will characterize the
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semisurface structure of S in terms of local representation of the first fundamental
form.

Let (M, g,D1, D2) be a partially geodesic semisurface, that is, a semisurface
such that the integral curves of just one of D1 and D2 are geodesics. Suppose
that the integral curves of D2 are geodesics. Then we can suppose B ≡ 1 on
Up. Suppose that the curvature of (M, g) is identically equal to zero. Then
noticing that the curvature K is locally represented as K = −Avv/A, we obtain
Avv ≡ 0 and therefore we can suppose A(u, v) = α(u)v + 1, where α is a smooth
function of one variable. In addition, noticing the equations of Gauss and Codazzi-
Mainardi, we see that for each p ∈ M , there exists an isometric immersion of a
neighborhood Up of p into R3 such that D1 and D2 give principal distributions
and then we see that the principal curvature k1 corresponding to D1 is locally
represented as k1(u, v) = f(u)/A(u, v), where f is of one variable and that the
principal curvature corresponding to D2 is identically equal to zero. Suppose that
the curvature of (M, g) is nowhere zero. Then it is possible that there exists no
isometric immersion of a neighborhood Up of p ∈ M into R3 such that D1 and
D2 give principal distributions, even if we replace Up with a small one. A parallel
curved surface is an example of a surface with a family of geodesics of curvature.
A surface S is said to be parallel curved if there exists a plane P in R3 such that
at each point of S, at least one principal direction is parallel to P . If S is parallel
curved, then such a plane as P is called a base plane of S. For example, a surface
of revolution is parallel curved and any plane orthogonal to an axis of rotation
is a base plane. For a parallel curved surface without any umbilical point, a line
of curvature which is not contained in any base plane is a geodesic. A canonical
parallel curved surface S is represented as a disjoint union of plane curves which
are congruent in R3 with one another and tangent to principal directions of S.
These curves are geodesics of S. In [12], the author studied the semisurface
structure of a canonical parallel curved surface: if (M, g,D1, D2) is a partially
geodesic semisurface with nowhere zero curvature such that the metric g is locally
represented as

g = {1 + A1(u)A2(v)}2du2 + dv2, (1)

where A1 and A2 are smooth functions of one variable, then there exists an iso-
metric immersion of a neighborhood of each point of M into R3 satisfying

(i) the image is a canonical parallel curved surface;

(ii) D1, D2 give principal distributions, and in addition, the semisurface struc-
ture of a canonical parallel curved surface without any umbilical point and
with nowhere zero Gaussian curvature is characterized by local representa-
tion of the first fundamental form as in (1).

In the present paper, we will prove

Theorem 1. Let (M, g,D1, D2) be a partially geodesic semisurface with nowhere
zero curvature. Suppose that on some neighborhood of each point of M , there exist
local coordinates (u, v) compatible with (D1, D2) such that g is locally represented
as

g = A2du2 + dv2, A(u, v) = 1 + A1(u)A2(u, v), (2)
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where A2 is a smooth function of two variables u, v satisfying (A2)v = sin(α1(u)+
α2(v)), and A1, α1, α2 are smooth functions of one variable satisfying A1 > 0
and α1(u) + α2(v) ∈ (−π/2, π/2). Then (M, g) can be locally and isometrically
immersed in R3 so that the following hold :

(a) D1 and D2 give principal distributions ;

(b) for principal curvatures k1, k2 corresponding to D1, D2, respectively, a pair
(k1, k2) is locally represented by

(k1, k2) =

(
A1(u) cos(α1(u) + α2(v))

A
, −α′

2(v)

)
(3)

up to a sign.

Remark. Noticing (1), we see that in Theorem 1, the image of a neighborhood
of each point of M is a canonical parallel curved surface if and only if g can be
locally represented as in (2) so that α1 is constant.

In addition, we will prove

Theorem 2. Let S be a surface in R3 without any umbilical point and with
nowhere zero Gaussian curvature. Then the integral curves of some principal
distribution on S are geodesics if and only if on some neighborhood of each point
of S, there exist local coordinates (u, v) compatible with principal distributions
such that the first fundamental form is locally represented as in (2).

Remark. Theorem 1 and Theorem 2 give an intrinsic characterization of the
lines of curvature of a surface S in R3 without any umbilical point and with
nowhere zero Gaussian curvature such that the integral curves of some principal
distribution on S are geodesics: by these theorems, the semisurface structure of
such a surface as S is characterized in terms of local representation of the first
fundamental form.

Let S be a surface in R3 without any umbilical point and with nowhere zero
Gaussian curvature such that the integral curves of some principal distribution
on S are geodesics. The second purpose of the present paper is to characterize
the lines of curvature of S extrinsically: we will characterize the curvatures and
the torsions of the lines of curvature of S as space curves. Since S exists in
the space, it is natural that such a characterization is expected. In [5] and [9],
the author presented an extrinsic characterization of the lines of curvature of a
canonical parallel curved surface. Referring to this characterization, we will prove
two theorems introduced below.

Theorem 3. Let S be a surface in R3 without any umbilical point and with
nowhere zero Gaussian curvature such that the integral curves of some principal
distribution on S are geodesics.

(a) For each point p of S, there exists a neighborhood Up of p in S such that
the integral curves of the above principal distribution on Up are plane curves
congruent in R3 with one another;
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(b) Up is a canonical parallel curved surface if and only if the integral curves of
the other principal distribution on Up are plane curves;

(c) The curvature k and the torsion τ of each integral curve of the principal
distribution in (b) as a space curve are locally represented as

k =
A1(u)

A
, τ =

α′
1(u)

A
,

respectively, where A, A1 and α1 are as in Theorem 1.

Remark. The curvature of a plane curve in (a) of Theorem 3 is given by k2 as
in Theorem 1.

Theorem 4. Let Cb and Cg be simple curves in R3 with a unique intersection
p0 satisfying the following:

(i) the curvature of Cb as a space curve is nowhere zero;

(ii) Cg is a plane curve with nowhere zero curvature such that the plane which
contains Cg is perpendicular to Cb at p0;

(iii) the curvature vector of Cb at p0 is not tangent to Cg;

(iv) if n0 is a unit vector normal to Cb and Cg at p0, then the scalar product of
n0 and the curvature vector of Cb at p0 is not equal to the scalar product of
n0 and the curvature vector of Cg at p0.

Then there exists a surface S in R3 without any umbilical point and with nowhere
zero Gaussian curvature satisfying the following:

(a) S contains a neighborhood of p0 in Cb ∪ Cg so that S ∩ Cb and S ∩ Cg are
lines of curvature of S;

(b) the integral curves of some principal distribution on S are geodesics and
S ∩ Cg is an integral curve of this distribution.

In addition, if S ′ is such a surface as S, then there exists a surface S0 as S
contained in S and S ′.

Remark. Theorem 3 and Theorem 4 give an extrinsic characterization of the lines
of curvature of a surface S as in Theorem 3: by these theorems, the curvatures
and the torsions of the lines of curvature of S as space curves are characterized.

Remark. Let Cb and Cg be as in Theorem 4 and suppose that Cb is a plane
curve. Then a pair (Cb, Cg) is called a generating pair ; Cb and Cg are called a
base curve and a generating curve of (Cb, Cg), respectively. For a generating pair
(Cb, Cg), a surface S as in Theorem 4 can be a canonical parallel curved surface,
and any canonical parallel curved surface is determined by some generating pair.

Remark. If condition (iii) in Theorem 4 is removed, then the Gaussian curvature
of S at p0 can be equal to zero; if condition (iv) in Theorem 4 is removed, then
p0 can be an umbilical point of S.
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2. Semisurfaces

Let (M, g,D1, D2) be a semisurface with nowhere zero curvature K and PI the
first Codazzi-Mainardi polynomial of (M, g,D1, D2). Suppose that PI,q 6≡ 0 for any
q ∈ M and that there exist smooth, real-valued functions k1, k2 on M satisfying
k1k2 = K and PI(k1, k2) = 0. Then k1 and k2 are represented by cI20, cI11, cI02 and
K. A Riemannian manifold (M, g) can be locally and isometrically immersed in
R3 so that D1 and D2 give principal distributions if and only if k1 and k2 satisfy
the equations of Codazzi-Mainardi:

(k1)v = −(log A)v(k1 − k2), (k2)u = (log B)u(k1 − k2). (4)

If k1 and k2 satisfy (4), then k1 and k2 become principal curvatures corresponding
to D1 and D2, respectively. Suppose PI,q ≡ 0 for any q ∈ M . Then for each point
p ∈ M , there exists a neighborhood Up of p which can be immersed in the above

manner and in addition, for real numbers k
(0)
1 , k

(0)
2 satisfying k

(0)
1 k

(0)
2 = K(p), there

exists a unique pair (k1, k2) of smooth functions on Up such that k1 and k2 can be
principal curvatures of some image of Up corresponding to D1, D2, respectively,

satisfying ki(p) = k
(0)
i for i = 1, 2 ([12]).

Let S be a surface in R3 without any umbilical point and with K 6= 0.

(i) A neighborhood of each point of S is a canonical parallel curved surface
if and only if S satisfies PI,q ≡ 0 for any q ∈ S and the condition that
the integral curves of some principal distribution are geodesics ([12]). These
conditions hold if and only if the first fundamental form is locally represented
as in (1) ([12]). Noticing the condition PI ≡ 0, we see that there exist
plural canonical parallel curved surfaces which have the same semisurface
structure. Kishimura presented a characterization of the relation between
generating pairs of such two surfaces ([17]).

(ii) Suppose PI,q 6≡ 0 for any q ∈ S. Then S has constant mean curvature H0

if and only if on a neighborhood of each point of S, there exist isothermal
coordinates (u, v) compatible with principal distributions and a positive-
valued function Ã satisfying

g = Ã2(du2 + dv2), ∆ log Ã + H2
0 −

c2
0

Ã4
= 0,

where c0 > 0 (see [12]). If PI,q ≡ 0 for any q ∈ S, then it is possible that
the mean curvature of S is not constant, even though there exist (u, v) and
Ã as above ([12]).

Remark. Let S be a surface in R3 without any umbilical point. In [13], we
studied another semisurface structure of S than the semisurface structure given by
two principal distributions. For each p ∈ S, there exist just two one-dimensional
subspaces L1, L2 of Tp(S) such that the normal curvature of S at p with respect
to Li is equal to the mean curvature H(p) of S at p. We call Li an H-direction
of S at p. There exist two smooth one-dimensional distributions D1, D2 which
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give the two H-directions of S at each point. We call Di an H-distribution on
S. We see that the first fundamental form g and two H-distributions D1, D2 on
S form a semisurface structure of S. Suppose that S is oriented. Let (u, v) be
local coordinates which are compatible with (D1, D2) and give the orientation of
S. We set

U 1 :=
1

A

∂

∂u
, U 2 :=

1

B

∂

∂v
,

and
VK := −U 1(log B)U 1 −U 2(log A)U 2.

We see that VK does not depend on the choice of (u, v). Therefore VK is a vector
field well-defined on S and determined by the semisurface structure (g,D1, D2).
Then the equations of Codazzi-Mainardi are represented as follows ([13]):

2Kgrad(H) = W
(
grad(K) + 4

(
H2 −K

)
VK

)
, (5)

where W is the Weingarten map (shape operator). We see that VK satisfies

div(VK) = K, rot(VK) =
1

AB
(log(B/A))uv,

where div(VK) and rot(VK) are the divergence and the rotation of VK , respec-
tively. In particular, we see that (u, v) can be isothermal coordinates if and only
if rot(VK) = 0 holds and that if we denote by Ω the area element of S, then
rot(VK)Ω is determined by D1, D2 and the conformal class of g. Computing the
rotations of the both sides of (5), we see that if K 6= 0, then PII

(
H,
√

H2 −K
)

= 0,
where PII is defined by

PII(Y1, Y2) := cII20Y
2
1 + cII11Y1Y2 + cII02Y

2
2 ,

cII20 := − 1

2
{U 1U 1(log |K|)−U 2U 2(log |K|)}

− 3

2
{U 1(log |K|)U 1(log B)−U 2(log |K|)U 2(log A)},

cII11 := − 2rot(VK)− 2{U 1(log |K|)U 2(log A)−U 2(log |K|)U 1(log B)},

cII02 :=
1

2

{
U 1U 1

(
log |K|B4

)
−U 2U 2

(
log |K|A4

)
−U 1

(
log |K|B4

)
U 1(log B) + U 2

(
log |K|A4

)
U 2(log A)

}
and determined by the semisurface structure of S given by H-distributions D1,
D2 ([13]). We call PII the second Codazzi-Mainardi polynomial . Let (M, g) be
an oriented two-dimensional Riemannian manifold with K 6= 0. Let (g,D+

1 , D+
2 ),

(g,D×
1 , D×

2 ) be two semisurface structures of M such that the angle between D×
i

and D+
i is equal to π/4 at any point of M . Let P+

I (respectively, P×
II ) be the

first (respectively, second) Codazzi-Mainardi polynomial of (M, g,D+
1 , D+

2 ) (re-
spectively, (M, g,D×

1 , D×
2 )). Then P+

I (X1, X2) = P×
II (Y1, Y2) holds, where Xi,

Yi ∈ R satisfy X1 = Y1 + Y2 and X2 = Y1 − Y2 ([13]). In particular, if M is
an oriented surface S in R3 without any umbilical point and with K 6= 0 and if
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D+
i and D×

i are a principal distribution and an H-distribution on S, respectively,
then P+

I (k1, k2) = P×
II

(
H,
√

H2 −K
)
(= 0), where ki is a principal curvature of S

corresponding to D+
i (i = 1, 2).

3. Partially geodesic semisurfaces

Let (M, g,D1, D2) be a partially geodesic semisurface. Then we can suppose that
for each p ∈ M , there exist local coordinates (u, v) on a neighborhood Up of p
compatible with (D1, D2) satisfying g = A2du2 + dv2 on Up. The integral curves
of D2 are geodesics. The curvature K is locally represented as K = −Avv/A.
Suppose K 6= 0 on M . Then cI20, cI11 and cI02 are represented as follows:

cI20 = 0, cI11 =
1

A
(log |K|A)uv, cI02 =

1

A
{(log A)v(log |K|)u − (log A)uv}. (6)

Therefore the first Codazzi-Mainardi polynomial of (M, g,D1, D2) is represented
as

PI(X1, X2) =
1

A
(log |Avv|)uvX1X2

+
1

A
{(log A)v(log |Avv|)u − (log A)u(log A)v − (log A)uv}X2

2 .
(7)

Proof of Theorem 2. Let S be a surface in R3 without any umbilical point
and with nowhere zero Gaussian curvature K. Let D1, D2 be two principal
distributions on S orthogonal to each other at any point. Suppose that the integral
curves of D2 are geodesics. Then on a neighborhood of each point of S, there exist
local coordinates (u, v) compatible with (D1, D2) such that the first fundamental
form g is locally represented as g = A2du2+dv2. Let k1, k2 be principal curvatures
of S corresponding to D1, D2, respectively. Then k1 and k2 satisfy the equations
of Gauss and Codazzi-Mainardi:

k1k2 = K = −Avv

A
, (k1)v = −(log A)v(k1 − k2), (k2)u = 0. (8)

From the third relation, we see that k2 is of one variable v. Noticing K 6= 0, by
the first and the second relations in (8), we obtain

Avvk
′
2 = Avk

3
2 + Avvvk2.

This implies {
A2

v +

(
Avv

k2

)2}
v

= 0.

Therefore we see that there exists a smooth, positive-valued function A1 of one
variable u satisfying

A2
v +

(
Avv

k2

)2

= A1(u)2.

This implies

k2(v)2 =
A2

vv

A1(u)2 − A2
v

. (9)
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There exists a smooth function θ of two variables u, v satisfying θ ∈ (−π/2, π/2)
and Av = A1(u) sin θ. Then Avv = A1(u)(cos θ)θv holds. Therefore by (9), we
obtain θ2

v = k2(v)2. We suppose θvk2(v) < 0. Then θv = −k2(v) holds. By this
together with θ = arcsin(Av/A1(u)), we obtain

arcsin

(
Av

A1(u)

)
= α1(u) + α2(v),

where α1 and α2 are smooth functions of one variable u, v, respectively, satisfying
α′

2 = −k2. Therefore we obtain

Av = A1(u) sin(α1(u) + α2(v)).

This implies
A(u, v) = A1(u)A2(u, v) + f(u),

where A2 is a smooth function of two variables u, v satisfying (A2)v = sin(α1(u)+
α2(v)) and f is a smooth function of one variable u. Since A1 6= 0, A can be
represented as

A = 1 + A1(u){A2(u, v) + (f(u)− 1)/A1(u)}.

Since
{A2(u, v) + (f(u)− 1)/A1(u)}v = sin(α1(u) + α2(v)),

we see that g is locally represented as in (2). It is clear that if on a neighborhood
of each point of S, there exist local coordinates (u, v) compatible with (D1, D2)
such that g is locally represented as in (2), then the integral curves of D2 are
geodesics. Hence we obtain Theorem 2. �

Remark. In the proof of Theorem 2, by (9) together with k1k2 = −Avv/A, we
obtain

k2
1 =

A1(u)2 − A2
v

A2
.

Therefore we see that a pair (k1, k2) is locally represented by

(k1, k2) =

(√
A1(u)2 − A2

v

A
, − Avv√

A1(u)2 − A2
v

)
(10)

up to a sign. If A is as in (2), then from (10), we see that (k1, k2) is locally
represented as in (3).

Proof of Theorem 1. Noticing the above remark, we set (k1, k2) as in (3). Then
we see that k1 and k2 satisfy (8). Therefore by the fundamental theorem of the
theory of surfaces, we obtain Theorem 1. �

Remark. Let (u, v) be local coordinates compatible with (D1, D2) such that g is
locally represented as in (2). Then from (6), we obtain

cI11 = − α′
1(u)α′

2(v)

A cos2(α1(u) + α2(v))
, cI02 = − A1(u)α′

1(u)

A2 cos(α1(u) + α2(v))
.
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Therefore we can rewrite (7) into

PI(X1, X2)

= − α′
1(u)X2

A2 cos2(α1(u) + α2(v))
{Aα′

2(v)X1 + A1(u) cos(α1(u) + α2(v))X2}.
(11)

In particular, we see that if PI 6≡ 0, i.e., if α′
1 6= 0, then (k1, k2) satisfying k1k2 = K

and PI(k1, k2) = 0 is uniquely determined by the semisurface structure (g,D1, D2)
up to a sign and locally represented as in (3).

Proof of Theorem 3. Suppose that the integral curves of a principal distribution
D2 on S are geodesics. Then we see that the absolute value of the principal
curvature k2 corresponding to D2 is the curvature of each integral curve as a
space curve. From the Weingarten formula, we see that if we denote by n a
unit normal vector field, then nv = −k2∂/∂v holds. Comparing this with the
Frenet-Serret formula, we see that the torsion of any integral curve of D2 as a
space curve is identically equal to zero. This implies that the integral curves of
D2 are plane curves. As we saw in the proof of Theorem 2, k2 is of one variable v.
Therefore we obtain (a) of Theorem 3. If S is a canonical parallel curved surface,
then the integral curves of another principal distribution D1 than D2 are plane
curves. Suppose that the integral curves of D1 are plane curves. Then we can
suppose that S is locally represented as the image by an immersion Φ of an open
rectangular set of R2 into R3 in the following form:

Φ(u, v) :=

 φ1(u)
φ2(u)

0

 + φ3(v)x(u) + φ4(v)y(u),

where

x(u) := (cos θ(u))

 φ′
2(u)

−φ′
1(u)
0

 + (sin θ(u))

 0
0
1

 ,

y(u) := −(sin θ(u))

 φ′
2(u)

−φ′
1(u)
0

 + (cos θ(u))

 0
0
1


and θ, φ1, φ2, φ3, φ4 are smooth functions of one variable satisfying

(i) (φ′
1)

2 + (φ′
2)

2 ≡ 1, (φ′
3)

2 + (φ′
4)

2 ≡ 1;

(ii) (u, v) are compatible with (D1, D2).

Then the following holds:

0 = Φu(u, v) · Φv(u, v) = θ′(u){φ3(v)φ′
4(v)− φ′

3(v)φ4(v)}.

If φ3φ
′
4 − φ′

3φ4 ≡ 0, then k2 is identically equal to zero. This implies K = 0,
which causes a contradiction. Therefore θ′ ≡ 0 holds and θ is constant. Then
we see that the image by Φ is a canonical parallel curved surface. Hence we
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obtain (b) of Theorem 3. In the following, we suppose that S is the image by an
immersion Φ of a domain D of R2 into R3 which is not necessarily in the above
form and that coordinates (u, v) on R2 are compatible with (D1, D2). We set
n := Φu × Φv/|Φu × Φv|. Let g be the metric on D induced by Φ. Then we can
suppose g = A2du2+dv2 on D, where A > 0. We denote by e1 the vector (1/A)Φu

in R3 or the tangent vector (1/A)∂/∂u to D. Let l1 be the geodesic curvature of
each integral curve of D1 in (D, g). Then the following holds:

l1
∂

∂v
= ∇e1e1 = −(log A)v

∂

∂v
,

where ∇ is the covariant differentiation with respect to the Levi-Civita connection
of (D, g). Therefore we obtain l1 = −(log A)v. Let k be the curvature of each
integral curve of D1 as a space curve. Then noticing k2 = k2

1 + l21 and (3), we
obtain k = A1(u)/A. We set

e2 :=
1

k
(l1Φv + k1n), e3 := e1 × e2.

Let τ be the torsion of each integral curve of D1 as a space curve. Then noticing
the Frenet-Serret formula, we obtain

−ke1 + τe3 =
1

A
(e2)u =

1

A
(−A1(u)e1 + α′

1(u)e3).

Therefore we obtain τ = α′
1(u)/A. Hence we obtain (c) of Theorem 3. �

Remark. Noticing (11) and τ = α′
1(u)/A, we see that PI,q ≡ 0 is equivalent to

τ(q) = 0.

Remark. By the definition of e2 in the proof of Theorem 3, we see that the angle
between e2 and n is equal to |α1(u) + α2(v)| or π − |α1(u) + α2(v)|.

Proof of Theorem 4. Let γb be a smooth map of an open interval Ib into R3

satisfying γb(Ib) = Cb and |γ′
b(u)| = 1 for any u ∈ Ib. Let γg be a smooth

map of an open interval Ig into R3 satisfying γg(Ig) = Cg and |γ′
g(v)| = 1 for

any v ∈ Ig. We suppose that both Ib and Ig contain 0 and that γb and γg satisfy
γb(0) = γg(0) = p0. We set n0 := γ′

b(0)×γ′
g(0). Let θ0 ∈ [0, π]\{π/2} be the angle

between γ′′
b (0) and n0. We can suppose θ0 ∈ [0, π/2). Let A1, τ be the curvature

and the torsion of Cb, respectively. Let k2 be the curvature of Cg. Then there exists
a unique smooth function α1 on Ib satisfying α1(0) = θ0 and α′

1(u) = τ(u) for any
u ∈ Ib, and there exists a unique smooth function α2 on Ig satisfying α2(0) = 0 and
α′

2(v) = −k2(v) for any v ∈ Ig. In addition, there exists a unique smooth function
A2 on Ib × Ig satisfying A2(u, 0) = 0 and (A2)v(u, v) = sin(α1(u) + α2(v)) for any
u ∈ Ib and any v ∈ Ig. We set A(u, v) := 1 + A1(u)A2(u, v). Let (M, g,D1, D2)
be a semisurface defined by

M = Ib × Ig, g = A2du2 + dv2,
∂

∂u
∈ D1,

∂

∂v
∈ D2.
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Then noticing Theorem 1, Theorem 3 and the fundamental theorem of the theory
of curves, we see that there exist a neighborhood U0 of (0, 0) in M and an isometric
immersion Φ of U0 into R3 such that S := Φ(U0) is as in Theorem 4. Noticing
Theorem 2 and the fundamental theorem of the theory of surfaces, we see that if
S ′ is such a surface as S, then there exists a surface S0 as S contained in S and
S ′. Hence we have proved Theorem 4. �

Remark. Let S be a surface in R3 without any umbilical point and with ev-
erywhere zero Gaussian curvature such that the integral curves of a principal
distribution D2 on S are geodesics. Then we can suppose that the integral curves
of D2 are straight lines in R3. The first fundamental form g of S is locally
represented as g = (1 + α(u)v)2du2 + dv2. The principal curvature k1 of S cor-
responding to another principal distribution D1 than D2 is locally represented as
k1 = f(u)/(1 + α(u)v). Then referring to the proof of (c) of Theorem 3, we see
that the curvature and the torsion of each integral curve of D1 as a space curve
are represented by α and f . Suppose that the integral curves of D1 are plane
curves. Then referring to the proof of (b) of Theorem 3, we can suppose that S
is locally represented as the image by an immersion Φ of an open rectangular set
of R2 into R3 in the following form:

Φ(u, v) :=

 φ1(u)
φ2(u)

0

 + v

{
(cos θ(u))

 φ′
2(u)

−φ′
1(u)
0

 + (sin θ(u))

 0
0
1

 }
,

where θ, φ1, φ2 are smooth functions of one variable satisfying

(i) (φ′
1)

2 + (φ′
2)

2 ≡ 1;

(ii) (u, v) are compatible with (D1, D2).

Then Φu · Φv = 0 always holds. In addition, noticing that (u, v) are compatible
with principal distributions, we see that Φuv · (Φu × Φv) = 0 must hold and this
condition is equivalent to θ′ ≡ 0. Therefore we see that a neighborhood of each
point of S is a canonical parallel curved surface. Hence we obtain an analogue
of Theorem 3 for a surface without any umbilical point and with everywhere zero
Gaussian curvature such that the integral curves of some principal distribution
are geodesics. Referring to the proof of Theorem 4, we can obtain an analogue of
Theorem 4 for such a surface.
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