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Abstract. The aim of this paper is to classify (locally) all torsion-less
locally projectively homogeneous affine connections on 2-dimensional
manifolds. Especially, we express, in a simple and explicit form, all such
connections which are not projectively flat (Theorem 1). We make also
some conclusions from this classification (Theorem 2 and Theorem 3).
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1. Introduction and main results

Let (M,∇), (M,∇) be two smooth manifolds with torsion-free affine connections.
These manifolds are said to be projectively equivalent if there is a diffeomorphism
of M onto M (called a projective map) transforming every geodesic (equipped
with an affine parameter) into a geodesic (with an arbitrary parametrization). A
manifold (M,∇) is said to be projectively flat if there is, for each point p ∈ M ,
a neighborhood Up which is projectively equivalent with an open domain of the
Euclidean space Rn, n = dim M .
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and by the grant GAČR 201/05/2707.
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If a manifold (M,∇) is given (still with a torsion-free connection ∇), then a
projective map φ : U → V between two domains U ,V ⊂ (M,∇) is called a local
projective transformation. Further, a projective Killing vector field on (M,∇) is a
vector field X generating a local group of local projective transformations. Finally,
a manifold (M,∇) will be said to be locally projectively homogeneous if, at each
point p ∈ M , there are at least n independent projective Killing vector fields,
n = dim M . If M is connected, then an equivalent definition is that, for every two
points p, q ∈ M , there is a local projective transformation of a neighborhood of p
onto a neighborhood of q. All projective Killing vector fields on (M,∇) form a Lie
algebra. (So do the affine Killing vector fields, and, in the case of a Riemannian
manifold, metric Killing vector fields).

Let us recall the following characterization of a projective Killing vector field
(see [8], p. 45): A vector field X is a projective Killing vector field on (M,∇) if it
satisfies

(LX∇)(Y, Z) = π(Y ) Z + π(Z) Y (1)

for any vector fields Y and Z, π being a 1-form and L denoting the Lie derivative.
Now, we shall pass to the dimension n = 2. In this dimension, the explicit

classification of all locally projectively homogeneous pseudo-Riemannian mani-
folds has been presented by A. V. Aminova [1]. (Recently, V. S Matveev pointed
out that there might be a small gap in this classification). For the affine manifolds,
such a classification was not known explicitly up to now. But it was well-known
that, for every locally projectively homogeneous manifold (M,∇), the full alge-
bra of projective Killing vector fields is either 8-dimensional and isomorphic to
sl(3, R) (in such a case, (M,∇) is projectively flat), or 3-dimensional and isomor-
phic to sl(2, R), or 2-dimensional and nonabelian (a private communication by
V. S. Matveev).

In this paper we are going to classify all projectively homogeneous affine
torsion-less connections from the group-theoretical point of view. This means
that we always start with a specific transitive Lie algebra of vector fields from the
list of P. J. Olver [6] and we are looking for all affine connections for which this
algebra is an algebra of projective Killing vector fields.

This method was used earlier, by the present authors and B. Opozda, for an
alternative classification of (affinely) locally homogeneous affine connections in
dimension two (see [5]). The credit for the first explicit classification (in different
form) belongs to B. Opozda [7] (see Section 7).

We try to organize our computation in (possibly) most systematic way so
that the whole procedure is not excessively long. Also, because this topic is an
ideal subject for a computer-aided research, we are using the software Maple 8,
(c) Waterloo Maple Inc., throughout this work. But we put stress on the full
transparency of this procedure.

According to [6], taking into account the comments in page 61, the classifi-
cation of all transitive Lie algebras of vector fields in R2 is given by Table 1 and
Table 6 ([6], pages 472 and 476, respectively). We present the Olver’s tables with
a slight modification, denoting them as Table 1 and Table 2.
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Generators Dim Structure

1.1 ∂v, v∂v − u∂u, v2∂v − 2uv∂u 3 sl(2)
1.2 ∂v, v∂v − u∂u, v2∂v − (2uv + 1)∂u 3 sl(2)
1.3 ∂v, v∂v, u∂u, v2∂v − uv∂u 4 gl(2)
1.4 ∂v, v∂v, v2∂v, ∂u, u∂u, u2∂u 6 sl(2)⊕ sl(2)
1.5 ∂v, η1(v)∂u, . . . , ηk(v)∂u k + 1 R n Rk

1.6 ∂v, u∂u, η1(v)∂u, . . . , ηk(v)∂u k + 2 R2 n Rk

1.7 ∂v, v∂v + αu∂u, ∂u, v∂u, . . . , vk−1∂u k + 2 a(1) n Rk

1.8 ∂v, v∂v + (ku + vk)∂u, ∂u, v∂u, . . . , vk−1∂u k + 2 a(1) n Rk

1.9 ∂v, v∂v, u∂u, ∂u, v∂u, . . . , vk−1∂u k + 3 c(1) n Rk

1.10 ∂v, 2v∂v + (k − 1)u∂u, v2∂v + (k − 1)uv∂u,
∂u, v∂u, . . . , vk−1∂u k + 3 sl(2) n Rk

1.11 ∂v, v∂v, v2∂v + (k − 1)uv∂u, u∂u,
∂u, v∂u, . . . , vk−1∂u k + 4 gl(2) n Rk

Table 1. Transitive, imprimitive Lie algebras of vector fields in R2

Remarks. (from [6]): Here c(1) = a(1)⊕ R.
In cases 1.5 and 1.6, the functions η1(v), . . . , ηk(v) satisfy a kth order constant

coefficient homogeneous linear ordinary differential equation D[u] = 0.
In cases 1.5–1.11 we require k ≥ 1. Note, though, that if we set k = 0 in case

1.10, and replace u by u2, we obtain case 1.1. Similarly, if we set k = 0 in case
1.11, we obtain case 1.3., cases 1.7 and 1.8 for k = 0 are equivalent to the Lie
algebra span{∂v, ev∂u} of type 1.5. Case 1.9 for k = 0 is equivalent to the Lie
algebra span{∂v, ∂u, u∂u} of type 1.6.

Generators Dim Structure

2.1 ∂v, ∂u, α(v∂v + u∂u) + u∂v − v∂u 3 R n R2

2.2 ∂v, v∂v + u∂u, (v2 − u2)∂v + 2uv∂u 3 sl(2)
2.3 u∂v − v∂u, (1 + v2 − u2)∂v + 2uv∂u,

2uv∂v + (1− v2 + u2)∂u 3 so(3)
2.4 ∂v, ∂u, v∂v + u∂u, u∂v − v∂u 4 R2 n R2

2.5 ∂v, ∂u, v∂v − u∂u, u∂v, v∂u 5 sa(2)
2.6 ∂v, ∂u, v∂v, u∂v, v∂u, u∂u 6 a(2)
2.7 ∂v, ∂u, v∂v + u∂u, u∂v − v∂u,

(v2 − u2)∂v + 2uv∂u, 2uv∂v + (u2 − v2)∂u 6 so(3, 1)
2.8 ∂v, ∂u, v∂v, u∂v, v∂u, u∂u,

v2∂v + uv∂u, uv∂v + u2∂u 8 sl(3)

Table 2. Primitive Lie algebras of vector fields in R2

Next, let us recall the following criterion of projective flatness in dimension 2.
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Due to [8], p. 15, we introduce a bilinear form L(X, Y ) on X (M) by putting

L(X, Y ) =
1

3
[2 Ric(X,Y ) + Ric(Y,X)] . (2)

(There is a sign misprint in [8], formula (4.10)). Then (M,∇) is projectively flat
if and only if

(∇XL)(Y, Z)− (∇Y L)(X, Z) = 0 for all X, Y, Z. (3)

In any coordinate domain U(u, v) ⊂ M we express a vector field X in the form
X = a(u, v) ∂u + b(u, v) ∂v. Then, for a torsion-less connection ∇ in U(u, v) we
put

∇∂u∂u = A(u, v) ∂u + B(u, v) ∂v,
∇∂u∂v = ∇∂v∂u = C(u, v) ∂u + D(u, v) ∂v,
∇∂v∂v = E(u, v) ∂u + F (u, v) ∂v.

(4)

Writing the formula (1) in local coordinates, we find that any projective Killing
vector field X must satisfy six basic equations. We shall write these equations in
the simplified notation:

auu +A au −B av + 2C bu + Aua + Avb = 2K,
buu +2B au + (2D − A) bu −B bv + Bua + Bvb = 0,
auv +(A−D) av + E bu + C bv + Cua + Cvb = L,
buv +D au + B av − (C − F ) bu + Dua + Dvb = K,
avv −E au + (2C − F ) av + 2E bv + Eua + Evb = 0,
bvv +2D av − E bu + F bv + Fua + Fvb = 2L.

(5)

Here K = K(u, v) and L = L(u, v) are arbitrary functions depending always on
the particular choice of the functions a = a(u, v), b = b(u, v). Recall that for
K = L = 0 we obtain the equations for an affine Killing vector field.

Now, the equations (5) imply four homogeneous equations

buu +2Bau + (2D − A)bu −Bbv + Bua + Bvb = 0,
avv −Eau + (2C − F )av + 2Ebv + Eua + Evb = 0,
auu − 2buv +(A− 2D)au − 3Bav + 2(2C − F )bu

+(A− 2D)ua + (A− 2D)vb = 0,
bvv − 2auv −2(A− 2D)av − 3Ebu − (2C − F )bv

−(2C − F )ua− (2C − F )vb = 0,

(6)

which are the only relevant ones for the proper projective case. Let us denote

Â(u, v) = A(u, v)− 2 D(u, v), B̂(u, v) = B(u, v),

F̂ (u, v) = F (u, v)− 2 C(u, v), Ê(u, v) = E(u, v).
(7)

Then the equations (6) can be rewritten in the form

buu +2 B̂ au −Â bu −B̂ bv +B̂ua +B̂vb = 0,

avv −Ê au −F̂ av +2 Ê bv +Êua +Êvb = 0,

auu − 2 buv +Â au −3 B̂ av −2 F̂ bu +Âua +Âvb = 0,

bvv − 2 auv −2 Â av −3 Ê bu +F̂ bv +F̂ua +F̂vb = 0.

(8)

We shall now formulate our main results.
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Theorem 1. For every locally projectively homogeneous torsion-less affine con-
nection ∇ on a connected two-dimensional manifold M exactly one of the following
cases occurs:

1. The full algebra of all projective Killing vector fields is 8-dimensional and
isomorphic to sl(3, R). ∇ is projectively flat and, in a neighborhood of each
point p ∈ M , there is a system (u, v) of local coordinates such that A(u, v) =
2 D(u, v), B(u, v) = E(u, v) = 0, F (u, v) = 2 C(u, v), and C(u, v), D(u, v)
are arbitrary functions.

2. The full algebra of all projective Killing vector fields is 3-dimensional and
isomorphic to sl(2, R). In a neighborhood of each point p ∈ M , there is
a system (u, v) of local coordinates such that A(u, v) = 2 D(u, v) − 3/(2u),
B(u, v) = 0, E(u, v) = e u3, e 6= 0, F (u, v) = 2 C(u, v) and C(u, v), D(u, v)
are arbitrary functions.

3. The full algebra of all projective Killing vector fields is 2-dimensional and
nonabelian. In a neighborhood of each point p ∈ M , there is a system (u, v)
of local coordinates such that A(u, v) = 2 D(u, v) + 3 c0 u + c1, B(u, v) = c0,
E(u, v) = c0 u3 + c1 u2 + c2 u + c3, F (u, v) = 2 C(u, v) + 3 c0 u2 + 2 c1 u + c2,
where the constants c0, c1 are not both equal to zero. Here C(u, v), D(u, v)
are arbitrary functions.

In the cases 2 and 3 the connections are not projectively flat. In each of the three
cases, for a generic choice of the functions C(u, v), D(u, v), the connection ∇
does not admit any nonzero affine Killing vector field.

Remark. Here, ‘generic choice’ means that the corresponding functions A(u, v),
. . . , F (u, v) do not satisfy any partial differential equation of the form (5) with
K = L = 0 and such that a(u, v) ∂u+b(u, v) ∂v is any of the vector fields belonging
to the case 2.8, or 1.1, or 1.5 of the Olver’s tables, respectively. (See more details
in the Sections 4–7.)

The fact that Theorem 1 consists of three cases, as well as the last statement of
Theorem 1, are well known. What is new, to the authors’ knowledge, are the
explicit formulas in cases 2 and 3.

Here we also obtain the following

Corollary 1. A locally projectively homogeneous affine connection is projectively
flat if and only if it admits a primitive algebra of projective Killing vector fields.

The next result is a counter-part of the last statement of Theorem 1:

Theorem 2. For every locally projectively homogeneous but projectively nonflat
affine connection ∇ on M there is, in a neighborhood U of each point p ∈ M ,
an affine connection ∇ which is projectively equivalent to ∇ and such that every
projective Killing vector field of ∇ on U is an affine Killing vector field of ∇.

The next Theorem unifies cases 2 and 3 of Theorem 1.
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Theorem 3. For every locally projectively homogeneous but projectively nonflat
affine connection ∇ on M there is, in a neighborhood U of each point p ∈ M , a
local coordinate system (u, v) in which the components of ∇ satisfy

A(u, v) = 2 D(u, v) + â/u, B(u, v) = b̂/u,

F (u, v) = 2 C(u, v) + f̂/u, E(u, v) = ê/u.

Here â, b̂, ê, f̂ are constants satisfying at least one of the inequalities

3 (â− 1) ê− f̂ 2 6= 0, (â + 2) f̂ − 9 b̂ ê 6= 0

and C(u, v), D(u, v) are arbitrary functions.

2. The case of commuting projective Killing vector fields

We start with the canonical choice of two commuting local vector fields, namely
X = ∂u, Y = ∂v, and we express the conditions saying that these vector fields are
projective Killing vector fields, i.e., we put

a(u, v) = 1, b(u, v) = 0, (9)

a(u, v) = 0, b(u, v) = 1, (10)

and substitute in (8). We obtain

Âu = 0, B̂u = 0, Êu = 0, F̂u = 0, (11)

Âv = 0, B̂v = 0, Êv = 0, F̂v = 0. (12)

We conclude hence that, for every connection ∇ admitting projective Killing vec-
tor fields (9),(10), we must have

Â(u, v) = A0, B̂(u, v) = B0, Ê(u, v) = E0, F̂ (u, v) = F0, (13)

where A0, B0, E0, F0 are arbitrary constants. Due to (7) we see that all connec-
tions with the above property depend on two arbitrary functions C(u, v), D(u, v).

In the following we assume that the constants above are all zero, and we shall
look for all possible projective Killing vector fields belonging to a connection ∇
determined by C(u, v), D(u, v). Substituting (13) into (8), we obtain the system
of four equations for the unknown functions a(u, v), b(u, v):

buu = 0,
avv = 0,
auu − 2 buv = 0,
bvv − 2 auv = 0.

(14)

By an easy computation we get the general solution in the form

a(u, v) = c3u
2 + c1uv + c5u + c2v + c6,

b(u, v) = c3uv + c1v
2 + c4u + c7v + c8,

(15)
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involving eight arbitrary parameters c1, . . . , c8. The corresponding projective Kill-
ing vector fields are those from the case 2.8 of Table 2.

Substitute now (15) into the third and the fourth equation of (5), and put here
A(u, v) = 2 D(u, v), B(u, v) = E(u, v) = 0, F (u, v) = 2 C(u, v) and K(u, v) =
L(u, v) = 0. The corresponding equations are

(c3u
2 + c1uv + c5u + c2v + c6) Cu + (c3uv + c1v

2 + c4u + c7v + c8) Cv

+(c3u + 2 c1v + c7) C + (c1u + c2) D + c1 = 0, (16)

(c3u
2 + c1uv + c5u + c2v + c6) Du + (c3uv + c1v

2 + c4u + c7v + c8) Dv

+(c3v + c4) C + (2 c3u + c1v + c5) D + c3 = 0. (17)

We see that our space with the affine connection ∇ admits an affine Killing vector
field if, and only if, the system of two PDE (16) and (17) is satisfied for some
particular choice of the parameters c1, . . . , c8. We conclude that, for a generic
choice of C(u, v) and D(u, v), the space does not admit a nonzero affine Killing
vector field. Yet, the algebra of projective Killing vector fields is 8-dimensional.

We shall now solve our problem in general, i.e., when A0, B0, E0, F0 are arbitrary
constants. Recall that the corresponding Ricci form is given, due to (5) or (7), by

Ric(∂u, ∂u) = Bv −Du + D(A−D) + B(F − C),
Ric(∂u, ∂v) = Dv − Fu + CD −BE,
Ric(∂v, ∂u) = Cu − Av + CD −BE,
Ric(∂v, ∂v) = Eu − Cv + E(A−D) + C(F − C).

(18)

Then substituting from (4), (2) and (18) for two choices (X, Y, Z)=(∂u, ∂u, ∂v),
(X, Y, Z)=(∂u, ∂v, ∂v) into (3) we obtain, in the notation (7), two conditions which
are equivalent to (3):

Âvv + 3Êuu + 2F̂uv + 3ÊÂu − F̂ Âv + 6ÊB̂v + 3ÂÊu + 3B̂Êv − 2F̂ F̂u = 0,
(19)

2Âuv + 3B̂vv + F̂uu − 2ÂÂv + 3ÊB̂u + 3F̂ B̂v + 6B̂Êu − ÂF̂u + 3B̂F̂v = 0.
(20)

Thus, the equations (19), (20) are equivalent with the projective flatness of
(M,∇).

In particular, we see that each connection ∇ given by (13) trivially satisfies
the equations (19), (20) and hence it is projectively flat. We shall derive now the
consequences from this fact using another way of reasoning.

3. Digression

The formulas (19), (20) (in different notation) stem from the different background
in the articles [2] and [3]. The last papers present a continuation of the classical
research concerning invariants of the action of the pseudogroup of all local diffeo-
morphisms in the plane on an ordinary differential equation of second order. This
topic was started by R. Liouville, M. A. Tresse and E. Cartan (see [3] for the full
references).
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We explain shortly this relationship. Let us recall the standard equations of
geodesics in our 2-dimensional case. We obtain easily, denoting the local coordi-
nates as x, y for this moment but still preserving the notation (4), the following
formulas:

d2x
dt2

+ A
(

dx
dt

)2
+ 2 C dx

dt
dy
dt

+ E
(

dy
dt

)2
= 0,

d2y
dt2

+ B
(

dx
dt

)2
+ 2 D dx

dt
dy
dt

+ F
(

dy
dt

)2
= 0.

(21)

From (21) we can eliminate one single equation for y′ = dy/dx and y′′ = d 2y/dx2.
We obtain easily

y′′ = −B + (A− 2 D) y′ + (2 C − F ) (y′)2 + E (y′)3 (22)

or, using (7),

y′′ = −B̂ + Â y′ − F̂ (y′)2 + Ê (y′)3,

where the coefficients are still functions of x and y = y(x). The equation (22) is
an alternative characterization of all geodesics in the form where the independent
variable x is not necessarily the affine parameter for any corresponding geodesic
(x, y (x)). Conversely, from the formula (22) we can easily go back to the standard
equations (21).

Now, let us rewrite (22) in the more general form

y′′ = C0(x, y) + C1(x, y) y′ + C2(x, y)(y′)2 + C3(x, y)(y′)3. (23)

The equations (19) and (20) can be hence formally rewritten as

C1,vv + 3 C3,uu − 2 C2,uv + 3 C3C1,u + C2C1,v − 6 C3C0,v

+3 C1C3,u − 3 C0C3,v − 2 C2C2,u = 0,
(24)

2 C1,uv − 3 C0,vv − C2,uu − 2 C1C1,v − 3 C3C0,u + 3 C2C0,v

−6 C0C3,u + C1C2,u + 3 C0C2,v = 0.
(25)

Now, consider a more general second order ODE than (22), namely

y′′ = F (x, y, p), p = y′, (26)

where F is an arbitrary smooth function of three variables.
The fundamental result from [3] can be expressed (using also [2]) as follows:

Theorem 4. The following four conditions are mutually equivalent:

(a) Equation (26) has an 8-dimensional symmetry algebra, which is isomorphic
to sl (3, R).

(b) Equation (26) is locally equivalent to a linear equation.

(c) Equation (26) is locally equivalent to the equation y′′ = 0.

(d) Equation (26) is of the form (23) where the conditions (24) and (25) hold.

We can conclude with the following
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Corollary 2. A connection ∇ on a 2-dimensional manifold M is projectively flat
if and only if, in a neighborhood of each point p ∈ M , there is a local coordinate
system (u, v) for which all functions Â(u, v), B̂(u, v), Ê(u, v), F̂ (u, v) vanish. In
such a system of local coordinates, the algebra of all projective Killing vector fields
is of type 2.8 from Table 2.

Proof. The first part follows from the equivalence of conditions (c) and (d) and
from the meaning of formulas (24), (25). The second part follows from (15).

Remark. From the geometric meaning of the equation (22) we see that two

connections ∇,∇ with the same functions Â, B̂, Ê, F̂ in a fixed system of local
coordinates U(u, v) are projectively equivalent in U .

Acknowledgement. The authors are deeply indebted to Vladimir S. Matveev
for informing them about the above results, and also for supplying copies of some
fundamental papers which were not easily available.

4. The cases leading to projectively flat connections - continuation

Recall first that the conclusion (13) from Section 2 implies projective flatness.
From the previous Corollary 2 we now get easily

Proposition 1. Let (M,∇) admit two commuting projective Killing vector fields
X, Y . Then, around each point p ∈ M , there is a coordinate neighborhood U(u, v)
in which X = ∂u, Y = ∂v, the connection ∇ is projectively flat, and the generators
of the Lie algebra of all projective Killing vector fields are those from the case 2.8
in Table 2.

Looking carefully at Table 1 and Table 2, we obtain at once

Corollary 3. The cases 1.7 and 1.9 for k = 1, 2, the case 1.8 for k = 1, the
cases 1.10 and 1.11 for k = 2, and the cases 2.1, 2.4, 2.5, 2.6 reduce to the case
2.8, i.e., the corresponding Lie algebra extends to the 8-dimensional algebra of
projective Killing vector fields. In convenient local coordinates, the connection ∇
is described by the formulas (13) in which the arbitrary constants can be supposed
to vanish and C(u, v), D(u, v) are arbitrary functions. In each of these cases, there
is generically no affine Killing vector field.

Next, we are going to prove

Proposition 2. The cases 1.2, 1.3, the case 1.5 for k = 1 with η1(v) linear and
for k = 2, the case 1.6 for k = 1, 2, and the cases 2.2, 2.3 lead to projectively flat
connections.

Proof. For the sake of brevity, we shall always calculate the functions Â(u, v),

B̂(u, v), Ê(u, v), F̂ (u, v) given by (7) and then we substitute the result into the
equations (19), (20).
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In all cases in question, except the case 2.3, the first of the wanted projective
Killing vector fields is ∂v. From formula (12) we get

Âv = B̂v = Êv = F̂v = 0 (27)

and hence we can put

Â(u, v) = d(u), B̂(u, v) = p(u), Ê(u, v) = e(u), F̂ (u, v) = f(u), (28)

where d, p, e, f are arbitrary functions of the variable u.

In the case 1.2, we have the second vector field v∂v−u∂u and, substituting a(u, v) =
−u, b(u, v) = v and (28) into (8), we get a system of equations

−3 p(u) −u p ′(u) = 0,
3 e(u) −u e ′(u) = 0,
d(u) +u d ′(u) = 0,
f(u) +u f ′(u) = 0.

(29)

The general solution of (29) can be written in the form

p(u) = c1/u
3, c(u) = c2u

3, d(u) = c3/u, f(u) = c4u. (30)

Finally, substitute the third vector field of case 1.2, namely a(u, v) = −2uv − 1,
b(u, v) = v2 together with (28) and (30) into (8). We obtain just four linear
relations between the parameters and we conclude finally

Â(u, v) = 0, B̂(u, v) = 0, Ê(u, v) = 4 u3, F̂ (u, v) = 6 u. (31)

Substituting (31) into (19) and (20) we see that both equations are satisfied.
Hence the case 1.2 leads just to projectively flat connections.

In the case 1.3, we have the second vector field v∂v and substituting a(u, v) =
0, b(u, v) = v and (28) into (8) we get

p(u) = e(u) = f(u) = 0. (32)

Substituting the third vector field of the case 1.3, namely a(u, v) = u, b(u, v) = 0
together with (28) and (32) into (8), we get

u d ′(u) + d(u) = 0 ⇒ d(u) = c3/u. (33)

Finally, substituting the fourth vector field of case 1.3, namely a(u, v) = −uv,
b(u, v) = v2 together with (28), (32) and (33) into (8), we get c3 = −2 and the
conclusion

Â(u, v) = −2/u, B̂(u, v) = E(u, v) = F (u, v) = 0. (34)

Substituting this into (19) and (20) we approve that the case 1.3 leads to projec-
tively flat connections.
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In the case 1.5 for k = 1 and linear η1(v), we can suppose, without loss of gen-
erality, that the second vector field is v∂u. Substituting a(u, v) = v, b(u, v) = 0
and (28) into (8) we get

v p ′(u) = 0, v e′(u) = f(u), v d ′(u) = 3 p (u), v f ′(u) = 2 d(u)

and thus
d(u) = p(u) = f(u) = 0, e(u) = c1. (35)

We conclude
Â(u, v) = B̂(u, v) = F̂ (u, v) = 0, Ê(u, v) = c1, (36)

which is a special case of (13). Thus this case leads to projectively flat connections.

In the case 1.5 for k = 2 and nonlinear η1(v)=g(v), substituting a(u, v) = g(v),
b(u, v) = 0 and (28) into (8), we get

p ′(u) g(v) = 0,
g′′(v)− g′(v)f(u) + g(v) e′(u) = 0,
−3 p(u) g′(v) + g(v) d ′(u) = 0,
−2 d(u) g′(v) + g(v) f ′(u) = 0.

(37)

According to the remarks below Table 1, g(v) must satisfy a 2nd order ODE with
constant coefficients. Hence the coefficients in the equation (372) must be constant
and we get

f(u) = c0, e(u) = c1u + c2. (38)

From (374) we get d(u) = 0 and from (373) we then obtain p(u) = 0. Due to (28),
we can summarize:

Â(u, v) = B̂(u, v) = 0, Ê(u, v) = c1u + c2, F̂ (u, v) = c0. (39)

According to (19) and (20) we obtain projective flatness.
Notice that the equation (372) is uniquely determined by (38) or (39).

In the case 1.6, k = 1, we are first in the same situation as in the corresponding
case 1.5. For η1(v) linear we derived conformal flatness. The remaining case
of a nonabelian algebra {∂v, η1(v)∂u} is, without the loss of generality, the case
η1(v) = ev. Here substituting (28) and a(u, v) = ev, b(u, v) = 0 into (8) we get

p ′(u) = 0, 1− f(u) + e′(u) = 0, −3 p(u) + d′(u) = 0, −2 d(u) + f ′(u) = 0. (40)

Hence we obtain easily (using also (28))

Â(u, v) = 3 c0u + c1, B̂(u, v) = c0,

Ê(u, v) = c0u
3 + c1u

2 + (c2 − 1)u + c3, F̂ (u, v) = 3 c0u
2 + 2 c1u + c2,

(41)

where c0, c1, c2, c3 are constants. (This formula will be used also in the next
section.)
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Now, we have additional vector field u∂u, i.e., a(u, v) = u, b(u, v) = 0. If we
substitute this and (41) into (8), we obtain c0 = c1 = c3 = 0. Hence

Â(u, v) = B̂(u, v) = 0, F̂ (u, v) = c2, Ê(u, v) = (c2 − 1)u, (42)

which is a special case of (39). We obtain the projective flatness.

In the case 1.6, k = 2, we are first in the same situation as in the case 1.5 and
we obtain the formula (39) and projective flatness. The new vector field u∂u is,
according to (8), also a projective Killing vector field if, and only if, we put c2 = 0
in (39).

Next, consider the case 2.2. Here we have again (28). For the next vector field
a(u, v) = u, b(u, v) = v we obtain by (8), for all functions p(u), d(u), c(u), f(u),
the same differential equation ϕ(u) + u ϕ′(u) = 0. Hence

p(u) = c1/u, e(u) = c2/u, d(u) = c3/u, f(u) = c4/u. (43)

Substituting (43) and the last vector field a(u, v) = 2 uv, b(u, v) = v2 − u2 into
(8), we obtain a system of four linear equations for the constants ci and, finally,
we get

B̂(u, v) = F̂ (u, v) = 0, Â(u, v) = Ê(u, v) = 1/u. (44)

We again check easily the projective flatness.

Finally, we investigate the case 2.3. By a rather long computation, which is
completely analogous to the case 6.3 in [5], pp. 96–97, we conclude with the
following formula:

Â(u, v) = Ê(u, v) = ∂g(u, v)/∂u, B̂(u, v) = F̂ (u, v) = ∂g(u, v)/∂v (45)

where g(u, v) = ln(u2 + v2 + 1). Now, the projective flatness follows either by the
direct check of the formulas (19), (20), or, from the fact that this connection is
the Levi-Civita connection of a Riemannian space of constant positive curvature
(cf. [5], Theorem 6.4, part 4).

This concludes the proof of Proposition 2. �

5. The cases leading to projectively homogeneous but projectively non-
flat connections

Proposition 3. The case 1.5 for k = 1 where η1(v) = ev leads to projectively
nonflat connections whose full algebra of projective Killing vector fields is 2-
dimensional and nonabelian.

Proof. The corresponding family of connections is given here by the formula (41).
If either c0 6= 0 or c1 6= 0, we see by the direct check of (19) and (20) that the
corresponding connections are not projectively flat. �

Proposition 4. The case 1.1 leads to projectively nonflat connections whose full
algebra of projective Killing vector fields is 3-dimensional and isomorphic to
sl (2, R).
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Proof. Consider the case 1.1. The operator ∂v is still here and the formulas (28)
are valid. Take the next vector field a(u, v) = −u, b(u, v) = v. Substituting this
and (27) into (8), we obtain a system of equations

3 p(u)+up ′(u) = 0, 3 e(u)−ue′(u) = 0, d(u)+ud′(u) = 0, f(u)−uf ′(u) = 0. (46)

Hence
p(u) = c1/u

3, e(u) = c2/u
3, d(u) = c3/u, f(u) = c4u. (47)

Now, we express the condition that also the vector field a(u, v) = −2 uv, b(u, v) =

v2 satisfies the equation (8) with the basic functions Â, B̂, Ê, F̂ given by (47) and
(28). We obtain a system of four linear equations for the corresponding constants
and we get hence c1 = c4 = 0, c3 = −3/2. We conclude with

Â(u, v) = −3/(2u), B̂(u, v) = F̂ (u, v) = 0, Ê(u, v) = c2u
3. (48)

If c2 6= 0, we check easily from (19) and (20) that the corresponding connections
are not projectively flat. �

6. The cases which do not determine any projectively homogeneous
connections

Proposition 5. The case 1.4, the cases 1.5 and 1.6 for k > 2, the cases 1.7 and
1.8 for k > 1, the cases 1.10, 1.11 for k 6= 2 and the case 2.7 do not produce any
projectively homogeneous affine connection.

Proof. In the case 1.4, the operators ∂u, ∂v are still present. From Section 2
we know that the formulas (13) hold. Now, assuming that the vector fields u∂u

and v∂v are projective Killing vector fields, as well, we derive easily from (8) and

formulas (13) that all constants in (13) are equal to zero. Hence Â = B̂ = Ê =

F̂ = 0.
Finally, assuming that the vector field a(u, v) = 0, b(u, v) = v2 is projective

Killing one, we obtain from (81) a contradiction.

In the case 1.5 for k > 2, we use the formulas (37) once again. Yet, we cannot use
the same simple argument as in the case k = 2 and we must modify our procedure.
So, consider a vector field g(v) ∂u in this algebra, where g(v) 6= const. First, from
(371) and (373) we get

p(u) = c0, d(u) = 3 c0 u g′(v)/g(v) + c1. (49)

Further, we can write from (372)–(374)

g′′(v)− f(u) g′(v) + e′(u) g(v) = 0,
−3 c0 g′(v) + c1 g(v) = 0, −2 c1 g′(v) + f ′(u) g(v) = 0.

(50)

Suppose first c0 6= 0. Then from (502) we see that g′(v)/g(v) 6= 0 is a well-defined
constant. We get g(v) = ecv, c = c1/(3c0). This is the only solution and k ≤ 1,
which is a contradiction.
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Suppose now c0 = 0. Then p(u) = 0, d(u) = c1 = 0 follow from (49) and (502).
From (503) we see f ′(u) = 0 and f(u) = c2. The equation (501) takes on the form

g′′(v)− c2 g′(v) + e′(u) g(v) = 0. (51)

Hence e′(u) must be a constant and e(u) = c3 u + c4. Consequently, the corre-
sponding connections are expressed, up to the numeration of constants, by the
formula (39). As we see again, the equation (51) is uniquely determined by the
(modified) formula (39) and hence there are at most two additional vector fields
η1(v) ∂u, η2(v) ∂u which can be projective Killing. Hence k ≤ 2, a contradiction.
This completes the proof in our case.

In the case 1.6 for k > 2, the procedure is similar as above.

The proofs in cases 1.7 and 1.8 for k > 1 are similar to that of the case 1.4. So
are the proofs for the cases 1.10 and 1.11 for k 6= 2 and for the case 2.7. �

7. Proofs of the main theorems

Proof of Theorem 1. It follows from Corollary 2 and Propositions 1–5. Here the
case 1 corresponds directly to Corollary 2 from Section 3, the case 2 corresponds
to Proposition 4 and the case 3 corresponds to Proposition 3.

Proof of Theorem 2. It was proved in [5], that the connections whose Christoffel
symbols are given by the formula ([5](10), p. 93), with C1 and C2 not both equal to
zero, are locally affinely homogeneous and their full algebra of affine Killing vector
fields is 2-dimensional and nonabelian. (In fact, it corresponds to the family from
Proposition 3.) We reproduce here this formula once again:

A(u, v) = C1u + C2, B(u, v) = C1, D(u, v) = −C1u + C3,
C(u, v) = −C1u

2 + (C3 − C2)u + C4, F (u, v) = C1u
2 − 2 C3u + C5,

E(u, v) = C1u
3 + (C2 − 2 C3)u

2 + (C5 − 2 C4 − 1)u + C6.
(52)

(C1, . . . , C6 are constants and C1 6= 0.)

We see that the corresponding functions Â(u, v), B̂(u, v), Ê(u, v), F̂ (u, v) are
of the form (41), when c0, c1 are not both equal to zero. Hence, every connection
∇ given by the formula (41) is, for a fixed choice of the parameters c0, c1, c2, c3,
(c0)

2 + (c1)
2 > 0, projectively equivalent to a connection ∇ of the form (52).

Moreover, the full algebra of projective Killing vector fields of ∇ coincides with
the full algebra of affine Killing vector fields and it is of the type 1.5, k = 1.

Further, it was proved in [5] that each connection whose Christoffel symbols
are given by formula ([5](17), p. 95), namely

A(u) = − 1

2 u
, B(u) = 0, C(u) = c u, D(u) =

1

2u
, E(u) = e u3, F (u) = 2 c u,

(53)
admits a 3-dimensional algebra of affine Killing vector fields of the type 1.1. The
corresponding functions Â(u, v), B̂(u, v), Ê(u, v), F̂ (u, v) are of the form given
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by the formula ([5](17), where c2 stands for e. For c2 6= 0, these connections are
not projectively flat and they have the full algebra of projective Killing vector field
of the type 1.1. Once again, for each choice of a connection ∇ given by (48) with
c2 6= 0, there is a connection ∇ of the form (53) with the corresponding functions

Â, . . . , F̂ given by (48) and thus projectively equivalent to ∇. The full projective
Killing algebra and the full affine Killing algebra coincide, being both of type 1.1.
�

The Corollary 1 of Theorem 1 follows at once looking at Table 1 and Table 2. �

Proof of Theorem 3. This proof is a simple application of a highly nontrivial result
by Barbara Opozda from [7], namely of the following

Theorem 5. Let ∇ be a torsion-less locally homogeneous affine connection on a
2-dimensional manifoldM. Then, either ∇ is a Levi-Civita connection of constant
curvature or, in a neighborhood U of each point m ∈ M, there is a system (u, v)
of local coordinates and constants a, b, c, d, e, f such that ∇ is expressed in U by
one of the following formulas:
Type A:

∇∂u∂u = a∂u + b∂v, ∇∂u∂v = c∂u + d∂v, ∇∂v∂v = e∂u + f∂v. (54)

Type B:

∇∂u∂u =
a∂u + b∂v

u
, ∇∂u∂v =

c∂u + d∂v

u
, ∇∂v∂v =

e∂u + f∂v

u
. (55)

Assume now that ∇ is a locally projectively homogeneous torsion-less connection
which is not projectively flat. Then, according to Theorem 2, ∇ is projectively
equivalent to a connection ∇, which is locally affinely homogeneous. This con-
nection cannot be a Levi-Civita connection of constant curvature, or a connection
with constant Christoffel symbols because these connections are obviously pro-
jectively flat. Thus, it must be of type B from Theorem 5. The rest follows
immediately. �
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