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Abstract. In this paper we prove some results on Reuleaux triangles
in (Minkowski or) normed planes. For example, we reprove Wernicke’s
result (see [21]) that the unit disc and Reuleaux triangles in a normed
plane are homothets if and only if the unit circle is either an affine
regular hexagon or a parallelogram. Also we show that the ratio of
the area of the unit ball of a Minkowski plane to that of a Reuleaux
triangle of Minkowski width 1 lies between 4 and 6. The Minkowskian
analogue of Barbier’s theorem is obtained, and some inequalities on
areas of Reuleaux triangles are given.
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1. Introduction

If a convex body K in Rd, d ≥ 2, has the same distance between any two parallel
supporting hyperplanes, then K is called a body of constant width. There is a large
variety of bodies of constant width in Rd; see the surveys [4] and [8]. The most
famous example of a non-circular planar figure of constant width is the Reuleaux
triangle in the Euclidean plane. It is bounded by three circular arcs of radius
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r > 0 which are centered at the vertices of an equilateral triangle with sides of
length r.

It is natural to extend the notion of bodies of constant width and that of
Reuleaux triangles to (Minkowski or) normed linear spaces; cf. the surveys [4] and
[12].

In the literature one can find various results on the Minkowskian analogues
of Reuleaux triangles. E.g., the Blaschke-Lebesgue theorem states that among
all figures of constant width r > 0 in R2 the Reuleaux triangles of that width
have minimum area. D. Ohmann and, independently, K. Günther showed in their
dissertations (both in Marburg, 1948) that the analogous statement holds for
normed planes; see also [15], [9], [3], and [6] for further approaches and modifica-
tions of that result. B. Wernicke [21] estimated the ratio of the areas of Reuleaux
triangles and unit discs in Minkowski planes, clarifying also the equality cases.
Constructions of curves of constant width and, in particular, of Reuleaux poly-
gons in normed planes are discussed in Chapter 4 of [20], see also [11] and [10].
Further results on Minkowskian Reuleaux triangles can be found in [19] and [17],
e.g. related to lattices.

The purpose of this paper is to investigate some properties of Reuleaux tri-
angles of Minkowski width 1 which are generated by the ‘equilateral’ triangle of
side-length 1 in Minkowski planes. We will give a new proof of the fact that the
unit disc and a Reuleaux triangle in a Minkowski plane are homothetic if and only
if the unit circle is either an affine regular hexagon or a parallelogram. Related
to this, we will establish that the ratio of the area of the unit disc to the area of a
Reuleaux triangle of Minkowski width 1 lies between 4 and 6. On the other hand,
we will show that the product of the areas of Reuleaux triangles of Minkowski

width 1 and of the dual unit disc lies between
3

2
and

9

4
. The cases of equality will

be completely clarified. Some of the results presented here were already obtained
in [21], but we give a new and more unified approach to them. Also we will extend
Barbier’s theorem to Minkowski planes. Furthermore, we present various inequal-
ities estimating the areas of Reuleaux triangles of Minkowski width 1 for different
definitions of area, and also the perimeter of Minkowskian Reuleaux triangles is
taken into consideration.

2. Preliminaries

Recall that a convex body K ⊂ Rd is a compact, convex set with nonempty interior,
and that K is said to be centered if it is centrally symmetric with respect to the
origin 0 of Rd, d ≥ 2. As usual, we denote by Sd−1 the standard Euclidean unit
sphere of Rd.

Let (X, B) = M2 be a two-dimensional normed linear space, i.e., a normed or
Minkowski plane with unit disc B which is a centered planar convex body. Thus
we consider X as R2 equipped with an arbitrary norm ‖ · ‖, and by B◦ ∈ X∗ we
denote the dual of B, where X∗ is the dual space of X.

We will suppose that X possesses the standard Euclidean structure, and that
λ is the Lebesgue measure induced by this structure. Since d = 2, we refer to this
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measure as area and denote it by λ(·). The area λ gives rise to a dual area λ∗

defined for convex bodies in X∗. We may assume that X = R2.
If K1 and K2 are convex bodies in X, then the Minkowski sum and the scalar

multiplication of these convex bodies are defined by

K1 + K2 = {x : x = x1 + x2, x1 ∈ K1, x2 ∈ K2},

αK1 = {x : x = αy, y ∈ K1}.
Let K be a convex body in X. The function hK defined for f ∈ Rd by

hK(f) := sup{〈f, x〉 : x ∈ K}

is called the support function of K. When X = Rd and u ∈ Sd−1, then hK(u) is
the distance from the origin to the supporting hyperplane of K with unit outer
normal u.

Definition 1. For each unit linear functional f in X∗, the Minkowski width of
K in direction f , denoted by ωB(K, f), is defined by

ωB(K, f) = hB(K, f) + hB(K,−f),

where hB(K, f) = sup{〈f, x〉 : x ∈ K, ||f || = 1} is the Minkowskian support
function; see [20], p. 106.

One can show (see [2]) that if u ∈ Sd−1 and X = Rd, then

ωB(K, u) =
2ω(K, u)

ω(B, u)
, (1)

where ω(K, u) is the usual Euclidean width of K in direction u.

Definition 2. A convex body K in (X, B) is said to be of constant Minkowski
width c ∈ R+ if ωB(K, f) = c for all unit linear functionals f in X∗.

For the following known statement we refer, e.g., to [20], p. 107.

Theorem 3. If K is a convex body of constant Minkowski width c in (X, B), then
K + (−K) = cB.

Recall that the Rogers-Shephard inequality (see [18]) states that for a convex body
K in Rd

λ(K + (−K)) ≤
(

2d

d

)
λ(K) (2)

holds, with equality if and only if K is a simplex. For our next theorem we refer
to [5] and [16].

Theorem 4. If a convex body K in M2 is of constant Minkowski width and, in
addition, has an equichordal point (that is, all chords of K passing through this
point have the same Minkowski length), then K is homothetic to the unit disc B
of M2.
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For a two-dimensional Minkowski space (X, B) we can define the mixed volume
of convex bodies K1 and K2 by

V (K1, K2) = 2−1

∫
∂K1

hK2ds(x) = 2−1

∫
∂K2

hK1ds(x), (3)

where ds(x) is the Euclidean element of arc length at x.
The Minkowski inequality for mixed volumes states that

V 2(K1, K2) ≥ λ(K1)λ(K2) ,

with equality if and only if K1 and K2 are homothetic.
Using formula (3), one can rewrite the Minkowski length of the boundary ∂K

of K in terms of mixed volumes (see also [20], p. 120), namely by

µB(∂K) =

∫
∂K

hIB
ds(x) = 2V (K, IB), (4)

where the convex body IB is the polar reciprocal of B (with respect to the Eu-
clidean circle) rotated through 90◦.

Barbier’s theorem states that for all convex bodies of constant width c in the
Euclidean plane

l = πc

holds, where l is the respective perimeter.
We will extend this theorem to Minkowski planes.

Theorem 5. If K is a convex body of constant Minkowski width c ∈ R+ in a
normed plane (X,B), then

µB(∂K) =
c

2
µB(∂B).

Proof. It follows from (1) that ω(K, u) =
c

2
ω(B, u), u ∈ S1. This gives us

hK(u) + hK(−u) =
c

2
(hB(u) + hB(−u)).

Integrating both sides along ∂IB, we obtain∫
∂IB

(hK(u) + hK(−u))ds(x) =
c

2

∫
∂IB

(hB(u) + hB(−u))ds(x).

From (3) we have∫
∂K

(hIB
(u) + hIB

(−u))ds(x) =
c

2

∫
∂B

(hIB
(u) + hIB

(−u))ds(x).

Since IB is symmetric about the origin, we have hIB
(u) = hIB

(−u). Hence the
result follows from (4). �
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Corollary 6. If K is a convex body of constant Minkowski width 1 in a normed
plane (X, B), then

3 ≤ µB(∂K) ≤ 4,

with equality on the left if and only if B is an affine regular hexagon, and equality
on the right if and only if B is a parallelogram.

Proof. It is well known (see, e.g., [14]) that 6 ≤ µB(∂B) ≤ 8 with equality on
the left if and only if the unit ball B is an affine regular hexagon and equality
on the right if and only if B is a parallelogram. Hence the result follows from
Theorem 3. �

We remark that H. G. Eggleston showed in [5] that if the unit ball is a parallelo-
gram, then every convex body of constant Minkowski width is homothetic to the
unit ball.

3. Reuleaux triangles

Let ABCDEF be an affine regular hexagon inscribed to the unit disc B of a
Minkowski plane (X, B). We denote this hexagon by H.

One can construct Reuleaux triangles in Minkowski planes in the following
way: we start with the triangle OAB which is equilateral in (X, B) and denote

this triangle by T . Over the side OA of T we construct the arc ÊF of ∂B, over
the side OB of T the arc ĈD of ∂B, and over the side AB of T the arc ÂB of
∂B. The convex body bounded by these three arcs is a (Minkowskian) Reuleaux
triangle of constant Minkowski width 1 and is said to be generated by T . We
denote this Reuleaux triangle by TR.

Example. Let the unit disc B be the hexagon ABCDEF with vertex coor-
dinates {(1, 0), (1, 1), (0, 1), (−1, 0), (−1,−1), (0,−1)}. One can see that the tri-

angles OAB, OBC, OCD, ODE, OEF and OFA as well as
1

2
B are Reuleaux

triangles of constant Minkowski width 1. (There are further types of Reuleaux
triangles, since this unit disc has, of course, also other inscribed affine regular
hexagons.) From Theorem 5 it follows that all Reuleaux triangles described here
have the Minkowskian perimeter 3.

From the above construction of Reuleaux triangles of Minkowski width 1 we get

Proposition 7. If TR is a Reuleaux triangle of Minkowski width 1 generated by
an equilateral triangle T in (X, B), then T = TR if and only if B is an affine
regular hexagon.

The next proposition is due to G. D. Chakerian [3]; see also [14], p. 108.

Proposition 8. If H is an affine regular hexagon inscribed to B and TR is a
Reuleaux triangle of constant Minkowski width 1 constructed from H as above,
then

λ(TR) =
λ(B)

2
− λ(H)

3
. (5)
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Also the proof of the following lemma can be found in Chakerian’s paper [3], or
in Thompson’s book [20], p. 108.

Lemma 9. If (X,B) is a Minkowski plane and H is an affine regular hexagon
inscribed to the unit disc B, then

λ(B) ≤ 4λ(H)

3
,

with equality if and only if B is an affine regular hexagon or a parallelogram.

In [3], Chakerian showed the minimal property of Reuleaux triangles regard-
ing the isoperimetric problem for convex bodies of constant Minkowski width
in normed planes: if K is a convex body of constant Minkowski width 2 in a
normed plane (X,B), then λ(K) ≥ λ(T̂R), where T̂B is a Reuleaux triangle of
constant Minkowski width 2. Recall that the unit disc has the maximum area
among all convex bodies of constant Minkowski width 2.

Theorem 10. If TR is a Reuleaux triangle of Minkowski width 1 in a normed
plane (X, B), then TR is homothetic to B if and only if B is an affine regular
hexagon or a parallelogram.

Proof. It follows from the above construction of a Reuleaux triangle that if B is
an affine regular hexagon or a parallelogram, then there exists a Reuleaux triangle
homothetic to B.

Let T̂R be a Reuleaux triangle of width 2 that is homothetic to B. Then
λ(B) = λ(T̂R), and from (5) we have

λ(T̂R) = 2λ(B)− 4λ(H)

3
.

Therefore λ(B) =
4λ(H)

3
. It follows from Lemma 9 that this is the case when B

is an affine regular hexagon or a parallelogram. �

In [3] (see also [17]) Chakerian proved that in Minkowski planes the ratio between
the area of the unit disc and that of an equilateral triangle of side-length 1 lies
between 6 and 8. We can prove the following for Reuleaux triangles of Minkowski
width 1.

Theorem 11. If TR is a Reuleaux triangle of Minkowski width 1 in a normed
plane (X, B), then

4 ≤ λ(B)

λ(TR)
≤ 6 , (6)

with equality on the left if and only if B is a parallelogram or an affine regular
hexagon and TR is homothetic to B, and on the right if and only if B is an affine
regular hexagon and TR is an equilateral triangle.
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Proof. It follows from the Rogers-Shephard inequality (2) that λ(TR +(−TR)) ≤
6λ(TR), with equality if and only if TR is an equilateral triangle. Hence the right
inequality follows from Theorem 3 and Proposition 7.

To prove the left inequality we can write λ(TR + (−TR)) as

λ(TR + (−TR)) = λ(TR) + 2V (TR,−TR) + λ(−TR).

The Minkowski inequality for mixed volumes implies that V (TR,−TR) ≥ λ(TR),
with equality if and only if TR is centrally symmetric. Therefore it follows from
Theorem 4 that TR and B are homothetic. Hence the result follows from Theo-
rem 10. �

Corollary 12. If K is a convex body of constant Minkowski width 2 in a normed
plane (X, B), then

λ(B) ≤ 3

2
λ(K),

with equality if and only if B is an affine regular hexagon.

Proof. Theorem 11 implies that for all Reuleaux triangles T̂R of Minkowski width

2 the inequality λ(B) ≤ 3

2
λ(T̂R) holds. We also know that there exists a Reuleaux

triangle T̂R such that λ(K) ≥ λ(T̂R). Hence the result follows. �

The measure of symmetry between a centrally symmetric convex body and its
inscribed affine regular hexagon has been investigated by many authors (see, for
example, [1], [2], and [7]). The following statements refer to the measure of
symmetry between the dual of a centrally symmetric convex body and its inscribed
affine regular hexagon.

Theorem 13. If B is the unit disc of a normed plane M2 and H is an affine
regular hexagon inscribed to B, then

6 ≤ λ(H)λ(B◦) ≤ 9,

with equality on the left if and only if B is a parallelogram, and on the right if
and only if B is an affine regular hexagon.

Proof. Since

λ(H) ≤ λ(B) ≤ 4

3
λ(H)

with equality on the left if and only if B is an affine regular hexagon, and on the
right if and only if B is a parallelogram or an affine regular hexagon, we have

8 ≤ λ(B)λ(B◦) ≤ 4

3
λ(H)λ(B◦).

Thus, the left side of the inequality follows.
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By H ⊆ B we have B◦ ⊆ H◦, and therefore

λ(H)λ(B◦) = λ(H)λ(IB) ≤ V 2(H, IB) =
1

4
µ2

B(∂H) = 9.

Equality holds when H and IB are homothetic or H and B◦ are homothetic.
Hence equality holds when B is an affine regular hexagon. �

Corollary 14. If B is the unit disc and T is an equilateral triangle of a normed
plane M2, then

1 ≤ λ(T )λ(B◦) ≤ 3

2
,

with equality on the left if and only if B is a parallelogram, and on the right if
and only if B is an affine regular hexagon.

4. Areas of Reuleaux triangles

Recall that in a Minkowski plane (X, B) the area µ is defined by µ(·) = σ(X)λ(·),
where σ is a fixed constant. Choosing the correct constant σ is not as easy as it
seems. Also, these two measures µ and λ must agree in the standard Euclidean
plane.
Here are some well-known definitions of area:

i) The Busemann definition of area of a convex body K in a two-dimensional
Minkowski space (X, B) is given by

µBus
B (K) :=

π

λ(B)
λ(K).

ii) The Holmes-Thompson definition of area of K in a normed plane (X, B) is
given by

µHT
B (K) :=

λ(K)λ∗(B◦)

π
.

iii) The Benson definition of area of K in a two-dimensional Minkowski space
(X, B) is given by

µBen
B (K) :=

4

λ(P )
λ(K),

where P is a minimal parallelogram circumscribed about B.

From Theorem 11 we can establish Wernicke’s result; see [21].

Proposition 15. If TR is a Reuleaux triangle of Minkowski width 1 in a normed
plane (X, B), then

π

6
≤ µBus

B (TR) ≤ π

4
,

with equality on the left if and only if B is a affine regular hexagon and TR is an
equilateral triangle, and on the right if and only if B is a parallelogram or affine
regular hexagon and TR is homothetic to B.
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Proposition 16. If TR is a Reuleaux triangle of Minkowski width 1 in a normed
plane (X, B), then

1

2
≤ µBen

B (TR) ≤ 1,

with equality on the left if and only if B is an affine regular hexagon, and on the
right if and only if B is a parallelogram.

Proof. In [13] it was shown that if P is a minimal parallelogram circumscribed

about B , then
λ(B)

λ(P )
≥ 3

4
with equality if and only if B is an affine regular

hexagon. Hence the left side of the inequality follows from Theorem 11. The right
side of the inequality is obvious. �

Theorem 17. If TR is a Reuleaux triangle of Minkowski width 1 in a normed
plane (X, B), then

3

2
≤ λ(TR)λ(B◦) ≤ 9

4
,

with equality on the left side if and only if B is an affine regular hexagon and TR

is an equilateral triangle, and on the right side if and only if B is an affine regular
hexagon and TR is homothetic to B.

Proof. Since (rB)◦ = r−1(B◦) for any r > 0, the quantity λ(TR)λ(B◦) is
unchanged by dilation. Therefore we may assume that λ(B◦) = 1. Since λ(T ) ≤
λ(TR), the quantity λ(TR)λ(B◦) attains its minimum when λ(T ) = λ(TR). By
Proposition 7 this is the case when B is an affine regular hexagon. Hence the left
side follows.

Since λ(T̂R) ≤ λ(B), where T̂R is a Reuleaux triangle of Minkowski width 2,
the quantity λ(TR)λ(B◦) attains its maximum when 4λ(TR) = λ(B). By Theorem
10 this is the case when B is either an affine regular hexagon or a parallelogram.
Simple calculation shows that the maximum is attained when B is an affine regular
hexagon. Hence the right side follows. �

Corollary 18. If TR is a Reuleaux triangle of Minkowski width 1 in a normed
plane (X, B), then

3

2π
≤ µHT

B (TR) ≤ 9

4π
,

with equality on the left side if and only if B is an affine regular hexagon and TR

is an equilateral triangle, and on the right side if and only if B is an affine regular
hexagon and TR is homothetic to B.

Also we can investigate the isoperimetric inequality for Reuleaux triangles in
Minkowski planes.

Proposition 19. If TR is a Reuleaux triangle of Minkowski width 1 in a normed
plane (X, B), then

i)
µ2

B(∂TR)

µHT
B (TR)

≥ 4π
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with equality if and only if B is an affine regular hexagon;

ii)
µ2

B(∂TR)

µBus
B (TR)

≥ 36

π

with equality if and only if B is an affine regular hexagon;

iii)
µ2

B(∂TR)

µBen
B (TR)

≥ 9

4
.

Proof. i) Minkowski’s inequality for mixed volumes implies that

µ2
B(∂TR) = 4V 2(TR, IB) ≥ 4λ(TR)λ(IB),

with equality if and only if TR and IB are homothetic. Hence equality follows
from Theorem 4 and the fact that λ(IB) = λ(B◦).

The inequalities ii) and iii) follow from Propositions 13 and 14, respectively, and
from Corollary 6. �

Obviously, inequality iii) is not sharp. To find the sharp bound in this case should
be interesting.
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