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Introduction

The study of sums of squares in fields or rings is a classical number theoretic
problem and goes back to Diophantes, Fermat, Lagrange and Gauss who studied
how to express integers as sums of squares. The classical notion of level of a field
was generalized to commutative rings (see Pfister [14] and Dai, Lam and Peng [3]
for lists of references), and then to non-commutative rings (e.g. to division rings
and hence quaternion algebras over fields) for instance by Leep [8] and Lewis
[11]. Becker [1] studied sums of (2n)th powers in fields and rings using higher
level orderings. There does not seem to be much literature about sums of dth
powers in a non-commutative ring, or even in a non-associative algebra (whereas
for d = 2, see for instance Leep, Shapiro, Wadsworth [9], or the references in [15]).
Quadratic trace forms play a role when investigating sums of squares in fields or
certain types of algebras (for instance central simple ones).

There is an intimate relationship between sums of dth powers and higher trace
forms of degree d. The trace form of degree d of an algebra A determines whether
or not 0 can be represented as a non-trivial sum of dth powers in A. Moreover,
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higher trace forms provide examples of absolutely indecomposable forms of ar-
bitrary even degree which are (even strongly) anisotropic and become isotropic
under a suitable quadratic field extension. Independently of their connection to
sums of dth powers, higher trace forms associated to algebras constitute an in-
teresting class of forms of degree d, and were previously studied by O’Ryan and
Shapiro [12] (for central simple algebras), by Harrison [4] (for commutative alge-
bras only), and also by Wesolowski [20], and in [16].

One might argue that the appropriate generalization of sums of dth powers
to the non-commutative case is rather sums of products of dth powers: for d = 2,
a central division algebra D over a field k admits an ordering if and only if −1
is not a sum of products of squares in D [18], which is the analogue of a well-
known characterization for a formally real field. Accordingly, one can define a
dth product level, a dth product Pythagoras number and so forth (cf. Cimpric [2]
for results on these “higher product levels” of non-commutative rings in a very
general sense). We refrain from following this approach, since several well-known
results on sums of squares can be rephrased effortlessly to sums of dth powers in
non-commutative rings (and even to sums of dth powers in certain non-associative
algebras), see for instance Theorem 1 or Proposition 3.

1. Preliminaries

1.1.

Let k be a field of characteristic 0 or greater than d. A d-linear form over k is
a k-multilinear map θ : V × · · · × V → k (d-copies of V ) on a finite-dimensional
vector space V over k which is symmetric; i.e., θ(v1, . . . , vd) is invariant under all
permutations of its variables. A form of degree d over k is a map ϕ : V → k on a
finite-dimensional vector space V over k such that ϕ(av) = adϕ(v) for all a ∈ k,
v ∈ V and where the map θ : V × · · · × V → k defined by

θ(v1, . . . , vd) =
1

d!

∑
1≤i1<···<il≤d

(−1)d−lϕ(vi1 + · · ·+ vil)

(1 ≤ l ≤ d) is a d-linear form over k. If we can write ϕ in the form a1x
d
1+. . .+amxd

m

we use the notation ϕ = 〈a1, . . . , an〉 and call ϕ diagonal.
A d-linear space (V, θ) is called non-degenerate if v = 0 is the only vector such

that θ(v, v2, . . . , vd) = 0 for all vi ∈ V . The orthogonal sum (V1, θ1) ⊥ (V2, θ2) of
two d-linear spaces (Vi, θi), i = 1, 2, is the k-vector space V1 ⊕ V2 together with
the d-linear form (θ1 ⊥ θ2)(u1 + v1, . . . , ud + vd) = θ1(u1, . . . , ud) + θ2(v1, . . . , vd).

A d-linear space (V, θ) is called decomposable if (V, θ) ∼= (V1, θ1) ⊥ (V2, θ2) for
two non-zero d-linear spaces (Vi, θi), i = 1, 2. A non-zero d-linear space (V, θ) is
called indecomposable if it is not decomposable. We distinguish between indecom-
posable ones and absolutely indecomposable ones; i.e., d-linear spaces which stay
indecomposable under each algebraic field extension.

Let l/k be a finite field extension and s : l → k a non-zero k-linear map. If Γ :
V ×· · ·×V → l is a non-degenerate d-linear form over l then sΓ : V ×· · ·×V → k
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is a non-degenerate d-linear form over k, with V viewed as a k-vector space. If
the map s is the trace of the field extension l/k, we write trl/k(Γ) or trl/k(V, Γ)
instead of (V, trl/kΓ).

A form ϕ : V → k of degree d over k is called isotropic if there is a non-zero
element x ∈ V such that ϕ(x) = 0, otherwise it is called anisotropic. The form
ϕ : V → k is called weakly isotropic if, for some integer m, the orthogonal sum of
m copies m×ϕ of ϕ is isotropic. It is called strongly anisotropic if the orthogonal
sum of m copies m× ϕd(x) is anisotropic for all integers m.

1.2.

Let R be a unital commutative ring and let the term “algebra” over R refer to
a unital non-associative strictly power-associative R-algebra. We assume that R
can be viewed as a subring of the algebra A via the map R → A, a → a1.

Let A denote either a non-commutative unital ring with 1 6= 0, or an R-
algebra. Write Ad for the set of dth powers of elements in A and ΣAd for the
set of all non-trivial sums of dth powers of elements in A; i.e., for the set of all
elements of the form

∑m
i=1 ad

i where each ai ∈ A and not all ai are zero. For an
element a ∈ A the smallest number n such that a = ad

1 + · · ·+ad
n with all ai ∈ A is

the length ld(a) of a. The smallest positive integer m such that −1 is a sum of dth
powers in A is called the dth level (or power Stufe in [13]) of A, denoted sd(A).
If there is no such integer, we set sd(A) = ∞. In case d is odd, sd(k) = 1. We
write vd(A) for the smallest number m (if it exists) such that every element a ∈ A
which can be written as a sum or difference of m dth powers of elements in A; i.e.,
a = e1a

d
1 + · · · + emad

m with all ai ∈ A and with ei ∈ {1,−1}, and ∞ otherwise.
(For a comprehensive survey on the results in the commutative case until 1970,
see [5, p. 38].) If every element in A can be written as a sum or difference of dth
powers of elements in A and sd(A) < ∞, then A =

∑
Ad. The dth Pythagoras

number pd(A) of A is the smallest number q (if it exists) such that every sum of
dth powers of elements in A can be written as a sum of q dth powers of elements
in A, and ∞ otherwise. In other words, pd(A) = sup{ld(a)|a ∈

∑
Ad}. Note that

pd(A) = vd(A) for odd integers d, so the invariant vd(A) only is interesting for
even d. Obviously, ld(−1) = sd(A) ≤ pd(A) by definition.

The case d = 2 is easily settled in the non-commutative case as well, since [5,
(7.9), (7.10)] also hold in this more general setting:

Lemma 1. (i) Let A be a non-commutative ring where 2∈A×. Then v2(A)≤ 2.

(ii) Let A be a non-associative algebra over a ring R with 2 ∈ R× where R ⊂
Center(A) = {c ∈ A| [c, A] = [c, A, A] = [A, c, A] = [A, A, c] = 0}. Then
v2(A) ≤ 2. In particular, if s2(R) < ∞ then A =

∑
A2 and p2(A) ≤

1 + s2(R).

(iii) Let A be a commutative non-associative algebra over a unital commutative
ring R, where R ⊂ Center(A) (e.g. a Jordan algebra). Then v2(A) ≤ 3. In
particular, if s2(R) < ∞, then A =

∑
A2 and p2(A) ≤ 2 + s2(R).
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2. Sums of powers in commutative rings and central simple algebras

The Pythagoras number is a very delicate invariant, which is already difficult to
get a hold on for d = 2. For d = 2 it is most interesting if s2(R) = ∞, because
otherwise it is bounded above by s2(R) + 2 or even by s2(R) + 1 if 2 is a unit in
R. This situation is also true for d ≥ 2 and A an R-algebra:

Proposition 1. Let R be a unital commutative ring where d is an invertible ele-
ment. Let R contain a primitive dth root of unity ω. Let A be an algebra over R,
where R ⊂ Nuc(A) ∩ Comm(A) = Center(A). If ω ∈ ΣRd, then

A = ΣAd.

More precisely,

sd(A) ≤ pd(A) ≤ dd−2(1 + ld(ω) + · · ·+ ld(ω
d−1))

gives an upper estimate for the dth Pythagoras number of A. In particular, if
pd(R) is finite, then

pd(A) ≤ dd−2(1 + (d− 1)pd(R)).

Proof. The proof is similar to the one given in [9, 1.1] for d = 2: let lm = ld(ω
m),

then ωm = Σlm
i=1x

d
i,m in R, with xi,m ∈ R for each m, 1 ≤ m ≤ d − 1. Let d = 3.

Then
(a + 1)3 = a3 + 3a2 + 3a + 1,
(a + ω)3 = a3 + 3ωa2 + 3ω2a + 1 and
(a + ω2)3 = a3 + 3ω2a2 + 3ωa + 1.

Therefore
(a + 1)3 + ω(a + ω)3 + ω2(a + ω2)3 = 9a.

This implies

a =
1

9
((a + 1)3 + ω(a + ω)3 + ω2(a + ω2)3).

For every a ∈ A, we compute more generally

a = d d−2((
a + 1

d
)d + ω(

a + ω

d
)d + · · ·+ ωd−1(

a + ωd−1

d
)d)

and thus a ∈ ΣAd. Thus a is a sum of S dth powers of elements of the algebra A,
where S = dd−2(1 + ld(ω) + · · ·+ ld(ω

d−1)). �

Since ld(ω
m) ≥ 1 for all m, notice that S must be at least as large as dd−1.

If ω cannot be written as a sum of dth powers in A, this upper bound does
not exist and we do not know whether pd(A) is finite at all.

Lemma 2. If k is a field containing a primitive dth root of unity ω for some
d > 2 (hence char k does not divide d), then k is non-real.
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Proof. If 4 divides d, then k contains
√
−1. If p divides d, where p is an odd

prime, then k contains a primitive pth root of unity ζ. Since ζ = ζp+1, every ζm

is a square in k. Then k is non-real, since −1 = ζ + ζ2 + · · ·+ ζp−1. �

Remark 1. (i) Let k be a field which contains a primitive dth root of unity ω
such that ω ∈ Σkd. The dth Pythagoras number pd(k) of k was shown to be finite
already in [5, p. 104]. However, the bounds obtained there were given using a
function V (d) with V (d) ≤ 3(d− 2)((µ− 1)!)µ where µ = (d− 1)d−1 for d ≥ 3 and
not using the ld(ω

m), 1 ≤ m ≤ d− 1.

(ii) Let p 6= 2 be a prime and let k be a field of characteristic 0 or greater than
p which contains a primitive pth root of unity ω. The form 〈1, ω, . . . , ωp−1〉 of
degree p over k is universal [17, 9.3 (iii)]; i.e., each element of k occurs as a value
of the form. If ω ∈ Σkp, then each element of k is a sum of S p-th powers of
elements of k, where now

S = (1 + lp(ω) + · · ·+ lp(ω
p−1))

and pd(k) ≤ S.

(iii) Let R be a unital commutative ring where d ∈ R× containing a primitive dth
root of unity ω. Then ω ∈

∑
Rd if and only if R =

∑
Rd (Proposition 1).

(iv) Let k be an infinite field containing a primitive dth root of unity ω, such
that |k×/k×d| is finite. Then ω ∈

∑
kd if and only if k =

∑
kd if and only if

−1 ∈
∑

kd. (The last equivalence was proved in [5, (7.14)].)

Remark 2. (i) If R is a non-real field containing a primitive dth root of unity ω
satisfying ω ∈

∑
Rd, then pd(R) is finite and so is pd(A) for any algebra A over R

as in Proposition 1. If R is a formally real field and d even, however, pd(R) may
be infinite [5, (7.30)]. For a field R of characteristic zero, Tornheim [19] proved
the upper bound

pd(R) ≤ (d + 1)sd(R)G(d) ≤ (d + 1)2dsd(R)

where G(d) is the Waring constant.

(ii) If A is a unital commutative algebra over a field k of characteristic 0 such that
sd(A) is finite, then

pd(A) ≤ 2d−2(1 + sd(A))

[5, (7.29)]. So again the dth Pythagoras number of A seems to be most interesting
when A is an algebra over a formally real field k (and when d is even), or when
sd(A) = ∞.

Corollary 1. Let k be a field of characteristic 0 with sd(k) < ∞ containing a
primitive dth root of unity ω where ω ∈

∑
kd. Then

pd(A) ≤ dd−2(1 + (d− 1)2d−2(1 + sd(k))).
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Proof. Since r = pd(k) ≤ 2d−2(1 + sd(k)), we get pd(A) ≤ dd−2(1 + (d − 1)r) ≤
dd−2(1 + (d− 1)2d−2(1 + sd(k))). �

In particular, if k is a non-real field of characteristic 0 such that |k×/k×d| is finite
containing a primitive dth root of unity, then

pd(A) ≤ dd−2(1 + (d− 1)2d−2(1 + sd(k)))

for any algebra A as above.

Remark 3. Let D be a central simple division algebra over a field k. Given any
integer d ≥ 2 it is clear that −1 ∈

∑
Dd implies 0 ∈

∑
Dd. If k contains a

primitive dth root of unity ω and ω ∈
∑

kd, then k is non-real and we also know
D =

∑
Dd by Proposition 1. For d = 2, −1 ∈

∑
Dd if and only if 0 ∈

∑
Dd if

and only if D =
∑

Dd [9, Theorem D].

Let p be a prime number. For sums of dth powers, d = pr, fields of characteristic
p play a special role. Let k be a field of characteristic p and let A be an octonion
algebra over k (indeed, even any algebra with a scalar involution), or a central
simple associative algebra over k. Then∑

Apr ⊂ {x ∈ A|trA(x) ∈ kpr},

because
trA/k(x)pr

= trA/k(x
pr

).

For d = 2 and central simple associative algebras the above inclusion was proved
to be an equality in [9, Theorem C]. This generalizes to sums of dth powers in A
for d = pr:

Theorem 1. Let k be a field of prime characteristic p and A a central simple
associative algebra over k. Then∑

Apr

= {a ∈ A | trA/k(a) ∈ kpr}.

In particular, A =
∑

Apr
if and only if k is perfect.

Proof. The proof that {a ∈ A | trA(a) ∈ kpr} ⊂
∑

Apr
is analogous to the one

given in [9], we sketch it for the convenience of the reader: If A = k this is trivial,
so assume that A is different from k.

∑
Apr

is an additive subgroup of A which
is invariant.

Suppose first that A is not a division algebra. If A ∼= M2(F2) we obtain the
desired result by a tedious but straightforward computation. If A ∼= Mn(D) for
a division algebra D over k, n > 1, and A 6∼= M2(F2) then ker trA/k ⊂

∑
Apr

(Kasch’s Theorem [9, (4.1)]).
If A is a division algebra over k, view A as an algebra over the field kpr

. Then
A is algebraic over kpr

and
∑

Apr
is an invariant kpr

-subspace of A. Therefore
ker (trA/k) ⊂

∑
Apr

(Asano’s Theorem [9, (4.2)]).
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To see that M = {a ∈ A|trA/k(a) ∈ kpr} ⊂
∑

Apr
let a ∈ M , then trA/k(a) =

spr ∈ kpr
. Since trA/k : A → k is surjective, there exists an element b ∈ A such

that trA/k(b) = 1, thus trA/k(b
pr

) = trA/k(b)
pr

= 1 and

trA/k(a + spr

(p− 1)bpr

)= trA/k(a) + spr

(p− 1)trA/k(b
pr

)=spr

+ (p− 1)spr

= 0,

hence
a− (sb)pr

= a− spr

(p− 1)bpr ∈ ker (trA/k) ⊂
∑

Apr

and therefore also a ∈
∑

Apr
. �

3. Trace forms of higher degree

We fix the ensuing conventions: Let k be a field and let A be a unital, not neces-
sarily associative, strictly power-associative k-algebra which is finite-dimensional
as a k-vector space. Let

PA,a(X) = Xn − s1(a)Xn−1 + s2(a)Xn−2 + · · ·+ (−1)nsn(a)

be the generic minimal polynomial of a ∈ A. The coefficient s1(a) = trA/k(a)
is called the generic trace of a ∈ A, n the degree. The generic trace induces a
bilinear form tA : A×A → F, tA(x, y) = trA/k(xy), the bilinear trace form of A. Its
associated quadratic form is given by x → trA/k(x

2). If the bilinear trace form on
A is symmetric, non-degenerate and associative (i.e., trA/k(xy, z) = trA/k(x, yz)),
then A is separable. Conversely, if A is associative, alternative or a Jordan algebra,
and if A is separable, then the bilinear trace form trA/k on A is symmetric, non-
degenerate and associative [6, (32.4) ff.].

Let d ≥ 2 and let char(k) = 0 or char(k) > d. For any algebra A over k,

ϕd : A → k, ϕd(a) = trA/k(a
d)

is a form of degree d over k, the higher trace form of degree d on A. If A has
a non-degenerate associative symmetric bilinear trace form, ϕd is non-degenerate
[16].

Lemma 3. Let k be a field of characteristic 0. Let l be a finite Galois extension
of k. The following are equivalent:

(i) l is not formally real.

(ii) 0 is a non-trivial sum of dth powers of elements in l for all positive integers
d ≥ 2.

(iii) The form ϕd(x) = trl/k(x
d) of degree d is weakly isotropic for all positive

integers d ≥ 2.

Proof. The equivalence of (i) and (ii) was proved in [5, p. 84].

The fact that (ii) implies (iii) is trivial.

It remains to show that (iii) implies (ii):
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Let n = [l : k]. Let σ1, . . . , σn be the distinct embeddings of l in an algebraic
closure of k. We have

trl/k(b) =
n∑

i=1

σi(b)

for each element b ∈ l. If the higher trace form ϕd(x) = trl/k(x
d) of degree d is

weakly isotropic then there are elements ai ∈ l which are not all zero such that

0 =
m∑

i=1

trl/k(a
d
i ) =

m∑
i=1

(
n∑

j=1

σj(ai)
d).

Hence 0 is a non-trivial sum of dth powers in l. �

Remark 4. Let l be a finite Galois extension of k. If 0 is a non-trivial sum
of dth powers in l (e.g. if l is non-real), then analogously as above, the form
ϕ(x) = trl/k(cx

d) of degree d, also denoted trl/k(〈c〉), is weakly isotropic for any
c ∈ l×.

Conversely, suppose c ∈
∑

ld. Let σ1, . . . , σn be the distinct embeddings of l
in an algebraic closure of k, then

trl/k(b) =
n∑

i=1

σi(b)

for each element b ∈ l. If the form trl/k(〈c〉) of degree d is weakly isotropic, then
there are elements ai ∈ l which are not all zero such that

0 =
m∑

i=1

trl/k(ca
d
i ) =

m∑
i=1

(
n∑

j=1

σj(c)σj(ai)
d).

Hence 0 is a non-trivial sum of dth powers in l since c ∈
∑

ld by assumption.

Lemma 4. Let d ≥ 2, and let A be an algebra over k in which 0 is a non-trivial
sum of dth powers of elements in A. Then the higher trace form ϕd(x) = trA/k(x

d)
of degree d is weakly isotropic.

This was proved in [9, Lemma 2.1] for central simple associative algebras over k
and in [15, 2.4] for non-associative algebras over k with scalar involution, both
times for d = 2. Note that for d odd, the trace form ϕd(x) = trA/k(x

d) of degree
d is always weakly isotropic for any algebra A over k. The proof of Lemma 4 is
trivial. The more interesting implication is of course the remaining one.

Proposition 2. Let A be any k-algebra with a scalar involution (e.g. a compo-
sition algebra), and let d ≥ 2. Then 0 is a non-trivial sum of dth powers in A if
and only if the higher trace form ϕd(x) = trA/k(x

d) of degree d is weakly isotropic.
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Proof. If ϕd is weakly isotropic then there are ai ∈ A not all zero such that
0 =

∑m
i=1 trA/k(a

d
i ) = ad

1 + ad
1 + · · · + ad

m + ad
m and thus 0 is a non-trivial sum of

dth powers in A. �

For a central simple algebra A over a field k of characteristic not 2, 0 is a non-
trivial sum of squares if and only if the quadratic trace form ϕ2(x) = trA/k(x

2) is
weakly isotropic (Lewis [10, Theorem]). For d ≥ 2 we obtain:

Proposition 3. Let A be a central simple associative k-algebra, and let d ≥ 2.

(i) Let A be a division algebra over k and let k be formally real. Then 0 is
a non-trivial sum of dth powers in A if and only if the higher trace form
ϕd(x) = trA/k(x

d) of degree d is weakly isotropic.

(ii) If k is not formally real, then 0 is a non-trivial sum of dth powers in A and
the higher trace form ϕd(x) = trA/k(x

d) of degree d is weakly isotropic.

Proof. (i) The proof closely follows the one of [10, Theorem].

(ii) If k is not formally real, then −1 is a sum of dth powers in k [5, p. 84], and
thus 0 is a sum of dth powers already in k (and by Lemma 3, the higher trace
form ϕd(x) = trA/k(x

d) of degree d is weakly isotropic). �

Remark 5. Let k be a formally real field and A a central simple algebra over k
containing zero divisors. Then the higher trace form of A of degree d is isotropic,
but for d even, we do not know whether 0 is a non-trivial sum of dth powers in
A. However, Vaserstein [21] showed that for all sufficiently large n, every matrix
in Matn(Z) is the sum of at most 10 dth powers. Hence 0 is a non-trivial sum of
dth powers in A = Matn(D) for any division algebra D over k for all sufficiently
large n.

For a unital non-commutative ring or an R-algebra A, clearly
∑

Ad ⊂
∑

Ae for
each integer e dividing d. This implies that for a central simple division algebra
D over k the fact that 0 6∈

∑
D2 yields that

∑
D2 must be properly contained

in D for any even integer d. With the help if this easy observation we rephrase
some examples from [9]:

Example 1. (i) Let k be a formally real field (e.g. k = Q). Put K = k(x1, . . . , xn,
y1, . . . , yn) and D = (x1, y1)K⊗· · ·⊗(xn, yn)K . Then D is a central simple algebra
over K without zero divisors and 0 6∈

∑
D2 [9, 2.5], thus

∑
Dd is a proper subset

of D for any even integer d. Hence the absolutely indecomposable higher trace
form ϕd(x) = trD/k(x

d) of degree d is strongly anisotropic for even d. In particular,

consider the function field of genus zero K0 = k(x, t)(
√

at2 + b) of the projective
curve associated with a quaternion division algebra (a, b)K over K = k(x). Put
D = (x, t)k(x,t), then D is a quaternion division algebra over k(x, t) which splits
under the quadratic field extension K0 of k(x, t). Thus the absolutely indecompos-
able strongly anisotropic higher trace form ϕd of degree d on D becomes isotropic
over K0. (For a central simple algebra A over k containing zero divisors the higher
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trace form ϕd(a) = trA/k(a
d) on A of degree d is isotropic for any d ≥ 2.) It is an

example of a strongly anisotropic absolutely indecomposable form of even degree,
which becomes isotropic under a suitable quadratic field extension.

(ii) Let k be a formally real field, s an integer, and E = UD(k, 2s) the universal
division algebra of degree 2s over k. Then 0 6∈

∑
E2 [9, 2.6], hence

∑
Ed is

a proper subset of E for any even integer d and the absolutely indecomposable
higher trace form ϕd(x) = trE/k(x

d) of degree d is strongly anisotropic for every
even integer d. For d even, the higher u-invariant u(d, k) = ∞ if k is formally
real. For each integer m this gives an example of an anisotropic form of degree d
and dimension m22s, which decomposes into absolutely indecomposable forms of
dimension 22s.
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