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Abstract. Let S be a simply connected orthogonal polygon in the
plane, and let T be a horizontal (or vertical) segment such that T ′ ∩ S
is connected for every translate T ′ of T . If every two points of S see via
staircase paths a common translate of T , then there is a translate of T
seen via staircase paths by every point of S. That is, some translate
of T is a staircase illuminator for S. Clearly the number two is best
possible. The result fails without the requirement that each set T ′ ∩ S
be connected.
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1. Introduction

We begin with some definitions from [7]. For points x and y in the plane, [x, y]
will denote the corresponding line segment. Let S be a nonempty subset of the
plane. Set S is called an orthogonal polygon (rectilinear polygon) if and only if S is
a connected union of finitely many convex polygons (possibly degenerate) whose
edges are parallel to the coordinate axes. Let λ denote a simple polygonal path in
the plane. Path λ is an orthogonal path if and only if its edges [vi−1, vi], 1 ≤ i ≤ n,
are parallel to the coordinate axes. The orthogonal path λ is called an x− y path
(or a y − x path) if and only if λ lies in S and contains points x and y; λ is an
x − y geodesic if and only if λ is an x − y path of minimal length in S. (Clearly
an x − y geodesic need not be unique.) Subset S ′ of S is geodesically convex if
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and only if for each pair of points x, y in S ′, S ′ contains every x − y geodesic in
S. Set S ′ is horizontally convex if and only if for each pair x, y in S ′ with [x, y]
horizontal, it follows that [x, y] ⊆ S ′. Vertically convex is defined analogously.
Finally, S ′ is orthogonally convex if and only if S ′ is both horizontally convex and
vertically convex.

The path λ is a staircase path if and only if the associated vectors [vi−1, vi]
alternate in direction. That is, for an appropriate labeling, for i odd the vectors
−−−→vi−1vi have the same horizontal direction, and for i even the vectors −−−→vi−1vi have
the same vertical direction. We say that point vi is north, south, east, or west
of vi−1 according to the direction of vector −−−→vi−1vi. Similarly, we use the terms
north, south, east, west, northeast, northwest, southeast, southwest to describe
the relative position of points. For points x and y in set S, we say x sees y (x is
visible from y) via staircase paths if and only if there is a staircase path in S which
contains both x and y. For set T in the plane with T ∩S 6= φ and point x in S, x
sees T via staircase paths (T illumines x via staircase paths) if and only if x sees
via staircase paths in S at least one point of T . Set T is a staircase illuminator
for set S if and only if T illumines via staircase paths every point of S. Finally,
set S is starshaped via staircase paths if and only if for some point p in S, p sees
via staircase paths each point of S.

Many results in convexity that involve the usual idea of visibility via straight
line segments have interesting analogues that use the notion of visibility via stair-
case paths. (See [15], [2], [3], [6], [8].) For instance, the familiar Krasnosel’skij
theorem [12] in the plane states that for S nonempty and compact in R2, S is
starshaped via segments if and only if every three points of S are visible (via
segments in S) from a common point. In the staircase analogue [3], for S a simply
connected orthogonal polygon in the plane, S is starshaped via staircase paths
if and only if every two points of S are visible (via staircase paths in S) from a
common point. Notice that in the staircase version, the Helly number three is
reduced to two.

In this paper, we consider a variation of the starshaped set problem. However,
instead of showing that a set S is starshaped, the idea is to show that S has
a convex illuminator. Some related results using segment visibility appear in a
paper by Bezdek, Bezdek, and Bisztriczky [1]. Among their results is the following
theorem: For S a smooth domain in R2, if every three points of S are illumined
by some translate in S of segment T , then S contains an illuminator which is a
translate of T . Analogues are established in [4] for S compact in R2, when every
three points of S are illumined by a translate of compact convex set T , and in
[5] for S a finite union of boxes in Rd, when every two boundary points of S are
illumined by a translate of box T . Here we ask if a corresponding result holds for
orthogonal polygons, using visibility via staircase paths rather than visibility via
segments.

Concerning notation, throughout the paper, int S, cl S, and bdry S will denote
the interior, the closure, and the boundary, respectively, for set S. For points x and
y, dist(x, y) will be the distance from x to y. If λ is an ordered path containing x
and y, λ(x, y) will represent a subpath of λ from x to y. When x and y are distinct,
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L(x, y) will denote their corresponding line. The reader may refer to Valentine
[16], to Lay [13], to Danzer, Grünbaum, Klee [9], and to Eckhoff [10] for discussions
concerning Helly-type theorems, visibility via segments, and starshaped sets.

2. The results

We will establish the following theorem.

Theorem 1. Let S be a simply connected orthogonal polygon in the plane, and
let T be a horizontal (or vertical) segment such that T ′ ∩ S is connected for every
translate T ′ of T . If every two points of S see via staircase paths a common
translate of T , then there is a translate of T seen via staircase paths by every
point of S. That is, some translate of T is a staircase illuminator for S. Clearly
the number two is best possible.

Proof. If T is a singleton set, then the result is an immediate consequence of
[3, Corollary 1]. Hence we assume that T is nondegenerate. For convenience of
notation and without loss of generality, throughout the proof we assume that T
is a closed segment with one endpoint at the origin and the other endpoint on the
positive x axis. To each point x in S, associate sets

Vx = {y : x sees y via staircase paths}, and

Ax = {y : x sees via staircase paths some point of y + T}.

We will show that each set Ax is simply connected and compact, every two of
these sets have a path connected intersection, and every three of these sets have a
nonempty intersection. Then the result will follow from this version of Molnár’s
theorem [14] by Karimov, Repovš, and Željko [11, Theorem 2]: Let F be a fam-
ily of simply connected compact sets in the plane. If every two members of F
have a path connected intersection and every three members have a nonempty
intersection, then ∩{F : F inF} 6= φ.

We will also make use of the following result from [7, Theorem 1]: If S is a
simply connected orthogonal polygon in the plane, then for each point t of S, the
corresponding set Vt is geodesically convex.

To make the argument easier to follow, we separate it into three parts.

Part 1. We show that each set Ax is compact and simply connected. We begin
with the observation that each set Ax is an orthogonal polygon. It is easy to show
that Ax = Vx − T . By an argument like the one in [2, Lemma 2], set Vx is a
finite (and connected) union of rectangular regions, hence an orthogonal polygon.
Since T is a closed segment, Ax = Vx− T is an orthogonal polygon as well, hence
compact and connected.

Next we prove that each set Ax is simply connected. Let λ denote a simple
closed curve in Ax, and let p be a point in the (open) bounded region determined
by λ. We will show that x sees via staircase paths a point of p + T and hence
p ∈ Ax. We consider cases according to the relative positions of x and p.

Case 1. In case x is west of (possibly on) the vertical line at p, without loss of
generality assume that x is southwest of p. Select on λ points n and e, north and
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east of p, respectively, so that each point of λ(n, e) is northeast of p and so that
no point of λ(n, e)\{n, e} is north or east of p. Assume λ(n, e) is ordered from n
to e.

Point x sees via staircase paths some point of n + T . If such a staircase path
contains a point q east of p, then it is easy to show that q ∈ p + T . Hence x sees
via staircase paths a point of p + T , the desired result. Otherwise, every staircase
path in S from x to n + T must contain a point strictly west of p and a point
strictly north of p. �

The following proposition will be helpful:

Proposition 1. Let {z′m} be a sequence in λ(n, e), and assume that, for every
m, x sees a point of z′m + T via a staircase path which contains a point strictly
north (south) of p. If {z′m} converges to zo, then x sees a point of zo + T via a
staircase path which contains a point north (south) of p, possibly p itself.

Proof. Using an argument from [6, Lemma 1], the lines determined by edges of S
give rise to a collection of nondegenerate closed rectangular regions which share
no interior points. This allows us to establish an upper bound k for the number
of segments in our staircase paths. That is, if x sees y via such a path, then x sees
y via such a path consisting of at most k segments. Then a standard convergence
argument finishes the proof. �

Using Proposition 1, relative to our order on λ(n, e), we may choose the last point
zo on λ(n, e) such that x sees a point of zo + T via a path passing north of p.
(See Figure 1.) If zo = e, then such a path cannot contain a point strictly north
of p, so p itself lies on the path. Hence x sees via staircase paths a point of
p+T , the desired result. If zo 6= e, then examine λ(zo, e) ⊆ λ(n, e). For each w on
λ(zo, e)\{zo}, x sees via staircase paths a point of w+T , and no such path contains
a point north of p (or p itself). Hence each of these staircase paths contains a
point strictly south of p. Again by Proposition 1, x sees a point of zo + T via a
staircase path passing south of p (possibly through p).

We have the existence of some staircase path µ1 in S from x to a point z1 of
zo + T , with µ1 passing north of p. Similarly, we have some staircase path µ2 in
S from x to a point z2 of zo + T , with µ2 passing south of p. Clearly p belongs
to the region R bounded by µ1 ∪ µ2 ∪ [z1, z2]. Since (zo + T ) ∩ S is connected,
[z1, z2] ⊆ S. Hence µ1∪µ2∪ [z1, z2] ⊆ S, and, since S is simply connected, R ⊆ S.
Moreover, curves µ1, µ2 and [z1, z2] are staircase paths, so by [6, Lemma 2], R is
orthogonally convex. We have x and p in the orthogonally convex subset R of S,
so x sees p via a staircase path in S. Again x sees via staircase paths a point of
p + T , finishing the argument in Case 1.

Case 2. In case x is east of the vertical line at p, without loss of generality
assume that x is southeast of p. Select on λ points n and w, north and west of p,
respectively, so that all points of λ(n, w) are northwest of p and so that no point
of λ(n, w)\{n, w} is north or west of p. Assume λ(n,w) is ordered from n to w.
Clearly x sees a point of n + T , and each associated staircase path passes east of
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p. If for each z on λ(n, w), no staircase from x to z + T contains a point west of
p, then x sees w +T via a path passing east of p. Hence x sees via staircase paths
some w′ on w + T where w′ is east of p. (Possibly w′ = p.) Clearly w′ ∈ p + T , so
x sees via staircase paths a point of p+T , the desired result. Otherwise, using an
analogue of Proposition 1 and the argument in Case 1, for some zo on λ(n, w), x
sees a point z1 of zo + T via a staircase path passing east of p, and x sees a point
z2 of zo + T via a staircase path passing west of p. As in Case 1, the associated
paths together with [z1, z2] determine an orthogonally convex subset of S, and x
sees p via staircase paths. Again x sees a point of p+T , completing the argument
in Case 2. We conclude that Ax is simply connected, finishing Part 1.

Part 2. We show that for each pair x, y in S, the associated intersection Ax ∩Ay

is path connected. We select points s1 and s2 in Ax ∩ Ay to find a path from s1

to s2 in Ax ∩Ay. Assume that x sees via staircase paths points a1 on s1 + T and
a2 on s2 + T . Similarly, assume y sees points b1 on s1 + T and b2 on s2 + T . Let
λ be an a1 − a2 geodesic in S, µ a b1 − b2 geodesic in S. By [7, Theorem 1], x
(respectively y) sees via staircase paths each point of λ (respectively µ).

For the moment, assume that the paths λ, µ meet, if at all, only at one or
both endpoints. Let G denote the region bounded by λ∪µ∪ [a1, b1]∪ [a2, b2]. The
following proposition will be helpful.

Proposition 2. The region G is horizontally convex.

Proof. Let L be a horizontal line meeting G, to show that L ∩ G is connected.
Suppose, on the contrary, that L ∩ G has two or more components, to obtain a
contradiction. Let [p1, p2], [q1, q2] be consecutive components of L∩G ⊆ S. Since
λ and µ are disjoint except possibly for endpoints, it is easy to see that p1 6= p2

and q1 6= q2. Assume that the points are ordered on L with p1 < p2 < q1 < q2.
Clearly (p2, q1)∩G = φ and pi, qi belong to λ∪µ, i = 1, 2. There are two cases to
consider.

Case 1. Consider the case in which one of the pairs p1, p2 or q1, q2 belongs to the
same curve λ or µ. Say p1, p2 belong to λ. Since [p1, p2] ⊆ G ⊆ S and λ is a
geodesic in S, [p1, p2] ⊆ λ.

If L is not the line of a1, a2 (nor the line of b1, b2), then λ contains a previous
edge to [p1, p2] and a successive edge to [p1, p2]. For convenience, label these
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edges [po, p1] and [p2, p3]. If these edges were to lie in opposite closed halfplanes
determined by L, then p1 and p2 could not be endpoints of a component of L∩G,
impossible. If these edges were to lie in the same closed halfplane determined
by L, observe that near [p1, p2], the associated horizontal segments from (po, p1)
to (p2, p3) also would lie in G: Otherwise, such segments would belong to the
unbounded region cl(R2\G) and again p1 and p2 could not be endpoints of a
component of L ∩G, impossible. But the existence in G of a horizontal segment
from (po, p1) to (p2, p3) would allow us to replace λ by a shorter orthogonal path
in S, contradicting the fact that λ is a geodesic.

The only remaining possibility is that L be the line of a1, a2 or of b1, b2, say
the former. The preceding argument yields L∩λ = [p1, p2]. However, this implies
that q1, q2 ∈ µ, and L∩ µ = [q1, q2]. But then a1 ∈ [p1, p2], b1 ∈ [q1, q2], and since
[a1, b1] ⊆ G, [p2, q1] ⊆ G, a contradiction. We conclude that the situation in Case
1 cannot occur.

Case 2. Assume that for each pair p1, p2 and q1, q2, one of the points belongs to
λ, the other to µ. There are two possibilities to consider.

If p1, q2 lie on the same curve, say λ, and p2, q1 are on µ, then we can replace
λ(p1, q2) by [p1, p2]∪µ(p2, q1)∪ [q1, q2]. (See Figure 2a.) Since λ and µ are disjoint
(except possibly for endpoints), the new curve would be shorter than λ(p1, q2),
impossible since λ is a geodesic. Thus this situation cannot occur.

The only other possibility is that p1, q1 belong to the same curve, say λ, while
p2, q2 are in µ. (See Figure 2b.) For an appropriate labeling of λ and µ, λ(p1, q1)
can be replaced by the shorter curve [p1, p2]∪µ(p2, q2)∪ [q2, q1], again impossible.
We have a contradiction, our original supposition is false, and L∩G is connected
for every horizontal line L. This finishes the proof of Proposition 2. �

. .. . . . . .

λ λ
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Figure 2a. Figure 2b.

Using Proposition 2, for L any horizontal line which meets λ, L ∩ λ ⊆ G ⊆ S.
Then since λ is a geodesic in S, L∩λ must be either a point or a segment in λ. A
parallel statement holds for µ. Notice that for L any horizontal line which meets
G, L meets λ ∪ µ. In fact, it is not hard to see that L meets both λ and µ: If, on
the contrary, L met (say) λ but not µ, then µ would be a positive distance from
L. For (infinitely many) horizontal lines L′ near L and meeting G, L′ ∩ µ = φ,
and L′ ∩G would be a (nondegenerate) segment with both endpoints in λ. Hence
L′ ∩ λ, would be a segment in λ, clearly impossible for orthogonal path λ.

Since we are assuming that λ meets µ, if at all, only at one or both endpoints,
using the comments above, without loss of generality we may assume that λ is
west of µ. That is, for L any horizontal line which meets G, points of L ∩ λ
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are west of points of L ∩ µ. Furthermore, if R is the smallest rectangular region
containing [a1, b1] ∪ [a2, b2], G ⊆ R, for otherwise, since λ is west of µ, we could
replace one of λ, µ by a shorter path in G, impossible.

We will show that λ ⊆ Ax ∩Ay. That is, for every point a on λ, both x and y
see via staircase paths some point of a + T . Since a ∈ Vx ∩ (a + T ), the result is
trivial for x, so we need only establish it for y. Select point c on (a+T )∩S as far
as possible from a. Since (a+T )∩S is connected, [a, c] ⊆ S. We will show that y
sees via staircase paths a point of [a, c]. For L a horizontal line at a, let b belong
to L ∩ µ 6= φ, where b is as close as possible to a. If a ≤ b ≤ c, then certainly y
sees point b of [a, c] ⊆ a + T , the desired result. Hence we restrict our attention
to the case in which a ≤ c < b.

We assert that there is in G a b1−b2 geodesic which contains c (and hence y sees
c via staircase paths). Note that since G is horizontally convex, [a, b] ⊆ G ⊆ S.
Since T is not a singleton set and a < b, a < c also. Moreover, dist(a, c) is the full
length of T , for otherwise we could have chosen c further from a.

Without loss of generality, assume that a1 is northwest of a2. By previous
comments, λ and hence point a lie in the rectangular region R, so a is southeast
of a1. Likewise, point b is in µ ⊆ R, and c is in [a, b] ⊆ G ⊆ R. Thus at least one of
b1 or b2 is east of the vertical line Mc at c. If b1 were strictly east of line Mc, then
(since a1 is northeast of a) dist(a, c) < dist(a1, b1) ≤ length of T , impossible since
dist(a, c) is the full length of T . Thus b1 is west of (possibly on) line Mc. Also, for
i = 1, 2, dist(ai, bi) ≤ length of T = dist(a, c), and since [a, b] ⊆ G ⊆ R, a2 must
lie strictly east of the vertical line at a and b2 must lie east of the vertical line at
b, hence strictly east of Mc. (See Figure 3.)

Select points p1 and p2 in Mc ∩ bdry G such that c ∈ [p1, p2] ⊆ G. Since all
points of [a1, b1] are west of line Mc, at least one of p1 or p2 is in λ∪ µ. There are
two cases to consider, determined by the positions of p1 and p2.

Case 1. In case p1 or p2 is in µ, without lost of generality assume that p1 ∈ µ(b1, b).
(See Figure 3.) We may replace µ(p1, b) by the geodesic [p1, c]∪ [c, b]. Clearly the
lengths of these two paths are equal. Then µ(b1, p1) ∪ [p1, c] ∪ [c, b] ∪ µ(b, b2) will
be a b1 − b2 geodesic in G ⊆ S and containing point c. By [7, Theorem 1], Vc is
geodesically convex. Thus y sees via staircase paths each point of this geodesic,
and hence y sees c via staircase paths, the desired result.

.
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Case 2. In case neither p1 nor p2 is in µ, by previous comments, we may assume
that p1 is in λ. If p2 were also in λ, then we could replace λ(p1, p2) by the
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strictly shorter path [p1, p2] in S, impossible since λ is a geodesic. (See Figure
4a.) Hence p2 6∈ λ, and for an appropriate labeling p2 ∈ (a2, b2). (See Figure 4b.)
However, since a2 is strictly east of the vertical line at a, path [p1, p2]∪[p2, a2] would
be strictly shorter than the geodesic λ(p1, a2). Again we have a contradiction.
We conclude that the situation in Case 2 cannot occur, and Case 1 must occur,
finishing this part of the argument.
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We have proved that both x and y see points of a + T for each a on λ, and hence
λ ≡ λ(a1, a2) ⊆ Ax ∩ Ay. Since x and y see via staircase paths points ai and bi,
respectively, on si + T , and si ≤ ai ≤ bi on si + T , it is clear that [si, ai] ⊆ Ax ∩
Ay, i = 1, 2. Thus Ax∩Ay contains the polygonal path [s1, a1]∪λ(a1, a2)∪ [a2, s2].

In case λ and µ meet at other points, we may write λ and µ as unions of consec-
utive subpaths λ1, . . . , λk and µ1, . . . , µk, respectively, such that for each i, either
λi = µi or λi and µi meet only in endpoints. By applying the argument above
to each appropriate pair λi, µi, then fitting together the corresponding paths, we
obtain a polygonal (orthogonal) path in Ax ∩ Ay from s1 to s2. Thus Ax ∩ Ay is
path connected, finishing Part 2.

For future reference, using the notation above, observe that with the possible
exception of points on [s1, a1]∪[a2, s2], all points of the selected path lie in Vx∪Vy ⊆
S. Moreover, a much easier version of the argument shows that set Ax∩S is path
connected as well.

Part 3. It remains to show that every three of the Ax sets intersect. For conve-
nience of notation, for 1 ≤ i ≤ 3, let Axi

= Ai and Vxi
= Vi denote any three of the

Ax and associated Vx sets, to show that A1∩A2∩A3 6= φ. Parts of the proof follow
arguments in [3, Theorem 1]. Choose aij in Ai ∩ Aj 6= φ, 1 ≤ i < j ≤ 3. Along
a12 + T , select points c1, c2 in V1, V2, respectively, such that dist(c1, c2) is as small
as possible. For future reference, notice that if c2 is west of c1, then c1 ∈ c2 + T
so c2 ∈ A1 and in fact [c2, c1] ⊆ A1. Since c2, c1 are in S ∩ (a12 + T ), [c2, c1] ⊆ S
as well, so [c2, c1] ⊆ A1 ∩ S. Similarly, if c1 is west of c2, then [c1, c2] ⊆ A2 ∩ S.
Using a parallel argument, along a13 + T select c

′
1, c

′
3 in V1, V3, respectively, with

dist(c
′
1 , c

′
3) minimal. If c

′
3 is west of c

′
1 , then [c

′
3 , c

′
1 ] ⊆ A1 ∩ S, and if c

′
1 is west of

c
′
3 , then [c

′
1 , c

′
3 ] ⊆ A3 ∩ S. (Figure 5 may help the reader follow the argument.)

We may choose a geodesic λ
′′
2 in S from c2 to a point b2 of (a23 + T ) ∩ V2. By

[7, Theorem 1], V2 is geodesically convex and hence λ
′′
2 ⊆ V2. Similarly, choose

a geodesic λ
′′
3 in S from c

′
3 to a point b3 of (a23 + T ) ∩ V3. Then λ

′′
3 ⊆ V3. If
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c2 ∈ a13 + T , then a13 ∈ A1 ∩ A2 ∩ A3, finishing the argument. Similarly, if
c

′
3 ∈ a12 + T , then a12 ∈ A1 ∩ A2 ∩ A3. Hence we assume that neither situation

occurs. Then certainly c2 6= c
′
3 . Without loss of generality, we assume that λ

′′
2

meets λ
′′
3 , if at all, only in a common last endpoint. (Otherwise, we could delete

appropriate parts of λ
′′
2 , λ

′′
3 to obtain new paths ending at a common point of

V2 ∩ V3 ⊆ A2 ∩ A3 and having the required property.) Also, without loss of
generality we assume that λ

′′
2 meets a23 + T only at b2 and that λ

′′
3 meets a23 + T

only at b3, with b2 west of b3 on a23 + T . Then it is easy to see that b3 ∈ b2 + T
so b2 ∈ A3 and in fact [b2, b3] ⊆ A3. Also, b2 and b3 are in (a23 + T ) ∩ S, so
[b2, b3] ⊆ S. Thus [b2, b3] ⊆ A3 ∩ S.

Clearly λ
′′
2 meets λ

′′
3 ∪ [b3, b2] only in b2. Notice that each of these paths is simple,

with λ
′′
2 ⊆ V2 ⊆ A2 ∩ S, λ

′′
3 ∪ [b3, b2] ⊆ A3 ∩ S.

Define λ
′
2 = [c1, c2] ∪ λ

′′
2 and λ

′
3 = [c

′
1 , c

′
3 ] ∪ λ′′

3 ∪ [b3, b2]. Choose point p1 on
λ

′
2 ∩ A1 6= φ closest to b2 (relative to the order on λ

′
2). By previous comments, if

c2 is west of c1, then [c2, c1] ⊆ A1 ∩ S, and in this case p1 ∈ λ′′
2 ⊆ A2 ∩ S. If c2 is

east of c1, then p1 either is west of c2 on [c1, c2] ⊆ A2 ∩ S or is on λ′′
2. Similarly,

choose point p
′
1 on λ

′
3 ∩A1 6= φ closest to b2 (relative to the order on λ

′
3). Notice

that p
′
1 either is west of c

′
3 on [c

′
1 , c

′
3 ] ⊆ A3 ∩ S or is on λ′′

3 ∪ [b3, b2] ⊆ A3 ∩ S.
Define λ2 = λ

′
2(p1, b2), λ3 = λ

′
3(p

′
1 , b2). By earlier comments, λ2 ⊆ A2∩S, λ3 ⊆

A3 ∩ S. Clearly λ2 is a simple curve. Notice that if λ3 fails to be simple, then
p

′
1 must be west of c

′
3 , with [p

′
1 , c

′
3 ] ∩ [b2, b3] 6= φ. If a13 is west of a23, then

for this intersection to be nonempty, b2 must belong to [a13, c
′
3 ] ⊆ a13 + T , and

a13 ∈ A1 ∩ A2 ∩ A3, finishing the argument. Similarly, if a23 is west of a13, then
for this intersection to be nonempty, b3 must be east of p

′
1 , hence east of c

′
1. But

then c
′
1 ∈ [a23, b3] ⊆ a23 + T , so a23 ∈ A1 ∩A2 ∩A3, again finishing the argument.

Thus we may assume that curve λ3 is simple as well.
Furthermore, we assert that λ2 meets λ3 only at b2: Since λ

′
2 meets λ

′
3 ∪ [b3, b2]

only at b2, if the assertion fails, then p1 must be west of c2 and p
′
1 must be west

of c
′
3 , with [p1, c2] ∩ [p

′
1 , c

′
3 ] 6= φ. Since c2 6= c

′
3 , without loss of generality assume

c2 is west of c
′
3 . Since [p1, c2] ∩ [p

′
1 , c

′
3 ] 6= φ, then p

′
1 is west of c2. However, then

c2 ∈ [p
′
1 , c

′
3 ] ⊆ a13 + T , contradicting an early assumption. Thus the assertion

holds, and λ2 ∩ λ3 = {b2}.
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Finally, we define λ1 to be a geodesic in A1 ∩ S from p1 to p
′
1 . By our choice

of p1 and p
′
1 , λ1 ∩ λ2 = {p1} and λ1 ∩ λ3 = {p ′

1}. Moreover, λ1 is simple. Let
R denote the region bounded by λ1 ∪ λ2 ∪ λ3. By previous comments, bdry R =
λ1 ∪ λ2 ∪ λ3 ⊆ (A1 ∪ A2 ∪ A3) ∩ S and hence R ⊆ S.

We will show that R ⊆ A1∪A2∪A3, and it suffices to show that int R ⊆ A1∪
A2 ∪ A3. In bdry R, choose points n, s, e, w north, south, east, west, respectively,
of p so that the union (n, p]∪ (s, p]∪ (e, p]∪ (w, p] is interior to R. At least two of
these points belong to the same set Ai. Since the argument does not depend on
the particular selection of λ1, λ2, λ3 above, for convenience of notation, we label
this set A1. We consider cases according to the points of {n, s, e, w} involved.

Case 1. Assume that w belongs to A1. Then x1 sees via staircase paths a point q
of w + T . If q is east of p, then q ∈ p + T, x sees point q of p + T , and p ∈ A1, the
desired result. Hence suppose that q is west of p.

In case e belongs to A1, then x1 sees via staircase paths some point r on e+T ,
and certainly r is east of p. Then [q, r] ⊆ [w, e] ∪ [e, r] ⊆ S. By [7, Theorem 1],
x1 sees via staircase paths each point of the q − r geodesic [q, r]. Hence x1 sees p
via staircase paths, and p ∈ V1 ⊆ A1, again the desired result.

In case n or s belongs to A1, without loss of generality assume n ∈ A1. Then
x1 sees via staircase paths some point t of n + T , and t is east of n. The staircase
path [q, p] ∪ [p, n] ∪ [n, t] is a q − t geodesic in S and hence lies in V1. Again x1

sees point p via staircase paths, finishing Case 1.

Case 2. If w /∈ A1, then without loss of generality assume that n ∈ A1 and that
one of s, e belongs to A1.

If n, s are in A1, assume that x1 sees via staircase paths point t on n + T and
point u on s + T . Every t − u geodesic lies in the rectangular region containing
[n, t] ∪ [s, u], and so each t− u geodesic meets p + T . Each of these geodesics lies
in V1. Hence x1 sees via staircase paths a point of p + T , and p ∈ A1 as desired.

If n, e are in A1, assume that x1 sees via staircase paths point t on n + T and
point r on e + T . Assume r /∈ p + T for otherwise the proof is immediate. We
consider the position of x1: If x1 is east of the vertical line at t, then it is easy to
show that x1 sees via staircase paths a point of p + T . If x1 is west of this line,
by taking cases according to whether x1 is north or south of line L(p, t), again it
is not hard to show that x1 sees via staircase paths a point of p + T . Therefore
p ∈ A1, finishing Case 2.

An identical argument holds if two of n, s, e, w belong to A2 or A3, so we
conclude that R ⊆ A1 ∪ A2 ∪ A3.

We will show that A1 ∩R is a simply connected orthogonal polygon. Observe
that both A1 and R are simply connected orthogonal polygons, so it suffices to
show that A1 ∩ R is connected. For each point y in A1 ∩ R, there is a staircase
path µy in S from x1 to a point y + t of y +T . Then µy ⊆ A1∩S. Also, by earlier
arguments, [y, y + t] ⊆ A1 ∩ S, so µy ∪ [y, y + t] is an (orthogonal) path in A1 ∩ S
from x1 to y.

By earlier remarks, this path cannot meet λ2 ∪ λ3\{p1, p
′
1}. Either the path

is in R or the path meets λ1 whenever it leaves or enters R. If x1 /∈ R, then for
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each y in A1 ∩R, (µy ∩R) ∪ λ1 is connected, and so

∪{(µy ∩R) ∪ λ1 : y in A1 ∩R} ≡ A1 ∩R

is connected, too. If x1 ∈ R, then for each y in A1 ∩R, µy ∩R is connected when
µy is disjoint from λ1 and (µy ∩ R) ∪ λ1 is connected when µy meets λ1. Since
λ1 ⊆ A1 ∩R, it is easy to see that

∪{(µy ∩R) ∪ λ1 : y in A1 ∩R} ≡ A1 ∩R

again is connected. We conclude that A1 ∩ R is a simply connected orthogonal
polygon.

Next we will show that bdry(R ∩A1) contains an orthogonal path in A2 ∪A3

from p1 to p
′
1: If R∩A1 = λ1, then int R ⊆ A2 ∪A3, λ1 ⊆ cl(A2 ∪A3) = A2 ∪A3,

and λ1 serves as the required path. Otherwise, select path δ from p1 to p
′
1, δ ⊆

bdry(R∩A1) ⊆ A1, so that R∩A1 is bounded by δ ∪ λ1. Choose δ so that δ ∩ λ1

is minimal for all such paths. By our choice of p1 and p
′
1, it is easy to see that δ

is disjoint from λ2 ∪ λ3\{p1, p
′
1}. Clearly δ ⊆ A2 ∪ A2 ∪ A3 since there are points

of (intR) ∩ (A2 ∪ A3) near each point of δ. Hence δ serves as the required path.
Observe that δ is a connected subset of A1 ∩ (A2 ∪A3). Since p1 ∈ δ ∩A2 and

p
′
1 ∈ δ ∩A3, by properties of connected sets, δ ∩A2 ∩A3 6= φ. Thus δ ∩A2 ∩A3 ⊆

A1 ∩ A2 ∩ A3 6= φ, which is what we wanted to establish. This finishes Part 3.

At last we may apply a version of Molnár’s theorem by Karimov, Repovš, and
Željko [11, Theorem 2] to conclude that ∩{Ax : x in S} 6= φ. For zo in this
intersection, every point of S sees via staircase paths in S a point of zo +T . That
is, zo + T satisfies the theorem.

Clearly the number two in the hypothesis is best possible.
In conclusion, it is interesting to observe that the result fails without the

requirement that T
′∩S be connected for translates T

′
of T . Consider the following

example.

Example 1. Let S and T be the sets in Figure 6. Every two and in fact every
three points of S see via staircase paths a common translate of T . (Consider
translates at a, x, y, z.) However, no such translate exists for points a, b, c, d of S.

.

.

.
.

.

.

.

T S

a

c

x y

b

d
z

Figure 6.
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