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Abstract. For a given convex body K in R3 with C2 boundary, let P i
n

be an inscribed polytope of maximal volume with at most n vertices,
and let P c

(n) be a circumscribed polytope of minimal volume with at

most n faces. P. M. Gruber [12] proved that the typical faces of P c
(n)

are asymptotically close to regular hexagons in a suitable sense if the
Gauß-Kronecker curvature is positive on ∂K. In this paper we extend
this result to the case if there is no restriction on the Gauß-Kronecker
curvature, moreover we prove that the typical faces of P i

n are asymptot-
ically close to regular triangles in a suitable sense. In addition writing
P(n) and Pn to denote the polytopes with at most n faces or n vertices,
respectively, that minimize the symmetric difference metric from K, we
prove the analogous statements about P(n) and Pn.
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1. Introduction

First we introduce some notions that will be used thorough the paper. For func-
tions f and g of positive integers, we write f(n) = O(g(n)) if there exists an
absolute constant c such that |f(n)| ≤ c · g(n) for all n ≥ 1, and f(n) = o(g(n))

if limn→∞
f(n)
g(n)

= 0. In addition we write f(n) ∼ g(n) if limn→∞
f(n)
g(n)

= 1.

For a compact convex set C in R3, we write aff C to denote its affine hull,
V (C) to denote its volume (Lebesgue measure), ∂C to denote its boundary and
int C to denote its interior. We call C a convex body if int C 6= ∅, and a convex
disc if aff C is a plane. If C is a convex disc then we write |C| to denote its area,
and relint C to denote its relative interior. Next let 〈·, ·〉 denote the scalar product
in R3, let ‖x‖ =

√
〈x, x〉 =

√
x2 be the Euclidean norm of x ∈ R3. We write o

to denote the origin, and B2 and B3 to denote the Euclidean unit disc in R2 and
unit ball in R3, respectively, centred at o; moreover S2 to denote the boundary
of B3. For any objects X1, . . . , Xk, we write [X1, . . . , Xk] to denote their convex
hull. Concerning additional notions for convex bodies and polytopes in this paper,
consult the beautiful monographs R. Schneider [20] and P. M. Gruber [15].

In this paper the distance of two convex bodies K and M in R3 is mostly
measured by their symmetric difference metric δS(K, M); that is, the volume of
the symmetric difference K∆M of K and M .

Next we fix a convex body K in R3 with C2 boundary for the rest of the sec-
tion. We always integrate on ∂K with respect to the two-dimensional Hausdorff-
measure. For any x ∈ ∂K, we write Qx to denote the second fundamental form
at x, hence Qx is positive semi definite. Its two eigenvalues are the principal
curvatures at x, whose product (the determinant of Qx) is the Gauß-Kronecker
curvature κ(x) at x. Readily κ(x) ≥ 0 for any x ∈ ∂K.

We define Pn to be a polytope with at most n vertices such that δS(K, Pn)
is minimal, and P(n) to be a polytope with at most n faces such that δS(K, P(n))
is minimal. In addition let P i

n be a polytope inscribed into K with at most n
vertices and of maximal volume, and let P c

(n) be a polytope circumscribed around
K with at most n faces and of minimal volume. A task initiated by L. Fejes Tóth
[5] led to the asymptotic formulae

δS(K, P i
n) ∼ 1

4
√

3

(∫
∂K

κ(x)1/4dx

)2

· 1

n
; (1)

δS(K, P c
(n)) ∼ 5

36
√

3

(∫
∂K

κ(x)1/4dx

)2

· 1

n
; (2)

δS(K, Pn) ∼
(

1

12
√

3
− 1

16π

)(∫
∂K

κ(x)1/4dx

)2

· 1

n
; (3)

δS(K, P(n)) ∼
(

5

36
√

3
− 1

8π

)(∫
∂K

κ(x)1/4dx

)2

· 1

n
. (4)

Under the assumption that κ(x) > 0 for all x ∈ ∂K, (1) is due to P. M. Gruber
[8], (2) is due to P. M. Gruber [9], moreover (3) and (4) follow from combining
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M. Ludwig [17] and K. Böröczky, Jr. and M. Ludwig [3]. The cases when possibly
κ(x) = 0 are due to K. Böröczky, Jr. [2].

The goal of this paper is to continue a task initiated by P. M. Gruber [11] and
[12]; namely, to describe the typical faces of the extremal polytopes above. For
ε > 0 and convex discs C and M , we say that C is ε-close to M if there exist
x ∈ C and y ∈ M with

(1 + ε)−1 · (C − x) ⊂ M − y ⊂ (1 + ε) · (C − x).

For any x ∈ ∂K, we write u(x) to denote the exterior unit normal to ∂K at x. Let
%(x) ≥ 0 be a continuous function on ∂K such that %(x) > 0 if κ(x) > 0, and let
Mn be a sequence of polytopes such that o ∈ int Mn for each n, and the number
f(n) of faces of Mn tends to infinity with n. A face F of Mn is called proper if
there exits a unique point xF ∈ ∂K such that u(xF ) is an exterior normal also to
F , and in addition QxF

is positive definite. Given k ≥ 3, we say that the typical
faces of Mn are asymptotically regular k-gons with respect to the density function
% if the following properties hold. There exists ν(n) > 0 with limn→∞ ν(n) = 0
such that for all but ν(n) percent of the faces F of Mn, F is a proper k-gon, and
F is ν(n)-close to some k-gon which is regular with respect to QxF

and is of area∫
∂K %(x)dx

f(n)·%(xF )
.

In Theorems 1.1 and 1.2, K is any convex body in R3 with C2 boundary,
and P(n), P c

(n), Pn, P i
n are defined as above. If κ(x) > 0 for all x ∈ ∂K then

Theorem 1.1 for P c
(n) is due to P. M. Gruber [12].

Theorem 1.1. The typical faces of both P c
(n) and P(n) are asymptotically regular

hexagons with respect to the density function κ(x)1/4.

Remark. Both P c
(n) and P(n) have exactly n faces. In addition each face of P c

(n)

touches K in its centroid, and if F is a face of P(n) then |F ∩K| = 1
2
|F |.

Theorem 1.2. The typical faces of both P i
n and Pn are asymptotically regular

triangles with respect to the density function κ(x)1/4.

Remark. Both P i
n and Pn have 2n − o(n) faces, and each vertex of P i

n lies in
∂K. In addition there exists µ(n) > 0 with limn→∞ µ(n) = 0 such that for all but

µ(n) percent of the faces F of Pn, we have 1−µ(n)
2

|F | < |F ∩K| < 1+µ(n)
2

|F |.
Let us discuss some other results that follow from the methods of the proofs

of Theorems 1.1 and 1.2. Given a convex body C in R3, its support function hC

is defined by hC(u) = maxx∈C〈x, u〉 for u ∈ R3. If M is another convex body then
the L1-metric of C and M is

δ1(C, M) =

∫
S2

|hC(u)− hM(u)| du.

In particular if M ⊂ C then δ1(C, M) is proportional to the difference of the mean
widths of C and M . The paper S. Glasauer and P. M. Gruber [6] introduced an
ingenious method to translate a result about polytopal approximation with respect



524 K. J. Böröczky et al.: Typical Faces of Best Approximating Three-polytopes

to δS into a “dual” result with respect to δ1. The paper [6] discussed only the
case when κ(x) > 0 for all x ∈ ∂K (see also M. Ludwig [17]), but this restriction
is not necessary (see K. Böröczky, Jr. [2]). During the argument one takes the
dual of some polytope. Therefore it is not enough to know the shape of a typical
face but also its position with respect to ∂K in the case of volume approximation
(see the remarks above). In summary the analogues of Theorems 1.1 and 1.2 also
hold if the extremal polytopes were not defined in terms of δS but in terms of δ1,
and the only difference is that the density function is κ(x)3/4 in the case of δ1.
Actually if κ(x) > 0 for all x ∈ ∂K then the statement about inscribed polytopes
and the L1-metric is due to P. M. Gruber [12].

Finally the Hausdorff metric δH(C, M) of two convex bodies C and M is the
minimal d such that any point of C is of distance at most d from M , and any
point of M is of distance at most d from C. Then the analogues of Theorems 1.1
and 1.2 also hold if the extremal polytopes were not defined in terms of δS but in
terms of δH , and the only difference is that the density function is κ(x)1/2 in the
case of δH . If κ(x) > 0 for all x ∈ ∂K then all the statements about the Hausdorff
metric are due to P. M. Gruber [11].

Next we discuss uniform distribution of the faces of the extremal polytopes.
We may assume that o ∈ int K, and we write r∂K to denote radial projection onto
∂K. Let Mn be the extremal polytope with n vertices or n faces in any of the
extremal problems above, let Fn denote the family of faces of Mn, and let %(x) be
the corresponding density function on ∂K. We say that the radial projection of
the faces of Mn are uniformly distributed on ∂K with respect to %(x) if for any
Jordan measurable X ⊂ ∂K, we have∫

X
%(x) dx∫

∂K
%(x) dx

= lim
n→∞

#{F ∈ Fn : r∂K(F ) ⊂ X}
#Fn

(5)

= lim
n→∞

#{F ∈ Fn : r∂K(F ) ∩X 6= ∅}
#Fn

.

This formula (in an analogous form) was proved first by S. Glasauer and R. Schnei-
der [7] if the metric is δH and κ(x) > 0 for all x ∈ ∂K. The cases if the metric is
δS or δ1 and κ(x) > 0 for all x ∈ ∂K are due to S. Glasauer and P. M. Gruber [6].
Finally the restriction that κ(x) > 0 for all x ∈ ∂K was removed by K. Böröczky,
Jr. [2]. We note that replacing Fn in (5) by the family Vn of the vertices of Mn,
the resulting formula holds in all cases, as well.

Let us discuss the proofs of Theorems 1.1 and 1.2. Applying the method
developed by P. M. Gruber [8] and [9], the proofs of the asymptotic formulae (1)
to (4) are based on the moment theorem of L. Fejes Tóth [5] and its variants.
Therefore stability versions of these statements lead to information on the typical
faces of the extremal polytopes. For P c

(n) the original moment theorem of L. Fejes

Tóth [5] forms the core of the proof. In this case P. M. Gruber [12] and G. Fejes
Tóth [4] provided the necessary stability versions (see Section 3.1). Concerning
the variants of the moment theorem used for P i

n, Pn and P(n), the stability versions
are proved in Section 3. We note that the error estimates are of optimal order in
all stability statements in Section 3.
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For P i
n and Pn the proof of Theorem 1.2 is not substantially simpler if we

assume that the Gauß-Kronecker curvature is positive everywhere on ∂K. The
reason is that one only deals with triangular faces. However in the case of P(n)

and P c
(n) it is essential that the average number of sides of the “typical faces” is

at most six. If the Gauß-Kronecker curvature is positive then one can simply use
that the statement holds for all faces of a three-polytope. Otherwise one needs a
more careful approach. More precisely if a planar polygon is tiled by small enough
polygons then the average number of sides of the tiles is at most six according to
Lemma 4.1.

Detailed proof of the theorems is only presented in the case of P(n). For P c
(n),

P i
n and Pn, we only sketch the necessary changes in the argument.

2. A transfer lemma

As usual in polytopal approximation, we plan to transfer the original problem in
R3 into a planar problem where certain integral expressions based on the second
moment are investigated. A useful tool is the Taylor formula that we use in the
following form: Let f be a convex C2 function on a convex disc C̃ ⊂ R2 satisfying
o ∈ relint C̃. For y ∈ C̃, we write ly to denote the linear form representing the
derivative of f at y, and qy to denote the quadratic form representing the second

derivative of f at y. Now if a, y ∈ C̃ then there exists t ∈ (0, 1) satisfying

f(y) = f(a) + la(y − a) + 1
2
qa+t (y−a)(y − a). (6)

We write pR2 to denote orthogonal projection into R2. Let C and C ′ be convex
discs with C ′ ⊂ relint C and C ⊂ relint C̃. In addition let P be a polytope with
C̃ ⊂ pR2(P ), and let ϕ be the convex piecewise linear function defined on C whose
graph is part of ∂P . We write F1, . . . , Fk to denote the faces of P whose relative
interiors intersect the graph of ϕ above C, and assume that relint Fi intersects the
graph of ϕ above C ′ if and only if i ≤ k′. Moreover we define

Πi = C ∩ pR2(Fi), i = 1, . . . , k.

We also assume that for any Fi, i = 1, . . . , k, there exists an ai ∈ C̃ such that
the exterior unit normal to Fi coincides with the exterior unit normal to the
graph of f at (ai, f(ai)). In particular aff Fi is the graph of the function ϕi(y) =
f(ai) + lai

(y− ai) + αi of y ∈ R2 for some αi ∈ R. In addition the Taylor formula

(6) yields the existence of a continuous function gi(y − ai) of y ∈ C̃ such that

f(y) = f(ai) + lai
(y − ai) + gi(y − ai), and for any y ∈ C̃ there exists z ∈ C̃ with

gi(y − ai) = 1
2
qz(y − ai). We observe that

gi(y − ai)− αi ≤ gj(y − aj)− αj for y ∈ Πi, i, j = 1, . . . , k. (7)

Moreover the αi satisfy the following conditions.

If K ⊂ P then αi ≤ 0 for i = 1, . . . , k, (8)

if P ⊂ K then gai
(y − ai) ≤ αi for i = 1, . . . , k and y ∈ Πi. (9)
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Let us assume that lo = 0 and the graph of f is part of the boundary of a C2

convex body K. In particular the second fundamental form is

Qx = q0 at x = (o, f(o)) ∈ ∂K,

and we also assume that Qx is positive definite. If u(x) = (o,−1) is the unit
exterior normal to ∂K at x, moreover xi = (ai, f(ai)) ∈ ∂K and zi = (ai, ϕi(ai)) ∈
aff Fi for i = 1, . . . , k then

αi = 〈u(x), xi − zi〉, i = 1, . . . , k. (10)

Our goal is to investigate Ω = {(1− t)f(y) + tϕ(y) : y ∈ C and t ∈ [0, 1]}, which
is the part of K∆P near C, and satisfies

V (Ω) =
k∑

i=1

∫
Πi

|gi(y − ai)− αi| dy. (11)

Lemma 2.1. Let ε ∈ (0, 2−22). Using the notation as above, let α′i = αi if αi ≤ 0,
and let αi ≤ α′i ≤ (1 + ε)αi if αi > 0, i = 1, . . . , k. In addition we assume that

(1 + ε)−1 Qx ≤ qy ≤ (1 + ε) Qx for any y ∈ C̃,

moreover if y ∈ C and gi(y − ai) ≤ αi for i ≤ k′ then y ∈ relint C. Then

V (Ω) ≥ (1− 221ε) ·
k′∑

i=1

∫
Πi

|1
2
Qx(y − ai)− α′i| dy.

Proof. We may assume that Qx(z) = 2〈z, z〉 = 2z2. It follows by the Taylor
formula (6) that for any y ∈ C and i = 1, . . . , k, we have

(1 + ε)−1 (y − ai)
2 ≤ gi(y − ai) ≤ (1 + ε) (y − ai)

2.

For i = 1, . . . , k′, if αi ≤ 0 then we define Di = ∅, and if αi > 0 then we define
ri =

√
αi and

Di =
{
y ∈ R2 : gi(y − ai) ≤ αi

2

}
.

The conditions in the Lemma yield that if αi > 0 then

ai + ri

2
B2 ⊂ Di ⊂ relint C. (12)

In addition let
C∗ = ∪k′

i=1 (Πi ∪Di) ,

and for any i = 1, . . . , k′, let

Ωi = {y ∈ C∗ : ∀j = 1, . . . , k′, gi(y − ai)− αi ≤ gj(y − aj)− αj},
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hence Πi ⊂ Ωi according to (7). The core of the proof of Lemma 2.1 is to prove
the estimates

∑
i=1,...,k′

∫
Ωi

gi(y − ai) dy ≤ 220

k′∑
i=1

∫
Ωi

|gi(y − ai)− αi| dy; (13)

∑
1≤i≤k′
αi>0

∫
Ωi

αi dy ≤ 220

k′∑
i=1

∫
Ωi

|gi(y − ai)− αi| dy. (14)

If αi ≤ 0 for all i = 1, . . . , k′ then (13) and (14) readily follow, therefore we assume
that α1 ≥ · · · ≥ αk′ , and αm > 0 for some 1 ≤ m ≤ k′, moreover αi ≤ 0 if i > m.
For i ≤ m, we define D′

i = ai + 2ri B
2 and D̃i = ai + 8ri B

2.
Next let l1 = 1, and we define 1 = l1 < · · · < lm′ ≤ m. If lj is known and

all D′
i, i ≤ m, intersect at least one of D′

l1
, . . . , D′

lj
then let j = m′. Otherwise

let lj+1 be the smallest index such that D′
lj+1

does not intersect D′
l1
, . . . , D′

lj
. It

follows that
m⋃

i=1

D′
i ⊂

m′⋃
j=1

D̃lj . (15)

If i = 1, . . . ,m and y ∈ Ωi\D′
i then αi ≤ 1

2
gi(y − ai), hence

αi ≤ gi(y − ai)− αi;
gi(y − ai) ≤ 2 · [gi(y − ai)− αi].

(16)

However if y ∈ Ωi ∩D′
i then let j be the smallest index such that y ∈ D̃lj , hence

lj ≤ i. We deduce
αi ≤ αlj , (17)

which fact combining with gi(y − ai)− αi ≤ glj(y − alj)− αlj leads to

gi(y − ai) ≤ gi(y − ai)− αi + αlj ≤ glj(y − alj) ≤ 2 · (y − alj)
2.

It follows by using (12) and (15) that

m∑
i=1

∫
Ωi∩D′

i

gi(y − ai) dy ≤
m′∑
j=1

∫
D̃lj

2 · (y − alj)
2 dy

≤ 217

m′∑
j=1

∫
Dlj

(y − alj)
2 dy

≤ 218

m′∑
j=1

∫
Dlj

glj(y − alj) dy

≤ 218

m′∑
j=1

∫
Dlj

|glj(y − alj)− αlj | dy.
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In addition if y ∈ Dlj ∩ Ωt for some j = 1, . . . ,m′ and t = 1, . . . , k′ then we have
gt(y − at)− αt ≤ glj(y − alj)− αlj < 0, hence

m∑
i=1

∫
Ωi∩D′

i

gi(y − ai) dy ≤ 218

k′∑
t=1

∫
Ωt

|gt(y − at)− αt| dy.

Therefore we deduce by (16) that

m∑
i=1

∫
Ωi

gi(y − ai) dy ≤ 219

k′∑
t=1

∫
Ωt

|gt(y − at)− αt| dy,

which in turn yields (13). Turning to (14), we use the notation as above. It follows
by (17) that

m∑
i=1

∫
Ωi∩D′

i

αi dy ≤
m′∑
j=1

∫
D̃lj

αlj dy ≤
m′∑
j=1

∫
D̃lj

2 · (y − alj)
2 dy,

hence the rest of the argument for (14) is similar to the proof (13).
Next we claim that if y ∈ Ωi\Πi for i = 1, . . . , k′ and y ∈ Πj for j = 1, . . . , k

then
|gi(y − ai)− αi| ≤ |gj(y − aj)− αj|. (18)

To prove (18), we observe that αi > 0 and y ∈ Di, hence gj(y − aj) − αj ≤
gi(y − ai)− αi < 0. In turn we conclude (18).

Finally we define α∗i = max{αi, 0}, we deduce by (13), (14) and (18) that

k′∑
i=1

∫
Ωi

|(y − ai)
2 − α′i| dy ≤

k′∑
i=1

∫
Ωi

|gi(y − ai)− αi| dy +

ε ·
k′∑

i=1

∫
Ωi

{gi(y − ai) + α∗i } dy

≤ (1 + 221ε) ·
k′∑

i=1

∫
Ωi

|gi(y − ai)− αi| dy

≤ (1 + 221ε) ·
k∑

i=1

∫
Πi

|gi(y − ai)− αi| dy.

In turn we conclude Lemma 2.1 by Πi ⊂ Ωi for i = 1, . . . , k′. 2

3. Some extremal properties of regular polygons

The discussion in Section 2 shows that the symmetric difference metric can be
estimated from below by sums of integrals of the form

∫
Π
|q(y) − α| dy where Π

is a k-gon, α ∈ R and q is a positive definite quadratic form. It has been known
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that given k, q and |Π|, if the integral above is minimal then Π is regular with
respect to q. In this section we prove stability versions of this property if k ≤ 6.

First we present some auxiliary statements that will be useful in the proofs of
Lemmae 3.3, 3.8 and 3.13, moreover later in the proofs of Theorems 1.1 and 1.2.
We will need that certain type of functions are concave or monotonic:

Proposition 3.1. Let f(t) = tan t + ω
tan t

for given ω ∈ [1
3
, 3].

• (i) f(t)−1 is concave on (0, π
2
), and (f(t)−1)” < −0.03 if t ∈ (π

7
, 5π

12
);

• (ii) t · f(t) is increasing on (0, π
2
), and (t · f(t))′ > 0.07 if t ∈ (π

7
, π

2
).

Proof. If t ∈ (0, π
2
) then

(f(t)−1)′′ = −(tan2 t · (3ω − 1) + 3ω − ω2) · 2(tan t)(1 + tan2 t)

(ω + tan2 t)3
< 0,

hence f(t)−1 is concave. In addition the function tan2 t · (3ω − 1) + 3ω − ω2 is
concave in ω for fixed t, thus it attains its minimum at ω = 1

3
or at ω = 3.

Therefore if t ∈ (π
7
, 5π

12
) then

(f(t)−1)′′ ≤ −
min{8 tan2 π

7
, 8

9
} · 2(tan2 π

7
)(1 + tan2 π

7
)

(3 + tan2 5π
12

)
< −0.03.

Turning to (ii), let t ∈ (0, π
2
). It follows by tan t > t + 1

3
t3 that

(t · f(t))′ = t + tan t + t · tan2 t + ω

(
1

tan t
− t

tan2 t
− t

)
≥ t + tan t + t · tan2 t + ω

(
t3

3 tan2 t
− t

)
.

Thus ω = 3 can be assumed, hence x + 1
x2 − 2 > 1− x for x > 1 yields

(t · f(t))′ ≥ t ·
(

tan t

t
+

t2

tan2 t
− 2

)
+ t · tan2 t ≥ t− tan t + t · tan2 t.

Since t − tan t + t · tan2 t is a strictly increasing function of t ∈ [0, π
2
), we have

(t · f(t))′ > 0 for t ∈ (0, π
2
), and even (t · f(t))′ > 0.07 for t ∈ (π

7
, π

2
). 2

If f is a C2 function on (a, b) and t, t0 ∈ (a, b) then the Taylor formula says that

f(t) = f(t0) + f ′(t0) · (t− t0) + 1
2
f ′′(t0 + s(t− t0)) · (t− t0)

2 (19)

where s ∈ (0, 1). The Taylor formula yields simple stability properties of the
quadratic function and concave functions. We state these properties in the form
how we intend to use them. First if t1+···+tn

n
= t0 and the number of ti with

|ti − t0| ≥ ε is m for ε > 0 then

t21 + · · ·+ t2n
n

≥ t20 + m
n
· ε2. (20)

Secondly we have the following property of concave functions:
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Proposition 3.2. Let ω > 0, and let f be a concave function on [a, b] satisfying
f ′′(t) ≤ −ω for all t ∈ [a, b] with |t − t0| < ε0 for t0 ∈ (a, b) and ε0 > 0. If
t0 = t1+···+tn

n
for t1, . . . , tn ∈ [a, b], and the number of ti with |ti − t0| ≥ ε is m for

ε ∈ (0, ε0) then
f(t1) + · · ·+ f(tn)

n
≤ f(t0)− ω

2
· m

n
· ε2.

We will also use the following consequence of Cauchy-Schwartz inequality: If
γi, Ai > 0 for i = 1, . . . ,m then

m∑
i=1

γiA
2
i ≥

(
m∑

i=1

1

γi

)−1( m∑
i=1

Ai

)2

. (21)

Finally we introduce a notation that will be used thoroughly Section 3. For
t ∈ (0, π

2
), let R(t) be the triangle with a right angle such that o is a vertex, the

angle at o is t, and the longest side is of length one.

3.1. Properties related to circumscribed polytopes

Most of the results of this section are hidden in P. M. Gruber [12] or in G. Fejes
Tóth [4]. Still we provide proofs because the statements are not stated exactly as
we need. For t ∈ (0, π

2
), we define

γc(t) =

∫
R(t)

x2 dx

|R(t)|2
=

1

tan t
+

tan t

3
. (22)

In particular
γc(π

6
)

12
=

5

18
√

3
. (23)

We note that (24) in Lemma 3.3 is due to L. Fejes Tóth (see say [5]).

Lemma 3.3. If q is a positive definite quadratic form on R2, α ≤ 0 and Π is a
polygon of at most k sides then∫

Π

{q(x)− α} dx ≥
γc(π

k
)

2k
· |Π|2

√
det q. (24)

If k ≤ 6 and
∫

Π
{q(x) − α} dx ≤ (1+ε)γc(π

k
)

2k
|Π|2

√
det q for ε ∈ (0, ε0) then Π is a

k-gon, and there exists some k-gon Π0 that is regular with respect to q, has o as
its centroid, and satisfies

(1 + ϑ
√

ε)−1Π0 ⊂ Π ⊂ (1 + ϑ
√

ε)Π0

where ε0 and ϑ are positive absolute constants.

To prove Lemma 3.3, we need four simple auxiliary statements. The first two,
namely, Propositions 3.4 and 3.5 are consequences of Proposition 3.1.
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Proposition 3.4. t γc(t) is increasing on (0, π
2
), and (t γc(t))′ > 0.07 for t ∈

(π
7
, π

2
).

Proposition 3.5. γc(t)−1 is concave on (0, π
2
), and (γc(t)−1)” < −0.03 for t ∈

(π
7
, 5π

12
).

Proposition 3.6. If T is a triangle that has an angle t at the vertex o for t ∈
(0, π/2), and T has an obtuse angle then∫

T

x2 dx ≥ γc(t) · |T |2.

Proof. We may assume that |T | = |R(t)|, and T is positioned in a way such that
T and R(t) share their angle t at o, and their longest sides are collinear. Since
in this case all points of R(t)\T are closer to o than any point of T\R(t), we
conclude Proposition 3.6. 2

Proposition 3.7. If Π is a convex disc with o 6∈ relint Π, and k ≥ 3 then∫
Π

x2 dx ≥ 1.1 ·
γc(π

k
)

2k
· |Π|2.

Proof. Since there exists a half plane containing Π such that o lies on the boundary
of the half plane, we may assume that Π is a semi circular disc centred at o. In
this case direct calculations and Proposition 3.4 yield∫

Π

x2 dx ≥ 1.1 ·
γc(π

3
)

6
· |Π|2 ≥ 1.1 ·

γc(π
k
)

2k
· |Π|2. 2

Proof of Lemma 3.3. We may assume that q(z) = z2. Let Π be a polygon
with at most k sides. We may assume o ∈ relint Π according to Proposition 3.7.
We dissect Π into triangles. We consider all non-degenerate triangles of the form
[o, v, w] where v is the closest point of some side e of Π to o, and w is an endpoint
of e. We write R1, . . . , Rl to denote these triangles, hence R1, . . . , Rl tile Π. It
follows that the angle si of Ri at o is acute, and Ri has an angle which is at least
π
2
, i = 1, . . . , l. Naturally l ≤ 2k, and in addition l ≥ 5 because all si are acute.

We deduce∫
Π

x2≥
l∑

i=1

γc(si)|Ri|2≥

(
l∑

i=1

1

γc(si)

)−1( l∑
i=1

|Ri|

)2

≥
γc(2π

l
)

l
· |Π|2≥

γc(π
k
)

2k
· |Π|2

by Propositions 3.4, 3.5 and 3.6, moreover by the Cauchy-Schwartz inequality

(21). Therefore let k ≤ 6, and let
∫

Π
x2 dx ≤ (1+ε)γc(

π
k

)

2k
· |Π|2. It follows by

Proposition 3.4 that if ε0 is small enough then l = 2k. In particular each Ri has
a right angle at a vertex that is not the vertex of Π. Combining Propositions 3.2
and 3.5 yields that |si − π

k
| ≤ τ

√
ε for i = 1, . . . , 2k where τ > 0 is an absolute

constant. In turn we conclude Lemma 3.3. 2
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3.2. Properties related to inscribed polytopes

For t ∈ (0, π
2
), we define

γi(t) =

∫
R(t)

{1− x2} dx

|R(t)|2
=

1

tan t
+

5 tan t

3
. (25)

In particular
γi(π

3
)

6
=

1√
3
. (26)

We note that a restricted version of (27) in Lemma 3.8 is due to P. M. Gruber [8].

Lemma 3.8. If q is a positive definite quadratic form on R2, α > 0 and Π is a
triangle such that q(x) ≤ α for x ∈ Π then∫

Π

{α− q(x)} dx ≥
γi(π

3
)

6
· |Π|2

√
det q. (27)

If
∫

Π
{α − q(x)} dx ≤ (1+ε)γi(π

3
)

6
|Π|2

√
det q for ε ∈ (0, ε0) then there exists some

triangle Π0 that is regular with respect to q, has o as its centroid, and satisfies

(1 + ϑ
√

ε)−1Π0 ⊂ Π ⊂ (1 + ϑ
√

ε) · Π0

where ε0 and ϑ are positive absolute constants.

Let us prove the analogues of Propositions 3.4 to 3.7. Propositions 3.9 and 3.10
are consequences of Proposition 3.1.

Proposition 3.9. t γi(t) is increasing on (0, π
2
), and (t γi(t))′ > 0.07 for t ∈

(π
7
, π

2
).

Proposition 3.10. γi(t)−1 is concave on (0, π
2
), and (γi(t)−1)” < −0.03 for t ∈

(π
7
, 5π

12
).

The following statement is more general then the direct analogue of Proposition 3.6
because of applications in Proposition 3.12.

Proposition 3.11. Let T ⊂ rB2 be a triangle, which has an angle t at the vertex
o for t ∈ (0, π/2), and has another angle that is at least π

2
. If Π ⊂ T is a convex

disc then ∫
Π

{r2 − x2} dx ≥ γi(t)|Π|2.

Proof. We may assume that r = 1 and T = R(t). Let R(t) = [o, a, b] where R(t)
has a right angle at a, hence ‖b‖ = 1. We define Q to be the family of convex discs

Q ⊂ R(t) with |Q| ≥ |Π|. There exists some Q0 ∈ Q satisfying that
∫

Q0
{1−x2} dx

|Q0|2 is
minimal, and Proposition 3.11 follows if∫

Q0
{1− x2} dx

|Q0|2
≥

∫
R(t)

{1− x2} dx

|R(t)|2
. (28)
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We may assume that Q0 6= R(t).
In the proof of (28), we will use that if C1, C2 ∈ Q with |C1| = |C2| then∫
C1

{1− x2} dx ≤
∫

C2

{1− x2} dx if and only if

∫
C1

x2 dx ≥
∫

C2

x2 dx. (29)

Our main method for transforming elements of Q is the so-called Blaschke-Schüt-
telung (see T. Bonnesen and W. Fenchel [1]). Let us given a line l, a vector u not
parallel to l, and a convex disc C that lies on one side of l. Then applying the
Blaschke-Schüttelung parallel to u and with respect to l to C leads to some convex
disc C ′ as follows. We translate any secant σ of C parallel to u into a segment σ′,
which intersects l in an endpoint, and lies on the same side of l where C lies. We
define C ′ to be the union of all such σ′. Readily |C ′| = |C|. In addition if

max
x∈σ′

‖x‖ ≥ max
x∈σ

‖x‖ (30)

holds for any secant σ of C then∫
C′

x2 dx ≥
∫

C

x2 dx, (31)

with strict inequality if strict inequality holds in (30) for at least one secant σ.

After applying Blaschke-Schüttelung first parallel to a with respect to aff{a, b},
then parallel to b − a with respect to aff{o, b}, we may assume the following
by (31): There exist ã ∈ [a, b] and b̃ ∈ [o, b] such that Q0 ∩ [a, b] = [ã, b] and
Q0 ∩ [o, b] = [b̃, b], moreover the lines through ã and b̃ parallel to a and b − a,
respectively, are supporting lines of Q0.

We suppose that ã 6= a, and seek a contradiction. Let c ∈ [o, b] satisfy that
ã − c is parallel to a, hence c 6= o. Since 〈x − b, c〉 < 0 for x ∈ Q0\{b}, we have
(b− c)2 − (x− c)2 < b2 − x2 = 1− x2, thus∫

Q0

{(a− c)2 − (x− c)2} dx <

∫
Q0

{1− x2} dx.

Now Q̃ ∈ Q for Q̃ = b + 1
‖b−c‖ (Q0 − b), and∫

Q̃
{1− x2} dx

|Q̃|2
=

∫
Q0
{(a− c)2 − (x− c)2} dx

|Q0|2
<

∫
Q0
{1− x2} dx

|Q0|2
.

It is absurd, therefore ã = a.
Next we define a0 ∈ [o, a] and b0 ∈ [o, a] by the properties that ‖a0‖ = ‖b0‖

and the segment [a0, b0] touches Q0. After applying Blaschke-Schüttelung parallel
to a0− b0 with respect to aff{o, b}, we may assume b0 = b̃ ∈ Q0. We suppose that
a0 6∈ Q0, and seek a contradiction. We define a′ ∈ [o, a] by Q0 ∩ [o, a] = [a′, a],
and b′ ∈ [o, b] by ‖b′‖ = ‖a′‖. In addition we choose c′ ∈ [b0, b

′] with c′ 6= b0, b
′.

The line aff{a′, c′} dissects Q0 into two convex discs, the polygon M containing b,
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and the convex disc N containing b0. Let N ′ be the image of N by the Blaschke-
Schüttelung parallel to a′ − c′ with respect to aff{o, a}. Then Q′ = M ∪N ′ ∈ Q,
|Q′| = |Q0| and∫

Q′
x2 dx =

∫
M

x2 dx +

∫
N ′

x2 dx >

∫
M

x2 dx +

∫
N

x2 dx =

∫
Q0

x2 dx,

that is absurd. Therefore a0 ∈ Q0, which in turn yields Q0 = [a, a0, b0, b].
Let s be the area of the isosceles triangle [o, a0, b0], hence∫

Q0
{1− x2} dx

|Q0|2
=
|R(t)| − γc(t)|R(t)|2 − s + γc(t/2)

2
· s2

(|R(t)| − s)2
.

As t is fixed, we write f(s) to denote the right hand side above as a function of
s, which function satisfies

f ′(s) =
{1− |R(t)| · γc(t/2)}(|R(t)| − s)− {2γc(t)− γc(t/2)} · |R(t)|2

(|R(t)| − s)3
.

Now s ≤ ‖a‖2 sin t
2

= |R(t)| cos t yields |R(t)| − s ≥ (1 − cos t)|R(t)|, moreover
elementary calculations and using the formula (22) for γc lead to{
1− |R(t)|γc( t

2
)
}

(1− cos t)−
{
2γc(t)− γc( t

2
)
}
· |R(t)| = (1− 2

3
sin2 t

2
)(1− cos t)2.

Since 2γc(t)− γc(t/2) ≥ 0 according to Proposition 3.4, it follows that f ′(s) > 0
for all s ≤ |R(t)| cos t. We conclude (28), and in turn Proposition 3.11. 2

Finally we present the analogue of Proposition 3.7. Unfortunately this fact is not
as trivial as Proposition 3.7 because Proposition 3.12 does not hold for any convex
disc as Π; for example, if Π is a semi circular disc with centre o and radius one

then
∫

Π
{1− x2} dx <

γi(π
3
)

6
· |Π|2.

Proposition 3.12. If Π ⊂ rB2 is a triangle with o 6∈ relint Π then∫
Π

{r2 − x2} dx ≥ 1.1 ·
γi(π

3
)

6
· |Π|2.

Proof. We say that a side e of Π is a dark side if o 6∈ e and e is a common side of
Π and [o, Π]. We consider all non-degenerate triangles of the from [o, v, w] where
v is the closest point of some dark side e of Π to o, and w is an endpoint of e. Let
R1, . . . , Rl be the resulting triangles, hence Π ∩ Rj, j = 1, . . . , l, form a tiling of
Π. We observe that l ≤ 4, moreover if j = 1, . . . , l then the angle sj of Rj at o is
acute, and Rj has an angle that is at least π

2
. Writing s∗ = s1+···+sl

l
, it follows by

(25), (26), Proposition 3.11 and by the Cauchy-Schwartz inequality (21) that∫
Π

{r2 − x2} dx ≥
l∑

j=1

γi(sj) · |Rj ∩ Π|2 ≥

(
l∑

j=1

γi(sj)
−1

)−1( l∑
j=1

|Rj ∩ Π|

)2

≥ γi(s∗)

l
· |Π|2 ≥

2
√

5
3

4
· |Π|2 > 1.1 ·

γi(π
3
)

6
· |Π|2. �

Based on Propositions 3.9 to 3.12, Lemma 3.8 can be proved analogously to
Lemma 3.3. 2
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3.3. Properties related to general polytopes

This section builds on K. Böröczky, Jr. and M. Ludwig [3]. For t ∈ (0, π
2
), we

define

γ(t) =
minα∈R

∫
R(t)

|x2 − α| dx

|R(t)|2
.

According to K. Böröczky, Jr. and M. Ludwig [3],

γ(t) =
1

tan t
+

tan t

3
− 1

2t
if t ∈ (0, 1.05], (32)

where π
3

< 1.05 < π
2

and tan 1.05 < 2 · 1.05. Therefore

γ(π
3
)

6
=

1

3
√

3
− 1

4π
; (33)

γ(π
6
)

12
=

5

18
√

3
− 1

4π
. (34)

The estimate (35) in Lemma 3.13 is a restatement of Theorem 3 in K. Böröczky,
Jr. and M. Ludwig [3]. We note that the proof of Lemma 3.13 is more compli-
cated than the proof of Lemma 3.3 because instead of Proposition 3.6, we have
Proposition 3.16.

Lemma 3.13. There exist absolute constants ε0, ϑ > 0 with the following prop-
erties: If q is a positive definite quadratic form on R2, α ∈ R and Π is a polygon
of at most k sides then∫

Π

|q(x)− α| dx ≥
γ(π

k
)

2k
· |Π|2

√
det q. (35)

In addition if k ≤ 6 and
∫

Π
|q(x)−α| dx ≤ (1+ε)γ(π

k
)

2k
|Π|2

√
det q for ε ∈ (0, ε0) then

Π is a k-gon, and there exists some k-gon Π0 that is regular with respect to q, has
o as its centroid, and satisfies

(1 + ϑ
√

ε)−1Π0 ⊂ Π ⊂ (1 + ϑ
√

ε) · Π0;

1−ϑ
√

ε
2

|Π| < |{x ∈ Π : q(x) ≤ α}| < 1+ϑ
√

ε
2

|Π|.

To prove Lemma 3.13, we need several auxiliary statements. Proposition 3.1 yields
directly Proposition 3.14.

Proposition 3.14. t γ(t) is increasing on (0, 1.05), and if t ∈ (π
7
, 1.05) then

(t γ(t))′ > 0.07.

Let us recall some results of [3]. We note that there exists a unique t∗ ∈ (1.05, π
2
)

such that tan t∗ = 2t∗. Lemma 4 of [3] states that γ(t)−1 is concave on (0, t∗). Its
proof actually verifies that (γ(t)−1)′′ is continuous and negative on (0, t∗). Next
let l(t) be the linear function whose graph is tangent to the graph of γ(t)−1 at π

3
.

Lemma 5 of [3] states that γ(t)−1 < l(t) for t ∈ (π
3
, π

2
). We deduce
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Proposition 3.15. There exists a concave function θ(t) ≥ γ(t)−1 on (0, π/2)
such that θ(t) = γ(t)−1 for t ∈ (0, π

3
]. In addition (γ(t)−1)′′ < −ξ for t ∈ (π

7
, 1.05)

where ξ > 0 is an absolute constant.

Remark. Since the resulting θ(t) is linear if t ≥ π
3
, we cannot apply Proposi-

tion 3.2 if
∑6

i=1 ti = 2π for acute t1, . . . , t6. In this case the Taylor formula (19)
yields

6∑
i=1

θ(ti) ≤

(
6∑

i=1

l(ti)

)
− ξ

2

(
π

3
− min

i=1,...,6
ti

)2

≤ 6 θ(
π

6
)− ξ

50
max

i=1,...,6
(
π

3
− ti)

2. (36)

Next we restate Lemma 3 of [3].

Proposition 3.16. If α ∈ R and T is a triangle that has an angle 2t at the vertex
o for t ∈ (0, π/2) then ∫

T

|x2 − α| dx ≥ γ(t)

2
· |T |2.

Finally combining Lemma 2 in [3] and Proposition 3.14 leads to

Proposition 3.17. If α ∈ R, Π is a polygon with at most k sides, and o 6∈ relint Π
then ∫

Π

|x2 − α| dx ≥ 1.1 ·
γ(π

3
)

6
· |Π|2 ≥ 1.1 ·

γ(π
k
)

2k
· |Π|2.

Proof of Lemma 3.13. We may assume that q(z) = z2. Since (35) coincides with
Theorem 3 in [3], we assume that the m-gon Π for m ≤ k ≤ 6 and α ∈ R satisfy∫

Π
|x2 − α| dx ≤ (1+ε)γ(π

k
)

2k
· |Π|2. If ε0 is small enough then o ∈ relint Π according

to Proposition 3.17.
We dissect Π into the triangles T1, . . . , Tm by connecting o to the vertices of

Π, and write ei to denote the side of Ti opposite to o. Next we assign two triangles
Ri1 and Ri2 to each Ti. If both angles of Ti at the endpoints of ei are acute then let
wi be the closest point of ei to o, and let Ri1 and Ri2 be the two triangles, which
tile Ti and intersect in the common side [o, wi]. In this case both Ri1 and Ri2

have a right angle at wi, and we write tij to denote the angle of Rij at o, j = 1, 2.
Otherwise we call Ti skew, and let ti1 = ti2 be half of the angle of Ti at o, moreover
let Rij be a rescaled copy of R(tij) with |Rij| = 1

2
|Ti| for j = 1, 2. In both cases

ti1 + ti2 is the angle of Ti at o, i = 1, . . . ,m. We apply Proposition 3.16 to all skew
Ti, and deduce by Proposition 3.15 and the Cauchy-Schwartz inequality (21) that

(1 + ε)γ(π
k
)

2k
· |Π|2 ≥

∑
i=1,...,m

j=1,2

γ(tij)|Rij|2 (37)

≥

 ∑
i=1,...,m

j=1,2

1

γ(tij)


−1 ∑

i=1,...,m
j=1,2

|Rij|


2



K. J. Böröczky et al.: Typical Faces of Best Approximating Three-polytopes 537

≥

 ∑
i=1,...,m

j=1,2

θ(tij)


−1

|Π|2 ≥ (2m · θ( π

m
))−1|Π|2. (38)

It follows by Proposition 3.14 that m = k if ε0 is small enough.
During the rest of the argument, we write ϑ1, ϑ2, . . . to denote positive absolute

constants. We apply Propositions 3.2 and 3.15 if k ≥ 4, and (36) if k = 3 to (38),
and obtain

|tij − π
k
| ≤ ϑ1

√
ε for i = 1, . . . , k and j = 1, 2. (39)

If no Ti is skew then (39) readily yields the existence of Π0 in Lemma 3.13.
Therefore we suppose that there is a skew Tl for suitably small ε0, and seek

a contradiction. We deduce by (39) that γ(tij) ≥ (1− ϑ2

√
ε)γ(π

k
), thus (37) and

2(|Ri1|2 + |Ri2|2) ≥ |Ti|2 yield that k
∑k

i=1 |Ti|2 ≤ (1 + ϑ3

√
ε)
(∑k

i=1 |Ti|
)2

. Using

the convexity of t2 (compare (20)), we obtain

1− ϑ4
4
√

ε ≤ |Ti|
|Π|/k

≤ 1 + ϑ4
4
√

ε for i = 1, . . . , k. (40)

Let v 6= o be the vertex of Tl where the angle αl of Tl is at least π
2
, and let Tp the

other triangle that has v as a vertex. If αp is the angle of Tp at v then combining
(39) and (40) yields that |αl−αp| ≤ ϑ5

4
√

ε. It follows by αl ≥ π
2

that αp ≥ 5π
12

if ε0

is small enough, moreover αp < π
2

by the convexity of Π. In addition the angle of
Tp at o is at least π

4
by k ≤ 6, hence the third angle of Tp is at most π

3
. Therefore

Tp is not skew, and |tp1− tp2| ≥ αp− π
3
≥ π

12
. It contradicts (39) for suitably small

ε0, thus no T1, . . . , Tk is skew. In turn we conclude the existence of suitable Π0.
Finally we define Π+

α = {x ∈ Π : x2 ≥ α} and Π−
α = {x ∈ Π : x2 ≤ α}, hence

the formula
∂

∂α

∫
Π

|x2 − α| dx = |Π−
α | − |Π+

α |

completes the proof of Lemma 3.13. 2

4. The proof of Theorem 1.1

We only prove Theorem 1.1 for P(n) in detail, and sketch the necessary changes
for the case of P c

(n) at the end of the proof. For P(n), it is sufficient to prove the
following statement.

For a given convex body K in R3 with C2 boundary, let P(n) be a polytope with
at most n faces such that δS(K, P(n)) is minimal. For ν ∈ (0, ν0), if g(n) is the
number of faces F of P(n) such that F is a proper hexagon, and F is ϑν-close to

some hexagon that is regular with respect to QxF
and is of area

∫
∂K κ(x)1/4dx

n·κ(xF )1/4 then

g(n) > (1− ϑ̃ν)n for n > n0 (41)

where ϑ and ϑ̃ are positive absolute constants, and ν0 > 0 depends on K, moreover
n0 depends on ν and K.
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We recall that for any x ∈ ∂K, u(x) is the exterior unit normal to ∂K at x. It
is well-known (see say K. Leichtweiß [16]) that there exists η > 0 such that balls
of radius η roll from inside on ∂K. In other words for any x ∈ ∂K, the three-all
of radius η and of centre x− η u(x) is contained in K. Let K−η be the family of
points z such that z + η B3 ⊂ K. Now if y ∈ R3\K−η then there exists a unique
closest point of ∂K to y, and we write π(y) to denote this point.

We write cl Y to denote the closure of any Y ⊂ R3, and consider ∂K with the
subspace topology as a subset of R3. We say that Y ⊂ ∂K is Jordan measurable if
the relative boundary of Y on ∂K is of two-dimensional Hausdorff-measure zero.
Let X0, X ′ and X be relatively open Jordan measurable subsets of ∂K such that
cl X0 ⊂ X, cl X ⊂ X ′, κ(x) > 0 for x ∈ cl X ′, and∫

X0

κ(x)1/4dx ≥ (1− µν2)

∫
∂K

κ(x)1/4dx.

It is practical to define
µ = ν6.

We have δ > 0 with the following properties: (X0 + 2δ B3) ∩ ∂K ⊂ X and
(X + 2δ B3)∩ ∂K ⊂ X ′. Moreover if C is a convex disc that touches K in x ∈ X
and C is of diameter at most δ then

• (i) writing C ′ to denote the orthogonal projection of π(C) into aff C, we
have

x + (1− µν2)(C − x) ⊂ C ′ ⊂ x + (1− µν2)−1(C − x);

• (ii) if w ∈ π(C) then 〈u(w), u(x)〉 ≥ 1− µν2;

• (iii) if f is the convex function on C such that its graph is the part of ∂K,
and qy is the quadratic form representing the second derivative of f at y ∈ C
(hence Qx = qx) then

(1 + µν2)−1Qx ≤ qy ≤ (1 + µν2)Qx.

During the proof of (41), ϑ1, ϑ2, . . . denote positive absolute constants, moreover
ω1, ω2, . . . denote positive constants that depend on K, ν and µ. Now there exists
a convex polytope M circumscribed around K such that diam G < δ holds for
each face G of M with π(G) ∩X 6= ∅. We write M to denote the family of faces
of M that touch K in a point of X, and let G ∈M touch K in xG. Therefore∑

G∈M

κ(xG)1/4|G| ≥ (1− ϑ1µν2)

∫
∂K

κ(x)1/4dx. (42)

We start to investigate P(n). We define

γ̃ =
5

36
√

3
− 1

8π
=

1

2
·
γ(π

6
)

12
.

According to (4), if n is large then

δS(K, P(n)) < (1 + µν2) · γ̃ ·
(∫

∂K

κ(x)1/4dx

)2

· 1

n
. (43)
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It follows by (43) and the existence of the rolling ball of radius η that

δH(K, P(n)) ≤ ω1n
−1/2. (44)

Therefore if n0 is large enough then K−η ⊂ int P(n). Since the infimum of the
principal curvatures at the points of X ′ is positive, we deduce that if F is a face
of P(n) such that π(F ) ⊂ X ′ then

diam F ≤ ω2n
−1/4. (45)

Recalling that G ∈ M touches K in xG, we write M̃ to denote the family of
convex discs of the form

(1− 2µν2)(G− xG) + xG

as G runs through the elements of M. In turn for C ∈ M̃, we write xC to denote
the point where C touches K, and define

C ′ = (1− µν2)(C − xC) + xC .

In addition let FC denote the family of faces of P(n) near C whose orthogonal
projection to aff C intersects relint C. We deduce by (i) and (45) that if n0 is

large enough then the families FC for C ∈ M̃ are pairwise disjoint, and by (42)
that ∑

C∈M̃

κ(xC)1/4|C ′| ≥ (1− ϑ2µν2)

∫
∂K

κ(x)1/4dx. (46)

For any plane L in R3, we write pL to denote the orthogonal projection into L.
Let C ∈ M̃. We write F ′

C to denote the family of all F ∈ FC such that paff C(F )
intersects relint C ′. Again if n0 is large enough then (44) yields for any F ∈ F ′

C

that
paff C(K ∩ aff F ) ⊂ relint C. (47)

We recall that for any F ∈ FC , xF denotes the point of ∂K such that u(xF ) is an
exterior unit normal to F , and write aF = paff C(xF ). In addition let zF ∈ affF
satisfy paff C(zF ) = aF , and let αF = 〈u(xC), xF − zF 〉. For any F ∈ F ′

C , we define

ΠF = C ′ ∩ paff C(F ). (48)

It follows by (iii) and (47) that we may apply Lemma 2.1 to each C ∈ M̃ with
ε = µν2, and we obtain (see also (10))

δS(K, P(n)) ≥ (1− ϑ3µν2)
∑
C∈M̃

∑
F∈F ′C

∫
ΠF

|1
2
QxC

(y − aF )− αF | dy. (49)

For any F ∈ F ′
C , we define k(F ) to be the number of sides of ΠF , and

I(F ) = κ(xC)1/4|ΠF |. (50)
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Next we decompose ∪C∈M̃F
′
C into the families F1, F2, F3 and F4. Let F ∈ F ′

C for

C ∈ M̃. We put F into F4 if k(F ) 6= 6, and into F3 if ΠF is a hexagon that is not
ν-close to any hexagon that is regular with respect QxC

. Therefore F ∈ F1 ∪ F2

if ΠF is a hexagon, which is ν-close to some hexagon that is regular with respect
QxC

. Assuming this, we have

F ∈ F1 if

∣∣∣∣∣
∫

∂K
κ(x)1/4dx

n · I(F )
− 1

∣∣∣∣∣ ≤ ν;

F ∈ F2 if

∣∣∣∣∣
∫

∂K
κ(x)1/4dx

n · I(F )
− 1

∣∣∣∣∣ > ν.

We write nj to denote the cardinality of Fj. Using (43) and (46) to get an
upper bound on δS(K, P(n)), and (49) and Lemma 3.13 to get a lower bound on
δS(K, P(n)), we obtain

(1 + ϑ4µν2) · γ̃ ·

 ∑
F∈∪4

j=1Fj

I(F )

2

1

n
≥ γ̃ ·

 ∑
F∈∪3

j=1Fj

I(F )2

 (51)

+ϑ5ν
2

(∑
F∈F3

I(F )2

)

+
1

2

∑
F∈F4

γ( π
k(F )

)

2k(F )
· I(F )2.

We claim that last term above satisfies

1

2

∑
F∈F4

γ( π
k(F )

)

2k(F )
· I(F )2 ≥ (1 + ϑ6) · γ̃ ·

(∑
F∈F4

I(F )

)2

· 1

n4

. (52)

It follows by the Cauchy-Schwartz inequality (21) that∑
F∈F4

γ( π
k(F )

)

2k(F )
· I(F )2 =

∑
F∈F4

2k(F ) · γ( π
k(F )

) ·
(

I(F )

2k(F )

)2

≥

(∑
F∈F4

2k(F ) · γ( π
k(F )

)−1

)−1

·

(∑
F∈F4

I(F )

)2

.

Since C ′ is tiled by ΠF as F runs through F ′
C , and all tiles have small diameter

for large n according to (45), the average number of sides of all ΠF , F ∈ F ′
C , is at

most six (see Lemma 4.1 below). In particular the average of all k(F ), F ∈ F4,
is at most six. If the average is at least 5.5 then we use Proposition 3.2 to the
concave γ(t)−1 (compare Proposition 3.15), and after that use the monotonicity
of tγ(t) (compare Proposition 3.14) to obtain(∑

F∈F4

2k(F ) · γ( π
k(F )

)−1

)−1

≥ 1 + ϑ7

n4

· n4∑
F∈F4

2k(F )
· γ
(

n42π
2
∑

F∈F4
k(F )

)
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≥ 1 + ϑ7

n4

·
γ(π

6
)

12
=

1 + ϑ7

n4

· 2γ̃.

If the average of all k(F ), F ∈ F4, is less than 5.5 then first we simply use the
concavity of γ(t)−1, and after that we obtain an error term from the monotonicity
of tγ(t) (compare Proposition 3.14, and observe that the average of all k(F ) is at
least three):(∑

F∈F4

2k(F ) · γ( π
k(F )

)−1

)−1

≥ 1

n4

· n4∑
F∈F4

2k(F )
· γ
(

n4π∑
F∈F4

k(F )

)
≥ 1 + ϑ8

n4

·
γ(π

6
)

12
=

1 + ϑ8

n4

· 2γ̃.

In turn we deduce the claim (52).
Now by applying the inequality for quadratic mean to

∑
F∈F3

I(F )2, we deduce

(1 + ϑ4µν2) · γ̃

 ∑
F∈∪4

j=1Fj

I(F )

2

· 1

n
≥ γ̃ ·

 ∑
F∈∪3

j=1Fj

I(F )2

 (53)

+ϑ5ν
2

(∑
F∈F3

I(F )

)2

· 1

n3

+(1 + ϑ6) · γ̃ ·

(∑
F∈F4

I(F )

)2

· 1

n4

.

First we show that the contribution coming from faces in F3 and F4 is negligible.
Applying the inequality for quadratic mean and the Cauchy-Schwartz inequality
(21) in (53) leads to

(1 + ϑ4µν2) · γ̃

 ∑
F∈∪4

j=1Fj

I(F )

2

· 1

n
≥ γ̃ ·

 ∑
F∈∪4

j=1Fj

I(F )

2

· 1∑4
j=1 nj

+ϑ9ν
2

( ∑
F∈F3∪F4

I(F )

)2
1

n3 + n4

.

Since
∑4

j=1 nj ≤ n, it follows that∑
F∈F3∪F4

I(F ) ≤ ϑ10
√

µ ·
∑

F∈∪4
j=1Fj

I(F ). (54)

Thus (46) and (53) yield( ∑
F∈F1∪F2

I(F )

)2

· 1

n
≥ (1−O(

√
µ))

( ∑
F∈F1∪F2

I(F )2

)
; (55)

∑
F∈F1∪F2

I(F ) = (1 + O(
√

µ)) ·
∫

∂K

κ(x)1/4dx. (56)
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Applying the inequality for quadratic mean in (55) leads to n1+n2 = (1+O(
√

µ))n,
hence (56) shows that

I0 =

∑
F∈F1∪F2

I(F )

n1 + n2

= (1 + O(
√

µ)) ·
∫

∂K
κ(x)1/4dx

n
.

Therefore if ν0 after (41) is small enough then we apply (20) with t0 = I0 and

ε =
ν·
∫

∂K κ(x)1/4dx

2n
to obtain

∑
F∈F1∪F2

I(F )2 ≥
(

1 +
ϑ11ν

2n2

n1 + n2

)( ∑
F∈F1∪F2

I(F )

)2

· 1

n1 + n2

.

Comparing to (55) leads to n2

n1+n2
= O(

√
µ

ν2 ) = O(ν), hence

n1 ≥ (1− ϑ12ν) · n. (57)

We are not ready because some ΠF is not the projection of F . We call F ∈ F1 a
border face if assuming F ∈ FC , C ∈ M̃, ΠF meets the relative boundary of C ′.
Otherwise we call F ∈ F1 an inner face; namely, if ΠF ⊂ relint C ′. We observe
that if F is an inner face then ΠF is the projection of F , hence F is ϑ13ν-close
to some hexagon that is regular with respect to the positive definite QF , and is

of area
∫

∂K κ(x)1/4dx

n·κ(xF )1/4 . However if F is a border face and F ∈ FC then ΠF lies in a

ω3n
−1/2 neighbourhood of the relative boundary of C ′ in aff C. Since any border

face F is in F1, we have |ΠF | > ω4

n
, therefore the number of border faces is at

most ω5

√
n. After choosing n0 large enough, the number of border faces is less

than ν · n, hence g(n) ≥ (1 − ϑ14ν) · n. Therefore we conclude (41), and in turn
Theorem 1.1 in the case of P(n). 2

To prove Theorem 1.1 in the case of P c
(n), only two changes are needed in the

argument. First all αF in (49) satisfy αF ≤ 0 (compare (8)). Secondly we use
Lemma 3.3 instead of Lemma 3.13. 2

No face can be added to P(n) or P c
(n), and no face of P(n) or P c

(n) can be varied in a

way such that δS(P(n), K) or δS(P c
(n), K), respectively, decreases, hence we deduce

the remark after Theorem 1.1. 2

In the proof of Theorem 1.1, we used the fact that the average number of sides of
the tiles of a suitable tiling is at most six.

Lemma 4.1. For any convex polygon Π there exists δ > 0 with the following
property: If the convex polygons Π1, . . . , Πn form a side to side tiling of Π, and
each Πi is of diameter at most δ then writing ki to denote the number of sides of
Πi, we have k1 + · · ·+ kn < 6n.

Proof. We write m to denote the number of sides of Π, and p to denote the
perimeter of Π. Let δ = p

2m
. If e is the number of edges, and v is the number of

vertices in the tiling Π1, . . . , Πn of Π as above then the Euler formula says

v − e + n = 1 > 0. (58)
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Since at least two edges of the tiling meet at any vertex of Π, and at least three
edges of the tiling meet at any other vertices of the tiling, summing up the degrees
of the vertices of the tiling leads to 3v ≤ 2e+m. It follows by (58) that e < 3n+m.
In addition let b be the number of segments that are sides of some Πi and are
contained in ∂Π, hence b ≥ 2m by the choice of δ. Therefore

k1 + · · ·+ kn = 2e− b < 6n + 2m− b ≤ 6n. 2

5. The proof of Theorem 1.2

Since the proof of Theorem 1.2 is very similar to the proof of Theorem 1.1, we
only provide a sketch about the necessary changes.

We start with the case of Pn, which has at most 2n faces according to the
Euler formula. The main changes compared to (41) are that now g(n) counts the
number of triangular faces, which are close to regular in the suitable sense, and
we prove

g(n) > (1− ϑ̃ν)2n. (59)

We define X, M and M̃ as in Section 4. Instead of γ̃, we use

γ∗ =
1

12
√

3
− 1

16π
=

1

4
·
γ(π

3
)

6
.

Here we have the factor 1
4

unlike the factor 1
2

in the definition of γ̃ because Pn has
asymptotically twice as many faces as P(n).

An essential change in the argument that first we triangulate ∂Pn by trian-
gulating any non-triangular face by diagonals from a fixed vertex of the face. We
write Σ to denote the resulting triangular complex, which has the same family of
vertices as Pn. For C ∈ M̃, we write FC to denote the family of all faces F of
Σ that lies near C and paff C(F ) intersects relint C, moreover F ′

C to denote the
family of all F ∈ FC such that paff C(F ) intersects relint C ′. For any F ∈ FC , we
define ΠF = paff C(F ) (hence we do not intersect with C ′ as in (48)). In addition,
we define aF , αF and I(F ) analogously as in Section 4.

Other changes compared to the argument in Section 4 are concerned with the
definitions of Fj after (50). We decompose ∪C∈M̃F

′
C into only three families F1,

F2 and F3. Let F ∈ F ′
C for C ∈ M̃. We put F into F1 if

∣∣∣∫∂K κ(x)1/4dx

2n·I(F )
− 1
∣∣∣ ≤ ν,

and there exists a triangle T whose centroid is aF , which is regular with respect
QxC

, and
(1 + ν)−1(T − aF ) ⊂ ΠF − aF ⊂ (1 + ν)(T − aF ).

We put F into F2 if such a T exists but
∣∣∣∫∂K κ(x)1/4dx

2n·I(F )
− 1
∣∣∣ > ν. Finally F ∈ F3 if

no such T exists. As in Section 4, let ni denote the cardinality of Fi.
We deduce the analogue of (51) without the last term concerning F4, which

yields right away the analogue (53). Continuing with essentially the same ar-
gument as in Section 4 (keeping only F1, F2 and F3) proves the analogue of
(57); namely, n1 ≥ (1 − ϑ∗ν) · 2n where ϑ∗ is a positive absolute constant. We
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are not ready because Pn may have some faces that are not triangles. If G is
a face of Pn such that F ⊂ G for F ∈ F1 then G is near some C ∈ M̃, and
paff C(x(G)) = aF ∈ relint ΠF . In particular there is no other F ′ ∈ F1 with
F ′ ⊂ G. Since Σ has at most 2n elements, the number of F ∈ F1 that are not
faces of Pn is at most ϑ∗ν · 2n, therefore g(n) ≥ (1− 2ϑ∗ν) · 2n. 2

The proof in the case of P i
n runs closely as for Pn, the main difference is that one

uses Lemma 3.8 instead of Lemma 3.13. There is one additional change in the
argument. For each F ∈ F ′

C , we define

α′F = (1 + µν2) · αF .

Therefore 1
2
QxC

(y − aF ) ≤ α′F for any y ∈ ΠF (see (9)), and (49) is replaced by

δS(K, P i
n) ≥ (1− ϑ3µν2)

∑
C∈M̃

∑
F∈F ′C

∫
ΠF

{
α′F − 1

2
QxC

(y − aF )
}

dy.

The arguments just sketched complete the proof of Theorem 1.2. 2

Concerning the remark after Theorem 1.2, both Pn and P i
n have at most 2n − 4

faces according to the Euler formula, hence the numbers of faces of both Pn and
P i

n are 2n − o(n) by (59). Readily all vertices of P i
n lie on ∂K. To prove the

property of the typical faces of Pn, we force the following extra condition on any
element F ∈ F ′

C of F1 or F2. Any such F should satisfy

1−ν
2
|ΠF | <

∣∣{y ∈ ΠF : 1
2
QxC

(y − aF ) ≤ αF}
∣∣ < 1+ν

2
|ΠF |. 2
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