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Abstract. We provide a first order axiomatization for Bachmann’s
metric planes in terms of points and the ternary relation ⊥ with ⊥ (abc)
to be read as ‘a, b, c are the vertices of a right triangle with right angle
at a’. The axioms can be chosen to be ∀∃-statements.
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1. Introduction

The concept of a metric plane grew out of the work of Hessenberg, Hjelmslev,
and A. Schmidt, and was provided with a simple group-theoretic axiomatics by
F. Bachmann. His axiomatics (cf. [2, §3,2, p. 33]) can be rephrased in a first-
order language with points and lines as individual variables, and with a binary
operation % for reflections in lines, with %(l, P ) denoting the point obtained by
reflecting the point P in the line l, or with only one sort of variables, for lines, and
a binary operation ρ, with ρ(g, h) denoting the line obtained by reflecting line h
in line g (cf. [3] for an axiom system in this language). Bachmann ([2, §2,3]) also
described metric planes by an axiom system in a language with points and lines
as individual variables, and point-line incidence, line-orthogonality, and mappings
of models as non-logical notions (cf. also [1]). That axiom system cannot be
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rephrased in first-order logic, as it contains references to line reflections, which
are defined as bijections of the collection of all points and lines, which preserve
incidence and orthogonality, are involutory transformations, different from the
identity, and fix all the points of a line. We shall nevertheless state that axiom
system. Its axioms are (the words ‘intersect’, ‘through’, ‘perpendicular’, ‘have in
common’ are the usual paraphrases):

MP 1. There are at least two points.

MP 2. For every two different points there is exactly one line incident with those
points.

MP 3. If a is orthogonal to b, then b is orthogonal to a.

MP 4. Orthogonal lines intersect.

MP 5. Through every point P there is to every line l a perpendicular, which is
unique if P is incident with l.

MP 6. To every line there is at least a reflection in that line.

MP 7. The composition of reflections in three lines a, b, c which have a point or a
perpendicular in common is a reflection in a line d.

There are other axiom systems in the literature for non-elliptic metric planes
(i.e. metric planes in which the composition of three reflections in lines is never
the identity): (i) in terms of points and the quaternary relation of congruence ≡
([7], [4]), (ii) in terms of points and two ternary operations in [5], (iii) in terms of
‘rigid motions’, and a unary predicate symbol G, with G(x) to be interpreted as
‘x is a line-reflection’, a constant symbol 1, to be interpreted as ‘the identity’, and
a binary operation ◦, with ◦(a, b), to be interpreted as ‘the composition of a with
b’ ([6]); and (iv) in terms of the two sorts of variables, points and rigid motions,
and a binary operation ·, the first argument of which is a rigid motion, the second
argument a point, and whose value is a point, ·(g, A) standing for ‘the action of g
on A’ ([6]).

The aim of this paper is to show that Bachmann’s metric planes can be ax-
iomatized in terms of points and the notion of orthogonality as single primitive
notion. By this we do not mean that the axiom system is simple or that it were
preferable to its competitors, but simply that the theory of metric planes can be
expressed in these very simple terms.

2. The axiom system

The language in which we will express the axiom system for metric planes contains
one sort of variables, standing for points, and a ternary relation ⊥, with ⊥ (abc)
to be read as ‘a, b, c are the vertices of a right triangle with right angle at a’.
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To shorten the formal aspect of the axioms, we shall use the following abbre-
viations (see Figure 1 for the definition of ϕ):

Le(abc) :⇔ ⊥ (abe)∧ ⊥ (ace)

ϕ(abpmnoqq′rr′uvp′) :⇔ a 6= b ∧ (o = a∨ ⊥ (oap)) ∧ (o = b∨ ⊥ (obp))

∧Lo(pqr) ∧ q 6= r ∧ Lo(mqq′) ∧ q 6= q′

∧Lo(nrr′) ∧ r 6= r′ ∧ Lo(p
′q′r′) ∧ Lm(opp′) ∧m 6= n

∧Lp(omn) ∧ Lu(orq
′) ∧ Lv(oqr

′)

Rab(pp
′) :⇔ (∃mnoqq′rr′uv) (((⊥ (abp)∧ ⊥ (bpa)) ∨ (a 6= b ∧ (Lo(pab)

∨p = a ∨ p = b))) ∧ p′ = p) ∨ (¬(⊥ (abp)∧ ⊥ (bpa))

∧ϕ(abpmnoqq′rr′uvp′))

p′q′

r′

no ba m

rpq

Figure 1. The reflection of p in the line ab obtained by means of ϕ

Le(abc) stands for ‘a, b, c are three collinear points, with a different from b and
c, and a, b, e are the vertices of a right triangle with right angle at a’; Rab(pp

′)
stands, if a is different from b, for ‘p′ is the reflection of p in the line ab’.

The axioms are:

A 1. ⊥ (abc) → a 6= b ∧ b 6= c ∧ c 6= a,

A 2. ⊥ (abc) →⊥ (acb),

A 3. (∀ab)(∃c) a 6= b →⊥ (abc),

A 4. Lb(acd)∧ ⊥ (ced) →⊥ (cea),

A 5. Le(abc)∧ ⊥ (abf) →⊥ (acf),

A 6. ⊥ (apb)∧ ⊥ (bpa) ∧ Le(abc) →⊥ (cpa),
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A 7. (∀abp)(∃mnoqq′rr′p′uv) p = a ∨ p = b ∨ Lo(pab) ∨ (⊥ (apb)∧ ⊥ (bpa))
∨ϕ(abpmnoqq′rr′uvp′),

A 8. (⊥ (apb)∧ ⊥ (bpa)) ∨ ((
∧2

i=1 ϕ(abpminioiqiq
′
irir

′
iuivipi)) → p1 = p2),

A 9. ⊥ (xyz) ∧Rab(xx′) ∧Rab(yy′) ∧Rab(zz
′) →⊥ (x′y′z′),

A 10. (∀abcefg)(∃dd′)(∀pqrs) Lf (bac)∧ ⊥ (aeb)∧ ⊥ (cgb) ∧Rae(pq) ∧Rbf (qr)
∧Rcg(rs) → Ld′(dab) ∧Rdd′(ps),

A 11. (∀oabc)(∃d)(∀pqrs) Roa(pq) ∧Rob(qr) ∧Roc(rs) → Rod(ps),

A 12. (∃ab) a 6= b.

Somewhat informally (given that we refer to ‘lines’, which are not objects of our
language), A1 states that if ab is orthogonal to ac, then a, b, c must be three
different points; A2 states that if ab is orthogonal to ac, then ac is orthogonal to
ab, A3 states that one can raise a perpendicular in a on a given line ab; A4 states
that if a, c, d are three different collinear points, and ce is perpendicular on the
line cd, then it is perpendicular on the line ca as well (‘naturally’, since the lines
cd and ca are identical); A5 states that if a, b, c are three collinear points, and af
is perpendicular to ab, then it is perpendicular to ac as well (‘naturally’, since the
lines ab and ac are identical); A6 states that if both pa and pb are perpendicular
to line ab, then the line pc is perpendicular to ca for any point c on the line ab; A7
states that if p is not on the line ab, and if pa and pb are not both perpendicular
to ab, then there is a point p′, which is the reflection of p in the line ab; A8 states
that the point p′ which A7 claims to exist, is unique; A9 states that reflections
in lines preserve orthogonality; A10 states that the composition of reflections in
the lines ae, bf , cg, which are perpendicular to the line on which a, b, c lie, is
a reflection in a line, namely the reflection in the line dd′; A11 states that the
composition of the reflections in the lines oa, ob, and oc, which have the point o
in common, is a reflection in a line, namely the reflection in od.

3. Proof of the main result

We now proceed to prove that the axioms A1–A12 axiomatize Bachmann’s metric
planes.

Lemma 1. If a 6= b ∧ (Lp(oab) ∨ (o = a∧ ⊥ (opb)) ∨ (o = b∧ ⊥ (opa))), then, for
no x can we have Lx(pab).

Proof. Assume a 6= b, Lp(oab), and Lx(pab). Let e be such that ⊥ (abe) (such
an e exists by A3). By A4,

Lx(pab)∧ ⊥ (aeb) →⊥ (aep)

Lp(oab)∧ ⊥ (aeb) →⊥ (aeo)
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Given that the hypotheses of the above implications hold, we must have ⊥ (aep)
and ⊥ (aeo), and thus, by A2, ⊥ (aoe) as well, which means that Le(aop) holds.
By A4, we have

Le(aop)∧ ⊥ (oap) →⊥ (oaa),

contradicting A1.
Assume o = a, ⊥ (opb), as well as Lx(pab). By A4, Lx(pab)∧ ⊥ (apb) →⊥

(app), and since the hypothesis holds, so must the conclusion, i. e. ⊥ (app),
contradicting A1.

Assume o = b, ⊥ (opa), as well as Lx(pab). Again A4 leads to ⊥ (bpp),
contradicting A1. �

Notice also that, by A1, Lp(oab) → p 6= a ∧ p 6= b. Thus:

ϕ(abpmnoqq′rr′uvp′) → ¬(Lx(pab) ∨ p = a ∨ p = b). (1)

We now turn to the proof of

Lb(acd)∧ ⊥ (cea) ∧ c 6= d →⊥ (ced). (2)

Proof. Since c 6= d, by A3 and A2, we have (∃f) ⊥ (cfd). By A4, Lb(acd)
and ⊥ (cfd) imply ⊥ (cfa). Since we have both ⊥ (cfa) and ⊥ (cea), we have
La(cfe). Since we also have ⊥ (cfd), we get, using A5, ⊥ (ced). �

Let us define a new predicate λ, with λ(abc) to be read as ‘a, b, c are (not neces-
sarily different) collinear points’, defined by

λ(abc) :⇔ (∃e) Le(abc) ∨ a = b ∨ a = c. (3)

To show that the axiom system A1–A12 axiomatizes metric planes, we need to
define the notions of line, point-line incidence, and line-orthogonality, and to show
that these notions, as well as the line-reflections that are induced by these notions
satisfy the axioms MP1–MP7.

For any two different points a and b, we define a new object, the line ab, and
we say that a point x is incident with ab if and only if λ(abx). We say that two
lines ab and cd are equal if and only if they are incident with the same points, and
we say that they are orthogonal if and only if there is a point o incident with both
lines, and there are points p on ab and q on cd, such that ⊥ (opq).

Notice that, from the very definition of L we have

Le(abc) → Le(acb). (4)

We now turn to proving that

λ(abc) → λ(cba) ∧ λ(bac). (5)

Proof. By (3) and λ(abc), Le(abc) for some e, or a = b or a = c. Notice
that λ(abb) holds for all a and b by (3) and A3, thus, in case a = b or a = c,
the conclusion of (5) holds. Suppose a 6= b and a 6= c, and Le(abc). By A3
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(∃f) ⊥ (cbf). Given that, by (4) and A2, we have Le(acb) and ⊥ (cfb), and so,
by A4 and A1, ⊥ (caf). Together with ⊥ (cbf), this gives Lf (cba), thus λ(cba).
Since a 6= b, by A3, (∃g) ⊥ (bag). By (2) and A2, given Le(abc) and ⊥ (bag), we
get ⊥ (bcg), so Lg(bac), i.e. λ(bac). �

Next, we prove that

a 6= b ∧ λ(abc) ∧ λ(abd) → λ(acd). (6)

Proof. Suppose a 6= b, λ(abc) and λ(abd). By (3), a = c or there is an e such that
Le(abc), and a = d or there is an f such that Lf (abd). If a = c or a = d, there
is nothing to prove, since λ(acd) follows from (3). Suppose Le(abc) and Lf (abd).
By A5, we deduce from Le(abc) and ⊥ (abf) that ⊥ (acf) holds. From this and
⊥ (adf) we get Lf (acd), thus λ(acd). �

We now check the validity, with our defined notions, of the axioms MP1–MP7.
MP1 holds by A12. The existence part of MP2, i.e. the existence of a line

incident with two different points a and b follows from the fact that we have
λ(aba) and λ(abb) by (3), thus a and b are incident with the line ab. To see that
the uniqueness part of MP2 holds, we need to show that

u 6= v ∧ a 6= b ∧ L(uva) ∧ L(uvb) → (L(uvx) ↔ L(abx)). (7)

Proof. If a = u or a = v or b = u or b = v, then (7) follows from applying
once or twice (6). Suppose now a 6= u, b 6= u, a 6= v, b 6= v, u 6= v, a 6= b, λ(uva),
λ(uvb), λ(uvx). By (6) we have λ(uab) and λ(uax), thus λ(bua) and λ(aux) (by
(5)). By (5) we also get λ(buv) and λ(auv). Since b 6= u, λ(buv) and λ(bua) imply
λ(bva) (by (6)), and, since a 6= u, λ(aux) and λ(auv) imply λ(avx). By (5) we
also have λ(avb). Since a 6= v, λ(avb) and λ(avx) imply λ(abx) (by (6)). Suppose
now a 6= u, b 6= u, a 6= v, b 6= v, u 6= v, a 6= b, λ(uva), λ(uvb), λ(abx). If x = a,
then λ(uvx) and we are done. Suppose x 6= a. From u 6= v, λ(uva), λ(uvb) we
get λ(uab) (by (6)) and λ(vab) (by (5) and (6)). By (5) we have λ(abu), λ(abv)
and λ(abx), which together with a 6= b give us λ(aux) and λ(avx) (by (6)). By
(5) we have λ(xau) and λ(xav), thus, since x 6= a, we have λ(xuv) as well by (6),
so λ(uvx) (by (5)). �

By (3) and (5) we have

if a 6= b and c 6= d, then ab = cd if and only if λ(abc) and λ(abd), (8)

By A5, (8), and A2 we get

if a 6= b, a 6= c, a 6= b′, a 6= c′, ab = ab′ and ac = ac′, (9)

then ⊥ (abc) if and only if ⊥ (ab′c′),

and by the definition of line perpendicularity and (9) we get

if a 6= b, a′ 6= b′, c 6= d, c′ 6= d′, ab = a′b′ and cd = c′d′, (10)

then ab is orthogonal to cd if and only if a′b′ is orthogonal to c′d′.
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Thus orthogonality is well-defined as a binary relation between lines. That it
satisfies MP4, i.e. that orthogonal lines intersect, is part of the definition of line-
orthogonality. By A2 and the definition of line-orthogonality, we deduce that MP3
holds as well.

To see that MP5 holds, notice that, by A7, for a 6= b, and p not on ab,
we have either ⊥ (apb) and ⊥ (bpa) or ϕ(abpmnoqq′rr′uvp′). If ⊥ (apb), then
the lines pa and ab are orthogonal, and pa passes through p. Suppose we have
ϕ(abpmnoqq′rr′uvp′). Then po is a line that passes through p and is orthogonal
to ab, given that o is on both lines, and that ⊥ (oap) or ⊥ (obp) must hold by the
definition of ϕ and A2. Should p be on ab, then the existence of a line through p
orthogonal to ab follows from A3. The uniqueness of the orthogonal to ab through
p in this case is a consequence of our definition of L, (3), and A2.

We now define the reflection %ab in the line ab, with a 6= b, by assigning
to each point p the point p′, for which Rab(pp

′) holds. This point is p in case
one of ⊥ (abp)∧ ⊥ (bpa) or λ(pab) holds, and thus is unique. Notice that, by
A6 and (8), the choice of p′ as p does not depend on the particular points a
and b we have chosen to represent the line ab. If neither ⊥ (abp)∧ ⊥ (bpa)
nor λ(pab) hold, then, by A7, there must be m,n, o, q, q′, r, r′, p′, u, v such that
ϕ(abpmnoqq′rr′uvp′). Thus, according to the definition of R, p′ must, in this case
be the point for which ϕ(abpmnoqq′rr′uvp′) (notice that, by (1), we cannot have
both λ(pab) and ϕ(abpmnoqq′rr′uvp′), so that % is well-defined). The point p′

is unique in this case as well, by A8. Notice again that, given p, the point p′ is
determined by the line ab, and not by the particular choice of a and b used to
represent it. This can be seen by noticing that, in the definition of ϕ the only
occurrence of a and b is in a 6= b∧((Lp(oab)∨(o = a∧ ⊥ (opb))∨(o = b∧ ⊥ (opa))),
and that, by A5, (6), (5), (3), we have

a 6= b ∧ (Lp(oab) ∨ (o = a∧ ⊥ (opb)) ∨ (o = b∧ ⊥ (opa))) ∧ λ(abc) ∧ λ(abd)

∧c 6= d → Lp(ocd) ∨ (o = c∧ ⊥ (opd)) ∨ (o = d∧ ⊥ (opc)).

Thus, using A6 as well, we have

¬(⊥ (apb)∧ ⊥ (bpa)) ∧ ϕ(abpmnoqq′rr′uvp′) ∧ λ(abc) ∧ λ(abd) ∧ c 6= d

→ ¬(⊥ (cpd)∧ ⊥ (dpc)) ∧ ϕ(cdpmnoqq′rr′uvp′),

showing that the point p′ depends, in case p is not such that there are two or-
thogonal from it to ab, only on p and the line ab.

The map %ab is orthogonality-preserving by A9, and thus, given our definitions
of L and λ, collinearity-preserving as well. It fixes all the points on the line ab,
and it is involutory, given that ϕ(abpmnoqq′rr′uvp′) → ϕ(abp′mnoq′qr′ruvp).

MP6 and MP7 follow from A10 and A11.
To show that the two axiom systems axiomatize the same class of models, we

need to define in the language of the axioms MP1–MP7, the notion ⊥, and to show
that, with that definition, the axioms A1–A12 can be derived from MP1–MP7.
The definition of ⊥ (abc) is, as expected, ‘a 6= b, a 6= c, and the lines ab and ac
are orthogonal’. By the main theorem of [2, §6, §8]:
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Representation Theorem. Every model of a metric plane (i.e. of MP1–MP7)
can be represented as an embedded subplane (i.e. containing with every point all
the lines of the projective-metric plane that are incident with it) that contains the
point (0, 0, 1) of a projective-metric plane P(K, f) over a field K of characteristic
6= 2, from which it inherits the collinearity and orthogonality relations.

By projective-metric plane P(K, f) over a field K of characteristic 6= 2, with
f a symmetric bilinear form, which may be chosen to be defined by f(x,y) =
λx1y1 + µx2y2 + νx3y3, with λµ 6= 0, for x,y ∈ K3 (where u always denotes
the triple (u1, u2, u3), line or point, according to context), we understand a set
of points and lines, the former to be denoted by (x, y, z) the latter by [u, v, w]
(determined up to multiplication by a non-zero scalar, not all coordinates being
allowed to be 0), endowed with a notion of incidence, point (x, y, z) being incident
with line [u, v, w] if and only if xu+yv + zw = 0, an orthogonality of lines defined
by f, under which lines g and g′ are orthogonal if and only if f(g,g′) = 0.

Thus, all we need to check is that the axioms A1–A12 hold in these embedded
subplanes of projective-metric planes.1

The only axioms that need to be checked, the others being known to hold
in metric planes, are A7 and A8. To simplify computations, we will assume, to
prove that both of these axioms hold, that the line ab is the line [0, 1, 0], and
that p = (0, α, 1), for some α ∈ K \ {0}, the metric plane being denoted by
M. This choice of p is possible whenever we know that there do not exist two
different lines through p that are orthogonal to [0, 1, 0] (if two such perpendiculars
exist, then p would have to be (α, β, 0)), and that p does not lie on ab. That
there exist m, n, o, q, q′, r, r′, p′, u, v such that ϕ(abpmnoqq′rr′uvp′) can be seen by
taking m = (x, 0, 1), n = (−x, 0, 1), o = (0, 0, 1), q = (x, α, 1), q′ = (x,−α, 1),
r = (−x, α, 1), r′ = (−x,−α, 1), p′ = (0,−a, 1), u any point, different from
(0, 0, 1), on the line [α, x, 0], and v any point, different from (0, 0, 1), on the line
[α,−x, 0], where x ∈ K \ {0} is such that q = (x, α, 1) is a point of M (such
an x must exist), given that there must be a second point on the line [0, 1,−α],
which is a line of M, given that it passes through a point of M, namely p, and
the requirement that M be an embedded subplane. To see that, with p = (0, α, 1)
and ab = [0, 1, 0], the point p′ given by ϕ(abpmnoqq′rr′uvp′) is unique in case
there do not exist two perpendiculars through p to ab (we know by (1) that
p cannot be on ab), we notice that the conditions Lo(pqr), q 6= r, Lo(mqq′),
q 6= q′, Lo(nrr′), r 6= r′, Lo(p

′q′r′), Lm(opp′), m 6= n,Lp(omn), from the definition
of ϕ(abpmnoqq′rr′uvp′), imply that m = (x, 0, 1), n = (y, 0, 1), o = (0, 0, 1),
q = (x, α, 1), q′ = (x, β, 1), r = (y, α, 1), r′ = (y, β, 1), p′ = (0, β, 1), with x 6= y,
x 6= 0, y 6= 0, α 6= 0, β 6= 0, and α 6= β. The last two conditions, that, for
some u and v, we have Lu(orq

′) and Lv(oqr
′), imply that the points o, r, q′ are

collinear, and that the points o, q, r′ are collinear. Let [i, j, k] be the line on which
o, r, q′ lie, and [i′, j′, k′] the line on which o, q, r′ lie. Since both lines pass through

1It would have been preferable to have a synthetic proof that the axioms A7 and A8 can be
derived from Bachmann’s axioms for metric planes, but we could not find such a proof for A8
(see the Appendix for synthetic proofs).
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(0, 0, 1), we must have k = k′ = 0. The remaining four incidences give iy+jα = 0,
ix + jβ = 0, i′x + j′α = 0, i′y + j′β = 0. This is a homogeneous linear system in
the unknowns x, y, α, β, and it has a solution (x, y, α, β) 6= (0, 0, 0, 0) if and only
if the determinant of the matrix of this system is zero. This means that(

j′

i′

)
2−

(
j

i

)
2 = 0,

i. e. that j′

i′
= ± j

i
. Since j′

i′
= j

i
leads to α = β, we must have j′

i′
= − j

i
, and

this leads to β = −α and y = −x, implying the uniqueness of p′, which must be
(0,−α, 1) regardless of the intermediate points m, n, o, q, q′, r, r′, u, v.

4. ∀∃-axiomatizability

There is a problem of a logical complexity nature regarding our axiom system
A1–A12. Two of the axioms, A10 and A11 have quantifier complexity ∀∃∀, all
the other axioms being ∀∃-axioms (i.e. all universal quantifier (if any) precede all
existential quantifiers (if any)). However, they can be replaced with axioms which
are ∀∃-axioms, to obtain an axiom system, A1–A9, A12, A13–A16, all of whose
axioms are ∀∃-statements. A10 can be replaced by the two axioms

A 13. (∀abcefg)(∃dd′) Lf (bac)∧ ⊥ (aeb)∧ ⊥ (cgb) ∧Rbf (ee
′) ∧Rcg(e

′e′′)
→ Ld′(dab) ∧Rdd′(ee′′),

A 14. Lf (bac)∧ ⊥ (aeb)∧ ⊥ (cgb) ∧Rbf (ee
′) ∧Rcg(e

′e′′) ∧ Ld′(dab) ∧Rdd′(ee′′)
∧Rae(pq) ∧Rbf (qr) ∧Rcg(rs) → Ld′(dab) ∧Rdd′(ps),

and A11 by the two axioms

A 15. (∀oabc)(∃d) o 6= a ∧Rob(aa′) ∧Roc(a
′a′′) → Rod(aa′′),

A 16. o 6= a ∧Rob(aa′) ∧Roc(a
′a′′) ∧Rod(aa′′) ∧Roa(pq) ∧Rob(qr) ∧Roc(rs)

→ Rod(ps).
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5. Appendix: Synthetic proofs

We present here the synthetic proofs that the author thought preferable to the
algebraic proof, but could not find for A8, of the fact that the axioms A7 and A8
hold in Bachmann’s metric planes. This proof removes the need to refer to the
representation theorem for Bachmann’s metric planes, relying instead only on the
fact that metric planes can be embedded in Pappian Fanoian projective planes
(i. e. projective planes that can be coordinatized by fields of characteristic 6= 2).
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Lemma 2. Metric planes satisfy A7.

Proof. Let a, b, p be three given points, satisfying the hypothesis of A7, and let
o be the foot of the perpendicular from p to ab, and q a point different from p on
the line through p, which is orthogonal to op (see Figure 1). Let p′ := %ab(p) and
q′ := %ab(q), where %ab denotes, as previously defined, the reflection in the line ab.
Let r := %op(q) and r′ := %ab = r. The lines p′r′ and pp′ are orthogonal. The
points q′, r, and o lie on the line %ab(qr′), being images under %ab of the points
q, r′, and o. If we denote by m and n the feet of the perpendiculars from q and
respectively from r on ab, we get ϕ(abpmnoqq′rr′uvp′). �

Lemma 3. Metric planes satisfy A8.

Proof. We will present two proofs for this lemma.

1. (by Rolf Struve2). Let a, b, p, m, n, o, q, q′, r, r′, u, v, p′ be points of a metric
plane M with ϕ(abpmnoqq′rr′uvp′), and such that there is only one perpendicular
from p to ab, i. e. points as shown in Figure 1. We will show, that p′ is %ab(p), a
uniquely determined point. According to Bachmann’s [2] main theorem, M can
be embedded in a Pappian Fanoian projective plane P. Let z∞ and a∞ be the
points in P that lie on all lines perpendicular to ab and pp′, respectively. Let % be
the uniquely determined homology with axis ab and center z∞ that maps p into
p′. The point q will be mapped by % into a point on the perpendicular from q to
ab, which is incident with p′a∞ (given that a∞ is the intersection point of pq and
ab) thus in q′. Analogously, one shows that %(r) = r′. We also have %(q′) = q,
given that q′ is incident with the perpendicular from q′ to ab and with or, the
point %(q′) must be the point of intersection of the perpendicular from q to ab
with or′. Thus %(%(q)) = %(q′) = q. The projective collineation % ◦ % thus fixes q,
z∞, and the line ab pointwise, and must thus be the identity, so % is involutory.
In a Pappian Fanoian projective plane there exists only one involutory homology
with given center and axis. Thus p′ is uniquely determined: it is the image of p
under the reflection %ab.

2. (by Horst Struve3). Under the same assumptions regarding the points a, b,
p, m, n, o, q, q′, r, r′, u, v, p′, let p′∗ := %ab(p), r∗ := %op(q), q′∗ := %ab(q),
r′∗ := %ab(r

∗). With n∗ standing for the foot of the perpendicular from r∗ to
ab, we have ϕ(abpmn∗oqq′∗r∗r′∗u∗v∗p′∗). We will show, that p′ = p′∗ i. e. that
p′ = %ab(p).

To this end, we consider the following Desargues configuration: through the
point q, the centre of the configuration, pass the three lines qp, qo, and qq′. On
these lines lie the vertices of the two triangles rr′q′ and r∗r′∗q′∗. Suppose r 6= r∗.
Then the vertices of the two triangles are pairwise different, i. e. r′ 6= r′∗ and
q′ 6= q′∗ as well. Thus, according to the Desargues axiom (which holds in P, in

2Signal Iduna Gruppe, Joseph-Scherer-Straße 3, D-44139 Dortmund, Germany, e-mail:
rolf.struve@signal-iduna.de

3Universität zu Köln, Seminar für Mathematik und ihre Didaktik, Joseph-Scherer-Straße 3,
Gronewaldstraße 2, D-50931 Köln, Germany, e-mail: h.struve@uni-koeln.de
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which the Pappus axiom holds) the two triangles must be perspective from a line
as well, i. e. the intersection points of rr′ and r∗r′∗, of q′r′ and q′∗r′∗ and of rq′ and
r∗q′∗ must be collinear. Both rr′ and r∗r′∗ are incident with the pole z∞ of line ab,
both q′r′ and q′∗r′∗ are incident with the pole a∞ of line pp′, both rq′ and r∗q′∗ are
incident with o. These three points cannot be collinear, for else, we would have
oz∞ = oa∞, and thus pp′ = ab, contradicting the fact that pp′ is perpendicular
to ab. This means that two corresponding vertices of the two triangles rr′q′ and
r∗r′∗q′∗ must coincide, and thus all three corresponding vertices coincide, given
the definition of the points with an asterisk. Thus also p′ = p′∗ = %ab(p). �
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