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Abstract. We prove the following theorem: If H is a slim hyperbola
that contains a closed set S of lines in the Euclidean plane, there exists
exactly one hyperbola Hmin of minimal volume that contains S and is
contained in H. The precise concepts of “slim”, the “volume of a hyper-
bola” and “straight lines or hyperbolas being contained in a hyperbola”
are defined in the text.

1. Introduction and preliminaries

Let P ⊂ Rd be a bounded, closed point set, denote the convex hull of P by ch(P)
and assume the affine hull of P is Rd. By a classical result of convex geometry
there exists a unique ellipsoid Emin of minimal volume that contains P – the
Löwner ellipsoid Emin of P (sometimes also called the Löwner-John ellipsoid or
minimal ellipsoid of P).

Similarly, there exists a unique ellipsoid Emax of maximal volume that is con-
tained in ch(P) – the John ellipsoid or maximal ellipsoid of P . Löwner and John
ellipsoids are closely related and share many analogous properties. The unique-
ness of Emin was first proved in [2] for d = 2 and in [4] for arbitrary dimension.
The most important proof, however, is due to F. John [12]. John not only proved
the mere uniqueness of the maximal and minimal ellipsoids, he also characterized
them in terms of his famous “partition of identity”. The results of John have been
extended, generalized and simplified in a number of subsequent publications. To
mention but a few, we cite [1], [8], [17] and, most recently, [9], [10].

Two of the attractive geometric properties of Löwner and John ellipsoids are:
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Figure 1. Examples from [5] (courtesy W. Förstner) and [20] of uncertain straight
lines being represented by hyperboloids

• Emin and Emax are affinely related to P . If α : Rd → Rd is an affine transfor-
mation, then α(Emin) is the Löwner ellipsoid and α(Emax) the John ellipsoid
of α(P). This affine relation can be exploited to simplify proofs of unique-
ness of Emin and Emax (as for example in [4] or [13]).

• If Emin is scaled about its center by a factor of d−1, it lies inside ch(P). If P
is centrally symmetric, the scaling factor can be tightened to d−1/2 (see [12]
or [3, Section 8.4]). Analogously, scaling the John ellipsoid about its center
by a factor of d (or by a factor of d1/2 in case of a centrally symmetric point
set) yields an ellipsoid containing P .

Löwner and John ellipsoids have numerous applications (see [7] and the references
therein), basically because they are simple shapes that can be used to reliably rep-
resent point sets. The idea of replacing point sets by enclosing or approximating
ellipsoids has been used in recent publications on worst-case tolerancing in geom-
etry [18, 21, 11]. While geometric constructions not only involve points but also
straight lines or general subspaces (and many more primitives), the question of
representing sets of subspaces by “simple shapes” has so far only been remotely
touched. In this context, it seems natural to replace sets of lines by hyperbolas or,
more generally, replace sets of subspaces by suitable hyperboloids (see Figure 1).
However, theoretical fortification of this concept is not available.

In the present paper we consider a set of lines S and the “smallest” hyperbola
Hmin that “contains” S. In order to do so, we need to define

1. the concept of “a straight line S being contained in a hyperbola H” and

2. the volume of a hyperbola H.

Anticipating Definition 2 we say that S is contained in H if H and S have at most
one real intersection point. The volume m(H) will be defined in Section 2 as the
unique Euclidean measure of all straight lines contained in H.

Our main result is a proof of uniqueness of Hmin provided certain conditions
are met (Theorem 1). It is clear that these conditions have to be more restrictive
than the pre-requisites for the uniqueness of the Löwner ellipsoid. As a simple
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Figure 2. Minimal enclosing hyperbolas of line sets with rotational symmetry

example, consider a line set S with rotational symmetry; its minimal enclosing
hyperbola cannot be unique (Figure 2). We will show the uniqueness of the
minimal enclosing hyperbola Hmin among all hyperbolas that enclose S and are
“contained” in a given “slim” hyperbola H.

The main difficulty of the proof, as opposed to known proofs of uniqueness of
the Löwner ellipsoids, is the lacking affine relation of Hmin and S. It prevents
easy adaption of the geometric reasoning of [4, 16] or the optimization theoretic
setup of [13]. We will instead give a computational proof of uniqueness, based
on properties of the volume function m(H) of hyperbolas and on the geometry of
conics and dual conics.

The remaining part of this paper is organized as follows. We define the mea-
sure for sets of straight lines and derive explicit formulas for the volume of a
hyperbola in Section 2. In this section we also study some properties of the vol-
ume function. Section 3 is dedicated to the proof of an auxiliary lemma concerning
the volume of hyperbolas in a dual linear pencil of conics. It is used for the proof
of the main theorem in Section 4. Generalizations of this paper’s topic and open
questions are discussed in the final Section 5.

2. The volume of a hyperbola

In this section we define a measure m(H) for the set of lines S contained in a
hyperbola H. One can think of several possible definitions for m(H) but it seems
sensible to use the (essentially unique) measure for sets of straight lines in the
plane that is invariant with respect to Euclidean transformations.

Let S be a set of straight lines S : x cosϕ + y sinϕ = p. The integral

m(S) =

∫
S

dp ∧ dϕ (1)

is called the density for straight lines ([19, Chapter 3]). Up to a constant positive
factor, it is the unique measure that is invariant under Euclidean transformations,
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i.e., m(S) and m(α(S)) are equal for all sets of lines S and all proper Euclidean
transformations α : R2 → R2. By convention, the measure (1) is always taken in
absolute value.

Definition 1. The interior int C of a conic section C is the set of intersection
points of two different non-real tangents of C. The exterior ext C of a conic
section C is the set of intersection points of two different real tangents of C. A
point p is contained in C if p is element of int C or of C itself (Figure 3).

Definition 2. The line interior l-int C of a conic section C is the set of straight
lines that intersect C in two non-real points. The line exterior l-ext C of a conic
section C is the set of straight lines that intersect C in two real points. A straight
line S is contained in C if S is element of l-int C or tangent of C (Figure 3).

int E

int H

int H

Figure 3. Interior of an ellipse E and a hyperbola H; some straight lines contained
in H

The interior of an ellipse and a hyperbola are visualized in Figure 3. Note that S
is contained in H if all points s ∈ S are elements of ext H. A few straight lines
contained in H are also depicted in Figure 3.

We want to compute the measure (1) for the set of lines contained in a hy-
perbola H. Because of the Euclidean invariance of (1) we may assume that H is
given by the equation

H :
y2

a2
− x2

b2
= 1. (2)

The straight line S : x cosϕ + y sinϕ = p is contained in H if and only if

p2 ≤ a2 sin2ϕ− b2 cos2ϕ. (3)

With ϕ0 = arctan(b/a) and

p(ϕ) =

√
a2 sin2ϕ− b2 cos2ϕ (4)

we compute

m(H) =

∫ π−ϕ0

ϕ0

∫ p(ϕ)

−p(ϕ)

dp dϕ = 4

∫ ϕ0

0

p(ϕ) dϕ. (5)

The measure m(H) only depends on the hyperbola’s semi-axis lengths a and b.
Therefore, we also write m(H) = m(a, b).
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2.1. The volume formula in terms of elliptic integrals

The right-hand side of equation (5) is an elliptic integral. In terms of the incom-
plete elliptic integral of first kind

E(z, k) :=

∫ z

0

√
1− k2t2√
1− t2

dt (6)

it can be written as

m(a, b) = 4a E

(
a√

a2 + b2
,

√
a2 + b2

a

)
. (7)

Numeric evaluation of this formula reveals some difficulties: Because of rounding
errors, even real arguments a and b might result in complex volumes with small
imaginary part. Therefore, we give an alternative expression for (7) using complete
elliptic integrals

K(k) :=

∫ 1

0

dt√
1− k2t2

√
1− t2

and E(k) := E(1, k) (8)

of first and second kind. We find

m(a, b) = 4
√

a2 + b2

(
E

( a√
a2 + b2

)
− b2

a2 + b2
K

( a√
a2 + b2

))
. (9)

2.2. Properties of the volume function

From equation (9) we derive the following formulas for limit cases:

• m(0, b) = 0, limb→∞ m(a, b) = 0: In these two cases, H degenerates and the
set of lines contained in H depends on one parameter only. Its measure is
zero.

• m(a, 0) = 4a: H degenerates but contains all straight lines that meet a cer-
tain line-segment of length 2a. The value of the volume function is measure
for this set of lines. This is a special case of [19, equation (3.12)].

• lima→∞ m(a, b) = ∞: If a goes to infinity, so does the volume of H.

For any positive real s, the volume function satisfies m(sa, sb) = s·m(a, b). Hence,
the graph

G := {[a, b, m(a, b)]T | a, b ≥ 0} (10)

of the volume function is a cone in R3 with vertex [0, 0, 0]T . It is depicted in
Figure 4. Its intersection with the plane a = 1 can be parameterized by

m(b) = m(1, b) =

4(1 + b2)−1/2
(

(1 + b2)E
(
(1 + b2)−1/2

)
− b2K

(
(1 + b2)−1/2

))
, b ∈ [0,∞). (11)
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Figure 4. The graph G of the volume function m(a, b)

Lemma 1. There exists exactly one value b̂ > 0 such that m(b) is strictly concave
on [0, b̂) and strictly convex on (b̂,∞).

Proof. The second derivative of m(b) with respect to b is

m′′(b) = 4t
(
2E(t)−K(t)

)
where t = (1 + b2)−1/2. (12)

The claim of this lemma follows from Lemma 3 (Appendix, page 379).

Corollary 1. The volume function m(a, b) is convex for b : a > b̂.

Proof. The corollary follows from Lemma 1 and the fact that the graph of m(a, b)
is a cone with vertex [0, 0, 0]T .

Remark 1. The numeric value of b̂ can be computed from Lemma 3:

t̂ ≈ 0.9089085575 =⇒ b̂ ≈ 0.4587870596. (13)

The volume function m(a, b) is convex for hyperbolas whose asymptotes enclose
an angle of ϕ̂ := arctan(b̂−1) ≈ 65.3550◦ or less with the hyperbola’s minor axes.

Definition 3. Let H be a hyperbola and denote the angle between its asymptotes
and minor axis by ϕ. The hyperbola H is called slim if ϕ < ϕ̂.

Remark 2. By direct computation it can be shown that for the hyperbolas in
the right-hand image of Figure 2 we have ϕ = ϕ̂.

In the proof of Theorem 1 (Section 4) we will use a parametric representation of
the level set

m̃ := {[a, b]T | m(a, b) = 1} (14)

of the volume function. It can be computed as central projection of the curve (11)
from the point [0, 0, 0]T :

m̃ :


a(t) =

t

4
(
K(t)(t2 − 1) + E(t)

)
b(t) =

√
1− t2

4
(
K(t)(t2 − 1) + E(t)

) t ∈ (0, 1]. (15)
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Figure 5. The level-set m̃, the curve [a(t), b(t)]T and derivative vectors in the point
m̃(t0).

The curve m̃(t) is depicted in Figure 5. Parameter values t in the vicinity of zero
belong to large values of a(t) and b(t) while m̃(1) = [1/4, 0]T yields the smallest
possible values of a and b such that m(a, b) = 1. The point m(t̂) is an inflection
point.

For later reference we state that the derivative vector of m̃(t) has the direction
and orientation of

dm̃(t) :=

[
E(t)−K(t)

−tE(t)/
√

1− t2

]
. (16)

Regardless of the value of t, both entries of this vector are negative (Figure 5).

3. Dual linear pencils of conics

In this section we prove an auxiliary lemma on the volume of hyperbolas in a dual
linear pencil of conics. It will be used in the proof of Theorem 1.

Let H0 and H1 be two hyperbolas with equations

Hi : xT ·Hi · x = 0, i = 0, 1, (17)

where x = [1, x, y]T and Hi is a regular symmetric matrix of dimension three.
The dual conic H i is the set of tangents of Hi. The equation of a tangent of Hi

reads u0 + u1x + u2y = 0 such that the vector u = [u0, u1, u2]
T satisfies

H i : uT ·Hi · u = 0, (18)

where Hi = %H−1
i and % ∈ R \ {0}. The linear pencil of dual conics spanned by

H0 and H1 is the set of conics

H(λ) : xT ·H(λ) · x = 0 (19)

where H(λ) = (1− λ)H0 + λH1 and λ ∈ R ∪ {∞}. The matrix H(∞) is defined
as

H(∞) := H1 −H0 = lim
λ→∞

λ−1H(λ). (20)
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We call the set
H(λ) = H(λ), λ ∈ R ∪ {∞} (21)

a dual linear pencil of conics. As opposed to a linear pencil of dual conics (which
consists of dual conics), its elements are ordinary conics that share four (possible
complex or coinciding) tangents.

The dual linear pencil of conics H(λ) contains exactly one parabola P . Its
parameter value λp is the solution of a linear equation obtained by setting the entry
h00(λ) in the first row and first column of H(λ) to zero. By suitably normalizing
the matrices H0 and H1 (they are only unique up to a constant factor) it is no
loss of generality to assume λp = ∞, i.e., h00 is actually independent of λ.

Lemma 2. Let H0 and H1 be two regular slim hyperbolas of equal volume m0 =
m(H0) = m(H1). Let H(λ) be a parameterization of the dual linear pencil of conics
spanned by H0 and H1 such that H0 = H(0), H1 = H(1) and assume further that
P = H(∞) is the unique parabola in the dual linear pencil H(λ). Then there
exists a parameter value λ ∈ (0, 1) such that Hmin := H(λ) is a hyperbola of
volume m(Hmin) < m0.

Proof. The major and minor semi-axis lengths of Hi be denoted by ai and bi.
Because H0 and H1 are of equal volume it is no loss of generality to assume

a0 ≥ a1 and b0 ≥ b1. (22)

Furthermore, we can scale the hyperbolas H0 and H1 appropriately, so that m0 =
1. Therefore, there exist values 0 < t0 ≤ t1 < 1 such that

m̃(t0) = [a0, b0]
T and m̃(t1) = [a1, b1]

T . (23)

In a suitable coordinate frame, the algebraic equations of H1 and H2 read

H0 : u ·H0 · uT = 0 and H1 : u ·H1 · uT = 0, (24)

and where

H0 =

1 0 0
0 −a2

0 0
0 0 b2

0

 , (25)

H1 =

 1 tx ty
tx t2x + b2

1 − (a2
1 + b2

1) cos2ϕ txty − (a2
1 + b2

1) sinϕ cosϕ
ty txty − (a2

1 + b2
1) sinϕ cosϕ t2y − a2

1 + (a2
1 + b2

1) cos(ϕ)2

 . (26)

The point [tx, ty]T is the center of H1. The angle between the minor axis of H1

and the x-axis of the coordinate frame is ϕ.
Any dual conic H(λ) in the linear pencil of dual conics spanned by H0 and

H1 can be described by an equation of the form

H(λ) : u ·H(λ) ·uT = 0, where H(λ) = (1−λ)H0 +λH1 and λ ∈ R∪{∞}. (27)
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The matrices Hi are already normalized such that the parabola in this dual linear
pencil belongs to λp = ∞, as required by the lemma’s assumptions.

Because H0 is a regular hyperbola, there exists a certain neighbourhood N
of 0 in (0, 1) such that all conics H(λ) with λ ∈ N are hyperbolas. We denote
by a(λ) and b(λ) the major and minor semi-axis length of H(λ) and consider the
curve

s(λ) = [a(λ), b(λ)]T , λ ∈ N (28)

in the [a, b]-plane. A plot of s(λ) is depicted in Figure 5. Note that the shape of
the curve s(λ) depends on the hyperbola’s semi-axis lengths (i.e., indirectly on t0
and t1), on the center [tx, ty]T of H1 and on the angle ϕ.

We will show that the derivative vector

ds(0) :=

[
da

dλ
(0),

db

dλ
(0)

]T

(29)

points “to the left” of the level set curve m̃(t) of the volume function graph (25)
(compare Figure 5). This already implies the existence of λmin ∈ N such that
Hmin = H(λmin) is a hyperbola of volume less than m0. “Pointing to the left”
means that the determinant d := det[ds(0), dm̃(t0)] is positive.

From equations (25), (26) and (27) we can compute expressions for the semi-
axis lengths a(λ) and b(λ) of H(λ) in the following way: We invert H(λ) to obtain
H(λ). Then we translate the conic H(λ) so that [0, 0]T becomes its new center.
The equation of the translated conic H̃(λ) is xT · H̃(λ) · x = 0 where H̃ = (h̃ij),
h̃00 = −1 and h̃0i = h̃i0 = 0 for i > 0. The eigenvalues of the matrix H̃ are −1,
ν0 and ν1 where

ν0 = 1/2
(
h̃22 + h̃11 +

√
(h̃11 − h̃22)2 + 4h̃2

12

)
, and (30)

ν1 = 1/2
(
h̃22 + h̃11 −

√
(h̃11 − h̃22)2 + 4h̃2

12

)
. (31)

By assumption H̃(λ) is a hyperbola; therefore ν0 is positive and ν1 is negative.
The major semi-axis length of H(λ) is a(λ) = (ν0)

−1/2, its minor semi-axis length
is b(λ) = (−ν1)

−1/2. The explicit formulas for a(λ) and b(λ) in terms of a0, b0,
a1, b1, tx, ty and ϕ are lengthy. However, the derivatives at λ = 0 are of simple
shape:

da

dλ
(0) =

(a2
1 + b2

1) cos2ϕ− a2
0 − b2

1 − t2x
2a0

,

db

dλ
(0) =

(a2
1 + b2

1) cos2ϕ− a2
1 − b2

0 + t2y
2b0

.

(32)

The derivative da/dλ(0) equals zero if cos2ϕ = 1, tx = 0 and a1 = a0 ( =⇒ b1 =
b0). The derivative db/dλ(0) equals zero if additionally ty = 0. Hence, the vector
(29) vanishes if and only if H0 and H1 are equal. This case has been excluded.

From (22) we conclude da/dλ(0) ≤ 0. If db/dλ(0) is not negative, Lemma 2
is proved (because both entries of (14) are negative). Otherwise, the extreme
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case tx = ty = 0 can be assumed. We substitute (23) into (29) and compute the
determinant d = det[ds(0), dm̃(t0)]. It can be written in the form

d =
P − cos2ϕ(2E0 −K0)(K0(t

2
0 − 1) + E0)

32t0
√

1− t20(K0(t20 − 1) + E0)2(K1(t21 − 1) + E1)2
(33)

where Ei = E(ti), Ki = K(ti) and P is a polynomial expression in t0, t1, E0, E1,
K0 and K1. In order to show that (33) is positive we distinguish two cases:

Case 1 (t0 = t1): Equation 33 simplifies to

d = (2E0 −K0)(K0(t
2
0 − 1) + E0) sin2ϕ. (34)

Because H0 is slim, Lemma 3 implies that the first factor in this expression is
positive. The last factor is positive because H0 and H1 are different. The middle
factor is positive because of Lemma 4 on page 380. Hence we conclude d > 0 and
the lemma is proved.

Case 2 (t0 < t1): By Lemma 3 and Lemma 4 the coefficient of cos2ϕ in (33) is
negative. Hence, we may restrict ourselves to the extreme case cos2ϕ = 1. We
compute

d = (K1(t
2
1 − 1) + E1)

2 − (K0(t
2
0 − 1) + E0)(K0(t

2
1 − 1) + E0). (35)

The positivity of d follows from Lemma 3 together with the fact that K is strictly
monotone increasing and E is strictly monotone decreasing on (0, 1).

4. Uniqueness of the minimal enclosing hyperboloid

In this section we prove the main theorem of this article. It is a counterpart of
the theorem on the uniqueness of the Löwner ellipse to a bounded, closed point
set P ⊂ E2. To begin with, we clarify the notion of a “hyperbola being contained
in a hyperbola”.

H

H ′

H ′′

Figure 6. The hyperbola H ′ is contained in the hyperbola H while H ′′ is not
contained in H

Definition 4. A hyperbola H ′ is said to be contained in a hyperbola H if all points
of H ′ are contained in the closure of ext H and all points of H are contained in
the closure of int H ′.



H.-P. Schröcker: Minimal Enclosing Hyperbolas of Line Sets 377

The hyperbola H ′ of Figure 6 is contained in the hyperbola H while H ′′ is not.
Note that Definition 4 is tailored for the use in Theorem 1 and differs from usual
concepts of “a conic being contained in a conic”. In Theorem 1 we use the notion
of a closed set S of lines. This means that S can be mapped continuously and
bijectively onto a closed set of points, for example via the polarity at a conic
section.

Theorem 1. Let S be a closed set of lines such that

• not all elements of S have a common point or are parallel and

• all elements of S are contained in a regular, slim hyperbola H.

Then there exists a unique hyperbola Hmin of minimal volume that is contained in
H and contains S (see Figure 7).

Proof. a) Existence: Consider an ellipse E whose center e is element of int H.
The polarity ε at E is the mapping that associates to every point p ∈ P2 its polar

ε(p) and to every line S ∈ P2
its pole ε(S) with respect to E. Denote the set of

all hyperbolas contained in H and containing S by H and let H := {H | H ∈ H}
be the corresponding set of dual hyperbolas. The polar image of H is a set E of
ellipses contained in E and containing ε(S). As shown in [4], the set E (and hence
also H) can be mapped continuously to a bounded subset of R5 (the coefficients
of all ellipse equations in a certain normal form are bounded). The set E is closed
because S is closed. Hence, the existence of a minimal volume hyperbola Hmin

follows from Weierstrass’ theorem on the existence of extremal values of continuous
functions.

b) Uniqueness: In order to show uniqueness, we assume there exist two minimal
hyperbolas H0, H1 ∈ H. We let m0 = m(H0) = m(H1). Because H0 and H1 are
contained in H, they are slim. Hence we can apply Lemma 2 and we find that
the dual linear pencil of conics H(λ) spanned by H0 and H1 contains a hyperbola
Hmin of volume m(Hmin) < m0. If H(λ) is parameterized so that H(0) = H0,
H(1) = H1 and H(∞) = P is the unique parabola in H(λ), Hmin belongs to a
parameter value λmin ∈ (0, 1). We will show that Hmin is contained in H and
contains S.

Because int H \ int P has inner points, it is no loss of generality to assume
that the ellipse center e is contained in int H \ int P . We study the polar image
of the conics H(λ):

• The set
{
E(λ) = ε(H(λ)) | λ ∈ R ∪ {∞}

}
is a linear pencil of conics.

• The conic Ei := ε(H i) is an ellipse contained in E and containing ε(S).

• The conic ε(P ) is a hyperbola.

By Lemma 5, E(λmin) = ε(Hmin) is an ellipse containing ε(S) and contained in
int E. Therefore Hmin contains S and is contained in H. This contradicts the
assumed minimality of H0 and H1.
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Hmin

S0

S1

S2

S3

Figure 7. The minimal volume hyperbola Hmin to four straight lines S0, S1, S2

and S3

5. Conclusion and future research

The main contribution of this text is the proof of uniqueness of a minimal hyper-
bola among all hyperbolas that enclose a given line set and are contained in a slim
hyperbola H. We are currently unable to prove or refute the claim of Theorem 1
when H is not slim. It would be desirable to clarify this question. Further ideas
for future research are collected in the remaining part of this section.

5.1. Different volume formulas

We have defined the volume of a hyperbola via the density for straight lines (1)
and obtained a volume formula in terms of elliptic integrals (9). This definition
seems reasonable but it is not the only way one can think of. An axiomatic
characterization of a volume function v for hyperbolas might look as follows:

• v(H) = v(a, b), i.e., it depends only on the hyperbola’s semi-axis lengths.

• v(a, b) is strictly monotone increasing in a and strictly monotone decreasing
in b.

• v(a, b) has the limit behavior of m(a, b) as presented at the beginning of
Section 2.2 but with exception of v(a, 0) = 4a. We only require that a > 0
implies v(a, 0) > 0.

Which of the functions characterized in this way allow unique minimal volume
hyperboloids? Is it possible to find a volume for hyperboloids such that Hmin is
affinely related to the line set S? Further suggestions and questions raised below
can also be discussed in connection with axiomatically defined volume functions.

5.2. Maximal volume hyperboloids contained in convex line sets

Consider a set of lines S in R2 and a point p such that p /∈ S for all S ∈ S. We
call the line set S p-convex if the polar image P of S with respect to an ellipse E
centered at p is convex. The p-convex hull of S is the polar image of the convex
hull of P . It is easy to see that these concepts are well-defined, i.e., they do not
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depend on the particular choice of E. A hyperbola H is said to be contained in
the p-convex line set S if every point of H is contained in a line S ∈ S.

Given the p-convex line set S, is there a unique hyperbola Hmax of maximal
volume contained in S? What can be said about the relation between the minimal
and maximal hyperboloids? Are their centers identical as are the centers of the
Löwner and John ellipses (see [2])? Are there results on the approximation quality
of Hmin and Hmax similar to those mentioned in the introduction? If yes, by what
factor do we have to scale Hmin in order to ensure it is contained in the p-convex
hull of S?

5.3. Minimal volume enclosing quadrics of sets of subspaces

A generalization of Theorem 1 to sets of lines or planes in R3 is obvious. Straight
lines or planes in R3 can be enclosed by hyperboloids of one or two sheets, respec-
tively. The volume of these hyperboloids can be defined via the density of lines or
planes in R3 (see [19, Section 12.2]). Hence we can ask for existence and unique-
ness of minimal enclosing hyperboloids of lines and planes in R3 or, more general,
for existence and uniqueness of minimal enclosing hyperboloids of k-spaces in Rd.

5.4. Computational issues

The actual computation of Hmin is an optimization problem. For producing the
images in this article we found the routines in standard software packages to
be sufficient. However, theoretical results on the reliability or efficiency are not
available.

In the past years, some attention has been paid to the computation of Löwner
and John ellipsoids. It is a typical instance of convex programming (see [3, 13,
14, 15]). A randomized algorithm for the computation of Emin has been proposed
by [22]; its primitive steps are the topic of [6]. While it seems possible to adapt at
least some of the methods of [22] and [6], we are currently unable to formulate the
computation of minimal hyperbolas as instance of a convex optimization problem.

A. Auxiliary results

In the appendix we prove a few technical results. They are needed at certain
points in the preceding text but are of minor importance otherwise.

Lemma 3. The function f1(t) = 2E(t) − K(t), t ∈ [0, 1) has exactly one zero
t̂. It is positive for t < t̂ and negative for t > t̂. The numeric value of t̂ is
approximately t̂ ≈ 0.9089085575.

Proof. The first and second complete elliptic integrals have the following well-
known properties:

• E is strictly monotone decreasing,

• K is strictly monotone increasing on (0, 1),

• E(0) = K(0) = π/2, E(1) = 1, limx→1 K(x) = ∞.
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These properties imply the existence of a unique zero t̂ of f1(t).

Lemma 4. The function f2(t) = (t2−1)K(t)+E(t) is strictly monotone increas-
ing and positive on (0, 1).

Proof. The first derivative of f2(t) is f ′2(t) = tK(t). It is positive for t > 0; hence
f2 is strictly monotone increasing on (0, 1). Because of f2(0) = 0 the function
f2(t) is positive on (0, 1).

Lemma 5. Let C(λ) be a linear pencil of conics such that C(0) and C(1) are
ellipses with int C0 ∩ int C1 6= ∅ and assume there exists a value λh /∈ [0, 1] such
that C(λh) is a hyperbola. Then for every λ0 ∈ (0, 1) the conic C(λ0) is an ellipse
and

int C(0) ∩ int C(1) ⊂ int C(λ0). (36)

Proof. A proof of this lemma (in slightly different formulation) is already given
at other places, for example in [6] or in the proof of Theorem 1 in [4].
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30 (1990), 143–153. Zbl 0746.52026−−−−−−−−−−−−

[14] Juhnke, F.: Embedded maximal ellipsoids and semi-infinite optimization.
Beitr. Algebra Geom. 35(2) (1994), 163–171. Zbl 0819.52006−−−−−−−−−−−−

[15] Juhnke, F.: Polarity of embedded and circumscribed ellipsoids. Beitr. Algebra
Geom. 36(1) (1995), 17–24. Zbl 0819.52007−−−−−−−−−−−−

[16] Laugwitz, D.: Differentialgeometrie. Teubner, 3. edition, 1977.
Zbl 0411.53001−−−−−−−−−−−−
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