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Abstract. W. Heisenberg’s famous real matrix group provides a non-
commutative translation group of an affine 3-space. The Nil geometry
which is one of the eight homogeneous Thurston 3-geometries, can be
derived from this matrix group. E. Molnár proved in [2], that the homo-
geneous 3-spaces have a unified interpretation in the projective 3-sphere
PS3(V4, V 4, R). In our work we will use this projective model of the
Nil geometry.
In this paper we investigate the geodesic balls of the Nil space and
compute their volume (see (2.4)), introduce the notion of the Nil lattice,
Nil parallelepiped (see Section 3) and the density of the lattice-like
ball packing. Moreover, we determine the densest lattice-like geodesic
ball packing (Theorem 4.2). The density of this densest packing is
≈ 0.78085, may be surprising enough in comparison with the Euclidean
result π√

18
≈ 0.74048. The kissing number of the balls in this packing is

14.

1. On the Nil geometry

The Nil geometry can be derived from the famous real matrix group L(R) discov-
ered by Werner Heisenberg. The left (row-column) multiplication of Heisenberg
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matrices 1 x z
0 1 y
0 0 1

 1 a c
0 1 b
0 0 1

 =

1 a + x c + xb + z
0 1 b + y
0 0 1

 (1.1)

defines translations L(R) = {(x, y, z) : x, y, z ∈ R} on the points of the space
Nil = {(a, b, c) : a, b, c ∈ R}. These translations are not commutative in general.
The matrices K(z) C L of the form

K(z) 3

1 0 z
0 1 0
0 0 1

 7→ (0, 0, z) (1.2)

constitute the one parametric centre, i.e. each of its elements commutes with all
elements of L. The elements of K are called fibre translations. Nil geometry
of the Heisenberg group can be projectively (affinely) interpreted by the right
translations on points as the matrix formula

(1; a, b, c) → (1; a, b, c)


1 x y z
0 1 0 0
0 0 1 x
0 0 0 1

 = (1; x + a, y + b, z + bx + c)
(1.3)

shows, according to (1.1). Here we consider L as projective collineation group
with right actions in homogeneous coordinates. We will use the Cartesian ho-
mogeneous coordinate simplex E0(e0), E∞

1 (e1), E∞
2 (e2), E∞

3 (e3), ({ei} ⊂ V4

with the unit point E(e = e0 + e1 + e2 + e3)) which is distinguished by an origin
E0 and by the ideal points of coordinate axes, respectively. Moreover, y = cx with
0 < c ∈ R (or c ∈ R \ {0}) defines a point (x) = (y) of the projective 3-sphere
PS3 (or that of the projective space P3 where opposite rays (x) and (−x) are
identified). The dual system {(ei)}, ({ei} ⊂ V 4) describes the simplex planes,
especially the plane at infinity (e0) = E∞

1 E∞
2 E∞

3 , and generally, v = u1
c

defines a
plane (u) = (v) of PS3 (or that of P3). Thus 0 = xu = yv defines the incidence
of point (x) = (y) and plane (u) = (v), as (x)I(u) also denotes it. Thus NIL can
be visualized in the affine 3-space A3 (so in E3) as well [4].

In this context E. Molnár [2] has derived the well-known infinitesimal arc-
length square at any point of Nil as follows

(dx)2 + (dy)2 + (−xdy + dz)2 =

(dx)2 + (1 + x2)(dy)2 − 2x(dy)(dz) + (dz)2 =: (ds)2 (1.4)

Hence we get the symmetric metric tensor field g on Nil by components, further-
more its inverse:

gij :=

1 0 0
0 1 + x2 −x
0 −x 1

 , gij :=

1 0 0
0 1 x
0 x 1 + x2

 . (1.5)



J. Szirmai: The Densest Geodesic Ball Packing by a Type of Nil Lattices 385

The translation group L defined by formula (1.3) can be extended to a larger
group G of collineations, preserving the fibering, that will be equivalent to the
(orientation preserving) isometry group of Nil. In [3] E. Molnár has shown that a
rotation trough angle ω about the z-axis at the origin, as isometry of Nil, keeping
invariant the Riemann metric everywhere, will be a quadratic mapping in x, y to
z-image z as follows:

r(O, ω) : (1; x, y, z) → (1; x, y, z);

x = x cos ω − y sin ω, y = x sin ω + y cos ω,

z = z − 1

2
xy +

1

4
(x2 − y2) sin 2ω +

1

2
xy cos 2ω.

(1.6)

x → x′ = x, y → y′ = y, z → z′ = z − 1

2
xy to

(1; x′, y′, z′) → (1; x′, y′, z′)


1 0 0 0
0 cos ω sin ω 0
0 − sin ω cos ω 0
0 0 0 1

 = (1; x”, y”, z”),

with x” → x = x”, y” → y = y”, z” → z = z” +
1

2
x”y”,

(1.7)

i.e. to the linear rotation formula. This quadratic conjugacy modifies the Nil
translations in (1.3), as well. We shall use the following important classification
theorem.

Theorem 1.1. (E. Molnár [3]) (1) Any group of Nil isometries, containing a 3-
dimensional translation lattice, is conjugate by the quadratic mapping in (1.7) to
an affine group of the affine (or Euclidean) space A3 = E3 whose projection onto
the (x, y) plane is an isometry group of E2. Such an affine group preserves a plane
→ point polarity of signature (0, 0,±0, +).

(2) Of course, the involutive line reflection about the y axis

(1; x, y, z) → (1;−x, y,−z),

preserving the Riemann metric in (1.5), and its conjugates by the above isometries
in (1) (those of the identity component) are also Nil isometries. There does not
exist orientation reversing Nil isometry.

The geodesic curves of the Nil geometry are generally defined as having locally
minimal arc length between their any two (near enough) points. The equation
systems of the parametrized geodesic curves g(x(t), y(t), z(t)) in our model can be
determined by the general theory of Riemann geometry (see [4]): We can assume,
that the starting point of a geodesic curve is the origin because we can transform
a curve into an arbitrary starting point by translation (1.1);

x(0) = y(0) = z(0) = 0; ẋ(0) = c cos α, ẏ(0) = c sin α,

ż(0) = w; −π ≤ α ≤ π.
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The arc length parameter s is introduced by

s =
√

c2 + w2 · t, where w = sin θ, c = cos θ, −π

2
≤ θ ≤ π

2
,

i.e. unit velocity can be assumed.

Remark 1.1. Thus we have harmonized the scales along the coordinate axes (see
also formula (3.2) and Remark 3.3).

The equation systems of a helix-like geodesic curve g(x(t), y(t), z(t)) if 0 < |w| < 1
[4]:

x(t) =
2c

w
sin

wt

2
cos

(wt

2
+ α

)
, y(t) =

2c

w
sin

wt

2
sin

(wt

2
+ α

)
,

z(t) = wt ·
{

1 +
c2

2w2

[(
1− sin(2wt + 2α)− sin 2α

2wt

)
+

(
1− sin(2wt)

wt

)
−

(
1− sin(wt + 2α)− sin 2α

2wt

)]}
=

= wt ·
{

1 +
c2

2w2

[(
1− sin(wt)

wt

)
+

(1− cos(2wt)

wt

)
sin(wt + 2α)

]}
.

(1.8)

In the cases w = 0 the geodesic curve is the following:

x(t) = c · t cos α, y(t) = c · t sin α, z(t) =
1

2
c2 · t2 cos α sin α. (1.9)

The cases |w| = 1 are trivial: (x, y) = (0, 0), z = w · t. In Figure 1 it can be seen
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Figure 1

a Nil geodesic curve with parameters α = π
6
, θ = π

4
, t ∈ [0, 8π].

Definition 1.1. The distance d(P1, P2) between the points P1 and P2 is defined
by the arc length of the shortest geodesic curve from P1 to P2.
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2. The geodesic ball

Definition 2.1. The geodesic sphere of radius R with centre at the point P1 is
defined as the set of all points P2 in the space with the condition d(P1, P2) = R.
Moreover, we require that the geodesic sphere is a simply connected surface without
selfintersection in the Nil space.

Remark 2.1. We shall see that this last condition depends on radius R.

Definition 2.2. The body of the geodesic sphere of centre P1 and of radius R
in the Nil space is called geodesic ball, denoted by BP1(R), i.e. Q ∈ BP1(R) iff
0 ≤ d(P1, Q) ≤ R.

Remark 2.2. Henceforth, typically we choose the origin as centre of the sphere
and its ball, by the homogeneity of Nil.

Figure 2a shows a geodesic sphere of radius R = 4 with centre at the origin.
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We apply the quadratic mapping M : Nil −→ A3 at (1.6) to the geodesic sphere
S, its M-image is denoted by S ′ = M(S).

Consider a point P (x(R, θ, α), y(R, θ, α), z(R, θ, α)) lying on a sphere S of
radius R with centre at the origin. The coordinates of P are given by param-
eters (α ∈ [−π, π), θ ∈ [−π

2
, π

2
], R > 0) (see (1.8), (1.9)), its M-image is

P ′(x′(R, θ, α), y′(R, θ, α), z′(R, θ, α)) ∈ S ′ where

x′(R, θ, α) =
2c

w
sin

wR

2
cos

(wR

2
+ α

)
,

y′(R, θ, α) =
2c

w
sin

wR

2
sin

(wR

2
+ α

)
,

z′(R, θ, α) = wR +
c2R

2w
− c2

2w2
sin wR, (θ ∈ [−π

2
,
π

2
] \ {0}),

if θ = 0 then x′(R, 0, α) = R cos α,

y′(R, 0, α) = R sin α, z′(R, 0, α) = 0.

(2.1)
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We can see from the last equations that (x′)2 + (y′)2 = 4c2

w2 sin2 wR
2

and that the
z′-coordinate does not depend on the parameter α, therefore S ′ can be generated
by rotating the following curve about the z axis (lying in the plane [x, z]):

X(R, θ) =
2c

w
sin

wR

2
=

2 cos θ

sin θ
sin

R sin θ

2
,

Z(R, θ) = wR +
c2R

2w
− c2

2w2
sin wR =

R sin θ +
R cos2 θ

2 sin θ
− cos2 θ

2 sin2 θ
sin(R sin θ), (θ ∈ [−π

2
,
π

2
] \ {0});

if θ = 0 then X(R, 0) = R, Z(R, 0) = 0.

(2.2)

Remark 2.3. From the definition of the quadratic mapping M at (1.6) it follows
that the cross section of the spheres S and S ′ with the plane [x, z], is the same
curve (see Fig. 2b, R = 4) which is specified by the parametric equations (2.2).

Remark 2.4. The parametric equations of the geodesic sphere of radius R can
be generated from (2.2) by Nil rotation (see (1.7)).

2.1. The existence of the geodesic ball

We have denoted by B(S) the body of the Nil sphere S and by B(S ′) the body
of the sphere S ′, furthermore we have denoted their volumes by V ol(B(S)) and
V ol(B(S ′)), respectively.

From (1.8), (1.9), (2.1) and (2.2) it can be seen that a geodesic ball B(S)
in the Nil space exists if and only if its image B(M(S)) = B(S ′) exists in A3,
therefore it is sufficient to discuss the existence of B(S ′) ∈ A3. From (2.2) follows
that S ′ is a simply connected surface in A3 if and only if R ∈ [0, 2π], because
if R > 2π then there is at least one θ ∈ (−π

2
, π

2
) \ {0} so that X(R, θ) = 0, i.e.

selfintersection would occur (see (2.2)). Thus we obtain the following theorem:

Theorem 2.1. The geodesic sphere and ball of radius R exists in the Nil space
if and only if R ∈ [0, 2π].

Remark 2.5. From the above considerations follows, that the triangle inequality
does not hold in the Nil space, in general.

2.2. The volume of the geodesic ball

The Jacobi matrix of the quadratic mapping M at (1.6) is

J(M) =

 1 0 0
0 1 0
−1

2
y −1

2
x 1

 , i.e. det(J(M)) = 1, (2.3)
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therefore V ol(B(S)) = V ol(B(S ′)). Thus we obtain the volume of the geodesic
ball of radius R by the following integral (see 2.2):

V ol(B(S)) = 2π

∫ π
2

0

X2 d Z

d θ
d θ =

= 2π

∫ π
2

0

(2 cos θ

sin θ
sin

(R sin θ)

2

)2

·
(
− 1

2

R cos3 θ

sin2 θ
+

cos θ sin (R sin θ)

sin θ
+

+
cos3 θ sin (R sin θ)

sin3 θ
− 1

2

R cos3 θ cos (R sin θ)

sin2 θ

)
d θ.

(2.4)
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Figure 3 illustrates that the function R 7→ V ol(B(S(R))) is strictly increasing in
the interval [0, 2π].

2.3. The convexity of the Nil ball in the model

In this section we examine the convexity of the geodesic ball in Euclidean sense
in our affine model. The Nil sphere of radius R is generated by the Nil rotation
about the axis z (see the equation system (2.2) and remarks (2.1), (2.2)). The
parametric equation system of the geodesic sphere S(R) in our model:

x(R, θ, φ) =
2c

w
sin

wR

2
· cos φ =

2 cos θ

sin θ
sin

R sin θ

2
· cos φ,

y(R, θ, φ) =
2c

w
sin

wR

2
· sin φ =

2 cos θ

sin θ
sin

R sin θ

2
· sin φ,

z(R, θ, φ) = wR +
c2R

2w
− c2

2w2
sin wR +

1

4

(2c

w
sin

wR

2

)2

sin 2φ =

= R sin θ +
R cos2 θ

2 sin θ
− cos2 θ

2 sin2 θ
sin(R sin θ) +

1

4

(2 cos θ

sin θ
sin R

sin θ

2

)2

sin 2φ
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−π < φ 5 π, −π

2
5 θ 5

π

2
and θ 6= 0.

if θ = 0 then x(R, 0, φ) = R cos φ, y(R, 0, φ) = R sin φ,

z(R, 0, φ) =
1

2
R2 cos φ sin φ.

(2.5)

We have obtained by the derivatives of these parametrically represented functions
(by intensive and careful computations with Maple through the second fundamen-
tal form) the following theorem:

Theorem 2.2. The geodesic Nil ball B(S(R)) is convex in affine-Euclidean sense
in our model if and only if R ∈ [0, π

2
].

3. The discrete translation group L(Z)

We consider the Nil translations defined in (1.1) and (1.3) and choose two arbi-
trary translations

τ1 =


1 t11 t21 t31
0 1 0 0
0 0 1 t11
0 0 0 1

 and τ2 =


1 t12 t22 t32
0 1 0 0
0 0 1 t12
0 0 0 1

 , (3.1)

now with upper indices for coordinate variables. We define the translation τ3 by
the following commutator:

τ3 = τ−1
2 τ−1

1 τ2τ1 =


1 0 0 −t12t

2
1 + t11t

2
2

0 1 0 0
0 0 1 0
0 0 0 1

 . (3.2)

If we take integers as coefficients, their set is denoted by Z, then we generate the
discrete group 〈τ1, τ2〉 denoted by L(τ1, τ2) or by L(Z). (See also Remark 1.1.)

We know (see e.g. [4]) that the orbit space Nil/L(Z) is a compact manifold,
i.e. a Nil space form.

Definition 3.1. The Nil point lattice ΓP (τ1, τ2) is a discrete orbit of point P in
the Nil space under the group L(τ1, τ2)= L(Z) with an arbitrary starting point P .

Remark 3.1. For simplicity we have chosen the origin as starting point, by the
homogeneity of Nil.

Remark 3.2. We can assume that t21 = 0, i.e. the image of the origin by the
translation τ1 lies on the plane [x, z].

Remark 3.3. We may also assume that the centre K(Z) of L(Z) is generated by
τ3 = τ−1

2 τ−1
1 τ2τ1. τ3 is a so-called fibre translation. (See also Remark 1.1.)
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We illustrate the action of L(Z) on the Nil space in Figure 4. We consider a
non-convex polyhedron F = OT1T2T3T12T21T23T213T13, in Euclidean sense, which
is determined by translations τ1, τ2, τ3. This polyhedron determines a solid F̃ in
the Nil space whose images under L(Z) fill the Nil space just once, i.e. without
gap and overlap.

Analogously to the Euclidean integer lattice and parallelepiped, the solid F̃
can be called Nil parallelepiped.

F̃ is a fundamental domain of L(Z). The homogeneous coordinates of the

vertices of F̃ can be determined in our affine model by the translations (3.1) and
(3.2) with the parameters tji , i ∈ {1, 2}, j ∈ {1, 2, 3} (see Fig. 4 and (3.3)).

T2

T3
T12

T13

T213

T21

T23

T1

z

O

x
y

Figure 4

T1(1, t
1
1, 0, t

3
1), T2(1, t

1
2, t

2
2, t

3
2), T3(1, 0, 0, t

1
1t

2
2),

T13(1, t
1
1, 0, t

1
1t

2
2 + t31), T12(1, t

1
1 + t12, t

2
2, t

3
2 + t31),

T21(1, t
1
1 + t12, t

2
2, t

1
1t

2
2 + t31 + t32), T23(1, t

1
2, t

2
2, t

3
2 + t11t

2
2),

T213 = T231(1, t
1
1 + t12, t

2
2, 2t

1
1t

2
2 + t31 + t32).

(3.3)

3.1. The volume of the Nil parallelepiped F̃

The volume of the Nil solid T̃τ = T3T21T13T213, which is a tetrahedron in Euclidean
sense (see Fig. 4), is equal to the volume of T̃ = OT12T1T21 because τ3(T̃ ) = T̃τ ,

thus the volume of the Nil parallelepiped F̃ is equal to the volume of the Nil
solid P̃ = OT1T12T2T3T13T21T23. Therefore, (2.3)

V ol(F̃) = V ol(F̃ ′) = V ol(P̃) = V ol(P̃ ′), (3.4)
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where F̃ ′ = M(F̃) and P̃ ′ = M(P̃ ′). Thus we obtain the volume of F̃ by

det(
−→
OT 1,

−→
OT 2,

−→
OT 3) = (t11 · t22)2 from (3.3) or by the following integral:

V ol(F̃) =

∫ t22

0

∫ t11

0

|t11 · t12| dxdy = (t11 · t22)2. (3.5)

From this formula it can be seen that the volume of the Nil parallelepiped depends
on two parameters, i.e. on its projection onto the [x, y] plane.

4. The lattice-like geodesic ball packings

Let BΓ(R) denote a geodesic ball packing of Nil space with balls B(R) of radius R

where their centres give rise to a Nil point lattice Γ(τ1, τ2). F̃0 is an arbitrary Nil

parallelepiped of this lattice (see (3.1),(3.2)). The images of F̃0 by our discrete
translation group L(τ1, τ2) cover the Nil space without overlap. For the density
of the packing it is sufficient to relate the volume of the optimal ball to that of
the solid F̃0. Analogously to the Euclidean case it can be defined the density
δ(R, τ1, τ2) of the lattice-like geodesic ball packing BΓ(R):

Definition 4.1.

δ(R, τ1, τ2) :=
V ol(BΓ(R) ∩ F̃0)

V ol(F̃0)
, (4.1)

if the balls do not overlap each other.

Remark 4.1. By definition of the Nil lattice L(τ1, τ2)(see Definition 3.1) the
orbit space Nil/L(τ1, τ2) is a compact Nil manifold, and (see Section 2),

V ol(BΓ(R) ∩ F̃0) = V ol(B(S(R))).

4.1. The optimal lattice-like ball packing

We look for such an arrangement BΓ(R) of balls B(R), (see Fig. 4) where the
following equations hold:

(a) d(O, T1) = 2R = d(T1, T3),

(b) d(O, T2) = 2R = d(T2, T3),

(c) d(T1, T2) = 2R,

(d) d(O, T3) = 2R.

(4.2)

Here d is the distance function in the Nil space (see Definition 1.1). The equations
(a) and (b) mean that the ball centres T1 and T2 lie on the equidistant geodesic
surface of the points O and T3 which is a hyperbolic paraboloid (see (1.9) and
Fig. 5) in our model with equation

2z − xy = 2R.
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By continuity of the distance function it follows, that there is a (unique) solution
of the equation system (4.2). We have denoted by Bopt

Γ (Ropt) the geodesic ball
packing of the balls B(Ropt) which satisfies the above equation system. We get
the following solution by systematic approximation, where the computations were
carried out by Maple V Release 10 up to 30 decimals:

t1,opt
1 ≈ 1.30633820, t3,opt

1 = Ropt, Ropt ≈ 0.73894461;

t1,opt
2 ≈ 0, 65316910, t2,opt

2 ≈ 1, 13132206, t3,opt
2 ≈ 1.10841692,

T opt
1 = (1, t1,opt

1 , 0, t3,opt
1 ), T opt

2 = (1, t1,opt
2 , t2,opt

2 , t3,opt
2 ).

(4.3)

The geodesic ball packing Bopt
Γ (Ropt) can be realized in Nil space because by

Theorem 2.2 a ball of radius Ropt ≈ 0.73894461 is convex in Euclidean sense and
this packing can be generated by the translations Lopt(τ

opt
1 , τ opt

2 ) where τ opt
1 and

τ opt
2 are given by the coordinates tj,opt

i i = 1, 2; j = 1, 2, 3 (see (4.3) and (3.1)).
Thus we obtain the neighbouring balls around an arbitrary ball of the packing
Bopt

Γ (Ropt) by the lattice Γ(τ opt
1 , τ opt

2 ), the kissing number of the balls is 14. Fig. 6
shows the typical arrangement of some balls from Bopt

Γ (Ropt) in our model. We
have ball “columns” in z-direction and in regular hexagonal projection onto the
[x, y]-plane.

The fundamental domain F̃opt
0 of the discrete translation group Lopt(τ

opt
1 , τ opt

2 )
is a Nil parallelepiped of the above determined Nil lattice Γ(τ opt

1 , τ opt
2 ). By for-

mulas (2.4), (3.5) and by Definition 4.1 we can compute the density of this ball
packing:

V ol(F̃opt
0 ) ≈ 2.18415656, V ol(BΓ(Ropt) ∩ F̃opt

0 ) ≈ 1.70548775,

δ(Ropt, τ1,
opt , τ opt

2 ) :=
V ol(BΓ(Ropt) ∩ F̃opt

0 )

V ol(F̃opt
0 )

≈ 0.78084501. (4.4)

Theorem 4.1. The ball arrangement Bopt
Γ (Ropt) given in formulas (4.3), (4.4)

provides the optimal lattice-like geodesic ball packing in the Nil space.
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Proof. Let BΓ(R) denote a geodesic ball packing of Nil space with balls B(R)
of radius R where their centres give rise to a Nil point lattice Γ(τ1, τ2) (see 3.1).
If we give the distance d(O, T3) = |t11 · t22| then we fix the volume of the Nil
parallelepiped generated by translations τ1, τ2. Thus for choosing the radius R of
the balls in BΓ(R) we have to minimalize the distance d(O, T3) = |t11 · t22| so that
we achieve the densest lattice-like geodesic ball packing. From the properties of
the balls and of the Nil lattices we have the necessary conditions:

(a) d(O, T3) ≥ 2R, d(T1, T3) ≥ 2R,

(b) d(O, T2) ≥ 2R, d(T2, T3) ≥ 2R,

(c) d(T1, T2) ≥ 2R, d(O, T1) ≥ 2R.

(4.5)

In our proof we consider two cases.

1. R ∈ (0, Ropt]

We have to minimalize the distance d(O, T3) to a given R. This distance is minimal
if d(O, T3) = |t11 · t22| = 2R, i.e. the balls BT3(R) and BO(R) touch each other. In

these cases the volume of the Nil parallelepiped of the lattice Γ(τ1, τ2) is V ol(F̃0) =
4R2. Thus we have to examine the density function (see Definition 4.1 and Remark
4.1)

δ(R, τ1, τ2) :=
V ol(B(S(R)))

4R2
. (4.6)

Figure 8 shows the increasing density function in these cases by formulas (2.4)
and (4.6).
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The following inequalities are true for parameters t11 > 0 and t22 > 0:

t11 ≥ R, t22 ≥ R ⇒ t11 ≤ 2,

if t11 ≤ 2R, then t22 ≥ 1, and if
2R

t11
= t22 ≥ 2R, then t11 ≤ 1. (4.7)

The ball packings satisfying the above conditions can be realized in the Nil space,
where the centers T1 and T2 lie on the equidistance surface of O and T3 (at (4.2))
and the balls BT1(R), BO(R) and BT3(R) touch each other. Moreover, if we
increase the radius of the balls in the interval (0, Ropt], BT2(R) approaches towards
the above balls (see 4.7):

lim
R→Ropt

T1 = T opt
1 , lim

R→Ropt

T2 = T opt
2 . (4.8)

In case R = Ropt we just obtain the ball arrangement Bopt
Γ (Ropt).

2. R′ ∈ (Ropt, 2π]

Similarly to the above case in 1. we have to minimalize the distance d(O, T3) to
a given R′. We consider an arbitrary lattice-like ball packing BΓ(R′) of the balls
B(R′) to a given R′ ∈ (Ropt, 2π] in the Nil space generated by the translations
L(τ1, τ2) i.e. by the balls BT1(R

′) and BT2(R
′). By moving the balls BT1(R

′) and
BT2(R

′) and by decreasing the distance d(O, T3) it can be achieved that the centres
T1 and T2 lie on the equidistance surface of O and T3 and the equations (4.2) (a),
(b), (c) hold. We have denoted this ball arrangement by BΓ(R) and its density
by δ(R).

In the above cases the existence of the ball packing BΓ(R) is not guaranteed yet,
because the balls are non-convex in Euclidean sense if R ∈ (π

2
, 2π] (see Theorem

2.2) and the triangle inequality does not hold in general.
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If the density of an arbitrary ball packing BΓ(R′) is denoted by δ′(R′), then
δ′(R′) ≤ δ(R), of course. Thus, it is sufficient to prove, that δ(R) ≤ δ(Ropt, τ

opt
1 ,

τ opt
2 ) if R ∈ (Ropt, 2π].

In these cases the balls BO(R) and BT3(R) do not touch each other, d(O, T3)
> 2R, (see (4.7) and (4.8)). The density of the arrangement BΓ(R) of the balls
B(R) to a given R ∈ (Ropt, 2π] is

δ(R, τ1, τ2) :=
V ol(B(S(R)))

(d(O, T3))2
. (4.9)

1

0,75

0.25

0.5

d

Rp/2 p 3p/2 2p

M

E

Ropt

Figure 8

Considering these ball packings, we have obtained that the density function δ(R,τ1,
τ2) decreases in the interval (Ropt, 2π]. The graph of δ(R, τ1, τ2) and its maximum
point M(Ropt, δ(Ropt, τ

opt
1 , τ opt

2 )) can be seen in Figure 8.

Remark 4.2. The coordinates of the “endpoint” of the density function δ are:
E(2π,≈ 0.57013836). The volume of this ball is 1619.19850921.

If R ∈ (Ropt, 2π] and the ball BT1(R) does not touch the balls BO(R) and BT3(R)
then we have not obtained larger density than δ(Ropt, τ

opt
1 , τ opt

2 ). �

In this paper we have mentioned only some problems in discrete geometry of the
Nil space, but we hope that from these it can be seen that our projective method
suits to study and solve similar problems (see [1]). Analogous questions in Nil
geometry or, in general, in other homogeneous Thurston [7] geometries are on our
program with E. Molnár and I. Prok.

Acknowledgement. I thank Prof. Emil Molnár for helpful comments to this
paper.
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