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Abstract. In this manuscript we make a general study of the repre-
sentations realized, for a reductive Lie group of Harish-Chandra class,
on the compactly supported sheaf cohomology groups of an irreducible
finite-rank polarized homogeneous vector bundle defined in a general-
ized complex flag space. In particular, we show that the representations
obtained are minimal globalizations of Harish-Chandra modules and
that there exists a whole number q, depending only on the orbit, such
that all cohomologies vanish in degree less than q. The representation
realized on the q-th cohomology group is called a standard analytic
module. Our main result is a geometric proof that a standard analytic
module embeds naturally in an associated standard module defined on
the full flag space of Borel subalgebras. As an application, we give ge-
ometric realizations for irreducible submodules of some principal series
representations in case the group is complex.

1. Introduction

Even though the irreducible admissible representations of a real reductive Lie
group have been classified for about 30 years, one does not yet have an explicit re-
alization of these representations. Historically speaking, two of the first construc-
tions of admissible representations were the parabolically induced modules and
Schmid’s realization of the discrete series [12], generalizing the Borel-Weil-Bott
Theorem [3]. Developed in the 1980s, the localization technique of Beilinson and
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Bernstein [1] gave a general prescription for realizing irreducible Harish-Chandra
modules. However, when the irreducible representation is not obtained as a stan-
dard module, it can be quite difficult to understand the corresponding geometric
realization. Since a specific criteria for the irreducibility of some standard mod-
ules is known [10], the Beilinson-Bernstein result does obtain a concrete realization
for many irreducible representations, although the object produced is a Harish-
Chandra module and not a group representation. Using the methods of analytic
localization, Hecht and Taylor gave an analytic version of the Beilinson-Bernstein
theory [6], including a concrete construction of standard modules that yields full-
fledged group representations globalizing the standard Beilinson-Bernstein mod-
ules. The standard analytic modules defined by Hecht and Taylor are realized on
the compactly supported sheaf cohomology groups of polarized homogeneous vec-
tor bundles. One knows that their construction is sufficiently general, for example,
to provide geometric realizations for all the tempered representations.

The Hecht-Taylor construction is directly related to the geometry of a full
flag space. In order to realize more irreducible representations, in this manuscript
we consider the natural generalization of their construction to the setting of an
arbitrary flag space. Examples show that, because of certain geometric conditions
on the orbits, the underlying Harish-Chandra module of this natural generaliza-
tion is not universally described by the analog of a standard Beilinson-Bernstein
module. In fact, generally speaking, one knows little about the underlying Harish-
Chandra module. Alternatively, what we propose to establish is an embedding
theorem, showing in general that the standard analytic modules appear naturally
as submodules of certain standard modules defined in a full flag space. In par-
ticular, the standard analytic modules defined in an arbitrary flag space appear
as refinements to certain standard modules occurring in the Beilinson-Bernstein
classification scheme. Our main results along these lines are Theorems 4.1 and
4.3, appearing in Section 4. In particular, the embedding in Theorem 4.1 applies
to any finite-rank, irreducible polarized homogeneous vector bundle defined in a
complex flag space. Theorem 4.3 adds a nonvanishing result when an additional
hypothesis is assumed. In the last section, as an example, we will apply the em-
bedding to realize irreducible submodules of certain principal series in the case of
a complex reductive group.

The paper is organized as follows. The first section is the introduction. In
the second section we introduce the complex flag spaces and the polarized ho-
mogeneous vector bundles. A main result is the construction of the associated
bundle. In the third section we deal with some topological considerations, intro-
duce the minimal globalization [11] and show that representations obtained on the
compactly supported sheaf cohomology groups of a polarized homogeneous vec-
tor bundle are naturally isomorphic to minimal globalizations of Harish-Chandra
modules. We also establish a vanishing result. In Section 4 we prove Theorems
4.1 and 4.3 as mentioned previously. In Section 5 we apply our result to realize
irreducible subrepresentations of some principal series in the case of a complex
reductive group.
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2. Polarized homogeneous vector bundle

We let G0 denote a reductive Lie group of Harish-Chandra class with Lie alge-
bra g0 and complexified Lie algebra g. G denotes the complex adjoint group of
g. This notation is a bit misleading, since the adjoint representation defines an
isomorphism between the Lie algebra of G and [g, g].

Flag spaces for G0. We define a flag space for G0 to be a complex projec-
tive, homogeneous G-space. The flag spaces can be constructed as follows. By
definition, a Borel subalgebra of g is a maximal solvable subalgebra. One knows
that G acts transitively on the set of Borel subalgebras and that the resulting
homogeneous space is a complex projective variety called the full flag space for
G0. A complex subalgebra that contains a Borel subalgebra is called a parabolic
subalgebra of g. The space of G-conjugates to a given parabolic subalgebra is a
complex projective variety, and each flag space is realized in this way.

From the construction it follows that points in the flag spaces are identified
with parabolic subalgebras of g. Let X denote the full flag space and suppose Y
is a flag space. Given x ∈ X and y ∈ Y we let bx and py denote, respectively,
the corresponding Borel and parabolic subalgebras. For each x ∈ X it is known
there is a unique y ∈ Y such that bx ⊆ py. Thus there is a unique G-equivariant
projection

π : X → Y

called the natural projection.
We note that the quantity of G0-orbits in Y is finite [13]. In particular, G0-

orbits are locally closed in Y and define regular analytic submanifolds.

The Cartan dual and infinitesimal characters. Suppose x is a point in
the full flag space X and let nx denote the nilradical of the corresponding Borel
subalgebra bx. Put

hx = bx/nx

and let h∗x denote the complex dual of hx. Since the stabilizer of x in G acts
trivially on h∗x the corresponding G-homogeneous holomorphic vector bundle on
X is trivial. Thus the space h∗ of global sections is isomorphic h∗x via the the
evaluation at x. We refer to h∗ as the Cartan dual for g. If c is a Cartan subalgebra
of g contained in bx then projection of c onto hx coupled with evaluation at x
defines an isomorphism of h∗ onto c∗ called the specialization of h∗ onto c∗ at x.
Using the specializations we can identify a root subset

Σ ⊆ h∗

for g in h∗ and a set of positive roots Σ+ ⊆ Σ where a root is called positive if
it is identified with a root of c in bx. The given subsets are independent of the
specialization used to define them. For α ∈ Σ and λ ∈ h∗ we can also define the

complex values
∨
α(λ) and a corresponding Weyl group W of g in h∗. λ ∈ h∗ is
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called regular if the stabilizer of λ in W is trivial. We say that λ is antidominant
provided

∨
α(λ) /∈ {1, 2, 3, . . .} for each α ∈ Σ+.

Let U(g) denote the enveloping algebra of g and let Z(g) denote the center of
U(g). Then a g-infinitesimal character is a homomorphism of algebras

Θ : Z(g) → C.

A well known result of Harish-Chandra identifies the set of g-infinitesimal char-
acters with the quotient

h∗/W .

Suppose Θ is an infinitesimal character and λ ∈ h∗. Then we write Θ = W · λ
when Harish-Chandra’s correspondence identifies Θ with the Weyl group orbit of
λ in h∗.

Let Y be a flag space and suppose y ∈ Y . We let py denote the corresponding
parabolic subalgebra and let uy denote the nilradical of py. The corresponding
Levi quotient is defined by

ly = py/uy .

Thus ly is a complex reductive Lie algebra. In fact, the natural projection identifies
the Borel subalgebras of g contained in py with the Borel subalgebras of ly. In
this way, we can identify h∗ with the Cartan dual for ly. Therefore we have a
corresponding set of roots

ΣY ⊆ Σ

for h∗ in ly and a Weyl group for the Levi quotient WY ⊆ W generated by reflec-
tions from the roots in ΣY . As the notation suggests, these subsets are indepen-
dent of the point y. The positive roots Σ+

Y of h∗ in ly are defined by

Σ+
Y = ΣY ∩ Σ+.

An element λ ∈ h∗ is called antidominant for Y provided there exists an element

w ∈ WY such that w · λ is antidominant. An equivalent condition is that
∨
α(λ)

not be a positive integer for each α ∈ Σ+ −Σ+
Y . Finally we note that the Harish-

Chandra parametrization identifies set of ly-infinitesimal characters with the set
of Weyl group orbits

h∗/WY .

Polarized modules for the stabilizer. Suppose Y is a flag space. Fix y ∈ Y .
We have the parabolic subalgebra py with nilradical uy and Levi quotient ly. Let
G0[y] denote the stabilizer of y in G0. Suppose

ω : G0[y] → GL(V )

is a representation in a finite-dimensional complex vector space V . A compatible
representation of py in V is called a polarization if the nilradical uy acts triv-
ially. We note that a polarization need not exist, even if the G0[y]-module V
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is irreducible. However a polarization is unique when it does exist, because the
compatibility condition assures that two possibly distinct ly-actions agree on a
parabolic subalgebra of ly and therefore are identical.

Since a G0[y]-invariant subspace of a polarized module need not be invariant
under the corresponding ly-action, we define a morphism of polarized modules to
be a linear map that intertwines both the G0[y] and ly-action. Thus the cate-
gory of polarized G0[y]-modules is nothing but the category of finite-dimensional
(ly, G0[y])-modules.

We briefly consider the structure of an irreducible polarized module V . Since
G0 is Harish-Chandra class it follows that V has an ly-infinitesimal character.
Since there is only one finite-dimensional irreducible ly-module with a given in-
finitesimal character, it follows that V is a direct sum of several copies of an
irreducible highest weight module. In fact, if one makes a linear assumption on
the group G0, then an irreducible polarized module is nothing but an irreducible
finite-dimensional ly-module with compatible G0[y]-action.

Polarized homogeneous vector bundle. By definition, a polarized homoge-
neous vector bundle is a homogeneous analytic vector bundle that comes equipped
with a canonical way to define the notion of a restricted holomorphic section. By
definition these restricted holomorphic sections form the corresponding sheaf of
polarized sections. For example, in the case of a trivial line bundle, the polarized
sections are exactly the restricted holomorphic functions.

Let S be a G0-orbit and fix y ∈ S. Suppose

ω : G0[y] → GL(V )

is a polarized module for the stabilizer G0[y]. For ξ ∈ py and v ∈ V , we use the
notation

ω(ξ)v

to indicate the compatible py-action. Let

V
↓
S

be the G0-homogeneous vector bundle with fiber V and let

φ : G0 → S be the projection φ(g) = g · y.

Then we can identify a section of V over an open set U ⊆ S with a real analytic
function

f : φ−1(U) → V such that f(gp) = ω(p−1)f(g) ∀p ∈ G0[y].

The section is said to be polarized if

d

dt
|t=0 f(g exp(tξ1)) + i

d

dt
|t=0 f(g exp(tξ2)) = −ω(ξ1 + iξ2)f(g)
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for all ξ1, ξ2 ∈ g0 such that ξ1 + iξ2 ∈ py.
Let P(y, V ) denote the sheaf of polarized sections and let OY |S be the sheaf

of restricted holomorphic functions on S. As a sheaf of OY |S-modules, P(y, V )
is locally isomorphic to OY |S ⊗V [6]. The left translation defines a G0, and thus
a g-action on P(y, V ). We will be interested in the representations obtained on
the compactly supported sheaf cohomologies

Hp
c (S,P(y, V )) p = 0, 1, 2, . . . .

One knows that the sheaf cohomologies are dual nuclear Fréchet (DNF) g-modu-
les with a compatible G0-action, provided certain naturally defined topologies are
Hausdorff [6].

The associated bundle. Let S be a G0-orbit and suppose

V
↓
S

is the homogeneous polarized vector bundle corresponding to an irreducible po-
larized module for the stabilizer. We let P(V) denote the corresponding sheaf of
polarized sections. Let X denote the full flag space and let

π : X → Y

be the natural projection. Put

N = π−1(S)

the associated manifold. In order to study the compactly supported cohomolo-
gies of P(V), we now define a certain G0-equivariant bundle over N that comes
naturally equipped with a corresponding polarization.

For y ∈ S we let Vy denote the fiber of V over y. Thus Vy is an irreducible
polarized module for the stabilizer G0[y]. Put

Xy = π−1({y})

and let x ∈ Xy. Define

Wx =
Vy

nxVy

where nx is the nilradical of the Borel subalgebra bx. Thus Wx is an irreducible
polarized module for G0[x]. Let W be the bundle over N given by

W =
⋃
x∈N

Wx.

To provide the corresponding trivializations, we define a holomorphic extension
of W over a neighborhood of x in X. Since our result is local, we may assume
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that G0 is a real form of G. Let Bx denote the stabilizer of x in G. Then the
representation of bx in Wx determines a local holomorphic representation of Bx in
Wx. The standard construction of a G-homogeneous holomorphic vector bundle
limited to an appropriate neighborhood of the identity in G then provides the
desired holomorphic extension of W over a neighborhood of x in X.

We now consider the polarized sections. For ξ ∈ g0 and σ an analytic section
of W defined on an open set U ⊆ N , put

(ξ ∗ σ)(x) =
d

dt
|t=0 exp(tξ)σ(exp(−tξ)x), x ∈ U

where we use juxtaposition to indicate the action of G0 on W. This definition
determines a unique complex linear action of g on the sheaf of analytic sections
of W. The section σ is said to be polarized if

(ξ ∗ σ)(x) = ωx(ξ)σ(x) for each x ∈ U and each ξ ∈ bx

where ωx indicates the bx-action on the fiber. In case

f : U → C

is a real analytic function, observe that

(ξ ∗ f)(x) =
d

dt
|t=0 f(exp(−tξ)x), x ∈ U and ξ ∈ g0.

Let P(W) denote the sheaf of polarized sections and let OX |N be the sheaf of
restricted holomorphic functions on N . The following lemma will be used to show
that P(W) is a locally free sheaf of OX |N -modules.

Lemma 2.1. Suppose U is open in N and let

f : U → C

be an analytic function. Then f is a restricted holomorphic function if and only
if

(ξ ∗ f)(x) = 0 for each x ∈ U and ξ ∈ bx.

Proof. If f is a restricted holomorphic function it is clear that f satisfies the
equation in Lemma 2.1. On the other hand, suppose that f satisfies the given
equation. We may assume that G0 is a real form of G. To simplify notation, we
assume that f is defined on all of N . Let Q be a G0-orbit in N . We first show
that there is a holomorphic function defined on a neighborhood of Q in X that
restricts to f on Q. Fix x ∈ Q and consider the function g 7→ f(gx) defined on
G0. Observe that this function extends to a holomorphic function ϕ defined on
an open set of G. For each g ∈ G0 and each ξ ∈ bgx we have

(ξ ∗ ϕ)(gx) =
d

dt
|t=0 ϕ(g exp(−tAd(g−1)ξ)x) = 0.
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Thus, for g in an open set of G containing G0, we have

ϕ(gb) = ϕ(g) for each b ∈ Bx

so that ϕ defines a holomorphic extension of f to a neighborhood of Q in X.
It follows that there exists a holomorphic function on an open set in X which

restricts to f on a dense open set of N (the union of all the open G0-orbits).
Choose y ∈ π(N) and put

Xy = π−1({y}).
Define

ψ : G0 ×Xy → C by ψ(g, z) = f(gz).

We claim that, for each fixed g, the function z 7→ ϕ(g, z) is holomorphic. By the
above considerations, the given function is holomorphic on a dense open subset
of Xy. But therefore the claim follows, since the given function is annihilated by
the ∂-operator the complex manifold Xy.

Thus ψ extends to a holomorphic function defined on a neighborhood of G0×
Xy in G × Xy. Using the same letter ψ to denote the holomorphic extension,
observe that for each ξ ∈ bx and each (g, z) ∈ G0 ×Xy we have

d

dt
|t=0 ψ(g exp(tξ), z) =

d

dt
|t=0 ψ(g, exp(tξ)z).

Thus, for each b ∈ Bx, we have

ψ(gb, z) = ψ(g, bz).

It follows that ψ defines a holomorphic extension of f to a neighborhood of N in
X. �

From the previous lemma and the chain rule, it follows that if σ is a local polarized
section and f is a restricted polarized section then fσ is a polarized section. We
finish this section with the following proposition.

Proposition 2.2. Fix x ∈ X. As a sheaf of OX |N -modules P(W) is locally
isomorphic to OX |N ⊗Wx.

Proof. Since the result is local, and using the fact W locally extends to a holomor-
phic vector bundle, we may assume that W extends to a G-homogeneous vector
bundle on all of X. Let

Φ : G→ X be the projection Φ(g) = gx

and suppose
η : U → G

is a corresponding holomorphic section defined on a neighborhood U of x in X.
We need to check that an analytic section σ of W is polarized if and only if the
function

f(z) = η(z)−1σ(z)
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is holomorphic. Using the differential of the action map

G×Wz → W

we define a multiplication by complex scalars in the tangent space to W at point
v ∈ Vz. Let ξ1, ξ2 ∈ g0 such that ξ = ξ1 + iξ2 ∈ bz and put v = σ(z). Since

d

dt
|t=0 exp(tξ1)v + i

d

dt
|t=0 exp(tξ2)v = ω(ξ)v

it follows from the product rule that σ satisfies the polarized condition at z if and
only if

d

dt
|t=0 σ(exp(−tξ1)z) + i

d

dt
|t=0 σ(exp(−tξ2)z) = 0.

Since
d

dt
|t=0 η(exp(−tξ1)z)−1v + i

d

dt
|t=0 η(exp(−tξ2)z)−1v = 0

the desired result follows from the product rule as applied to the function f . �

W is called the associated bundle on N .

3. Topological considerations and vanishing

In order to show that the compactly supported sheaf cohomologies of a polarized
vector bundle are minimal globalizations, we will apply some of the results by
Hecht and Taylor for certain topological sheaves of g-modules, with compatible
G0-action [6]. We begin this section by considering some of those results. The
following notations will be adopted. If S ⊆ Y is a locally closed subspace and F
is a sheaf on Y then F |S denotes the restriction of F to S. If F is a sheaf on S
then FY denotes the extension by zero of F to Y .

DNF sheaves and analytic modules. By definition, a DNF space is a
complete, locally convex topological vector space whose continuous dual, when
equipped with the strong topology is a nuclear Fréchet space. In the obvious
fashion, one can define the notion of a DNF algebra and a corresponding category
of DNF modules.

We will be interested in sheaves with DNF structure. A DNF sheaf of algebras
is a sheaf of algebras such that the space of germs of sections over each compact
subset is a DNF algebra and such that the restriction map for any nested pair
of compact subsets is continuous. When A is a DNF sheaf of algebras, then
one can define, in the obvious fashion a corresponding concept of DNF sheaf of
A-modules. A corresponding morphism is a morphism of sheaves of A-modules
that is continuous for all the given topologies. One can show that the continuity
condition is completely determined by continuity on the stalks. By the open
mapping theorem, a continuous sheaf isomorphism has a continuous inverse. We
note that when F is a DNF sheaf of A-modules on Y and S ⊆ Y is a locally
closed subset then (F |S)Y is a DNF sheaf of A-modules supported in S.
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The sheaf O of holomorphic functions is an important example of DNF sheaf
of algebras. Hecht and Taylor show that when F is a sheaf of O-modules whose
geometric fibers have countable dimension and whose stalks are free modules over
the stalks of O then F carries a unique DNF structure consistent with the natural
DNF structure that exists on stalks. With this structure F becomes a DNF sheaf
of O-modules.

Suppose A is a DNF sheaf of algebras on a flag space Y. Since Y is compact
the space of global sections

A = Γ(Y,A)

is a DNF algebra. Let MDNF(A) denote the category of DNF sheaves ofA-modules
and let MDNF(A) denote the category of DNF A-modules. Thus the global sections
define a functor

Γ : MDNF(A) → MDNF(A).

Hecht and Taylor, using a modified Čech resolution, show that the category
MDNF(A) has enough Γ-acyclic objects. For M ∈ MDNF(A) they prove that
the sheaf cohomology groups

Hp(Y,M) p = 1, 2, . . .

will be also DNF A-modules, provided the associated topologies are Hausdorff.
Indeed, their construction is functorial and their work shows that the topological
properties for the sheaf cohomologies are independent of the choice of Γ-acyclic
resolution, as long as these resolutions originate from the given category.

We will be interested in the following DNF sheaves of algebras on Y . To
each λ ∈ h∗, Beilinson and Bernstein have shown how to define a twisted sheaf
of differential operators (TDO) on the full flag space X [1]. We let Dλ denote
the corresponding TDO with holomorphic coefficients. With our parametrization,
when ρ indicates one-half the sum of the positive roots in h∗ then D−ρ is the sheaf
of holomorphic differential operators on X. One knows that Dλ is a DNF sheaf of
algebras on X. Let

π : X → Y

denote the natural projection and let π∗(Dλ) denote the corresponding direct
image in the category of sheaves. Since X and Y are compact, π∗(Dλ) is a DNF
sheaf of algebras on Y . If WY denotes the Weyl group for the Levi quotient then
one knows that π∗(Dwλ) ∼= π∗(Dλ) for each w ∈ WY .

To characterize the sheaf cohomologies of π∗(Dλ) we introduce the g-infinite-
simal character Θ = W ·λ. Let UΘ be the quotient of U(g) by the ideal generated
from the kernel of Θ. Using the result of Beilinson and Bernstein, Hecht and
Taylor show that

Γ(Y, π∗(Dλ)) ∼= UΘ and Hp(Y, π∗(Dλ)) = 0 for p > 0.

Let y ∈ Y and suppose V is an irreducible polarized module for the stabilizer
G0[y]. Let P(y, V ) denote the corresponding sheaf of polarized sections defined
on the G0-orbit S of y. Let ly denote the Levi quotient and let λ ∈ h∗ be a
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parameter for the ly-infinitesimal character on V . Then P(y, V )Y is a DNF sheaf
of π∗(Dλ)-modules. Thus the compactly supported sheaf cohomologies

Hp
c (S,P(y, V )) ∼= Hp(Y,P(y, V )Y )

will be DNF UΘ-modules, provided the corresponding topologies are Hausdorff.
In order to characterize the G0-action on Hp

c (S,P(y, V )), Hecht and Taylor
develop a formalism for DNF sheaves of π∗(Dλ)-modules with compatible ana-
lytic G0-action. The corresponding objects obtained are referred to as analytic
sheaves of (π∗(Dλ), G0)-modules. The sheaf P(y, V )Y provides the fundamental
example of these sorts of objects. By definition a morphism of analytic sheaves of
(π∗(Dλ), G0)-modules is a morphism of DNF π∗(Dλ)-modules which is equivariant
for the G0-action.

Suppose M is a DNF UΘ-module equipped with a continuous, linear G0-action
ω. M is called an analytic (G0, UΘ)-module if:

(1) for each v ∈M the function

g 7→ ω(g)v

is an analytic function from G0 to M ,

(2) the derivative of the G0-action agrees with the g-action.

A morphism of analytic (G0, UΘ)-modules is a continuous linear map which is
equivariant with respect to the G0-actions.

It is clear from definitions that the global sections functor determines a functor
from the category of analytic sheaves of (π∗(Dλ), G0)-modules to the category of
analytic (G0, UΘ)-modules. What Hecht and Taylor show with their formalism
is that, with respect to the construction of sheaf cohomology, the analytic group
action is functorial, provided that the sheaf cohomology has a Hausdorff topology.

Minimal globalization. Let K0 ⊆ G0 be a maximal compact subgroup and
suppose M is a Harish-Chandra module for (K0, g). By definition a globalization
Mglob ofM is an admissible representation of G0 in a complete locally convex space
whose underlying subspace of K0-finite vectors is isomorphic to M as a (K0, g)-
module. By now one knows that there exist several canonical and functorial
globalizations. In this article we shall be interested in realizing the remarkable
minimal globalization, Mmin whose existence was first proved by W. Schmid in
[11]. When Mglob is a globalization of M then the inclusion M →Mglob lifts to a
continuous G0-equivariant linear inclusion

Mmin →Mglob.

This lifting defines an isomorphism of Mmin onto the analytic vectors in a Banach
space globalization [8]. In particular, Mmin is an analytic module. One also knows
that the functor of minimal globalization is exact [8].
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Vanishing number. It turns out there is a specific non-negative integer q asso-
ciated to a G0-orbit S, such that the compactly supported sheaf cohomologies of
any polarized homogeneous vector bundle will vanish in degrees less than q, but
such that the q-th cohomology will not vanish for some polarized homogeneous
vector bundles on S. This value q will be called the vanishing number of S.

In order to define this number, we introduce some definitions and facts related
to the Matsuki duality [9]. Fix a maximal compact subgroup K0 ⊆ G0 and let
K be the complexification of K0. The group K acts algebraically on Y and the
choice of K0 determines an involutive automorphism

θ : g → g

called the Cartan involution of g. A point y ∈ Y is called special if py contains
a Cartan subalgebra c of g such θ(c) = c and such that g0 ∩ c is a real form
for c. A K-orbit is said to be Matsuki dual to a G0-orbit if their intersection
contains a special point. Matsuki has shown that each G0-orbit (each K-orbit)
contains a special point and that K0 acts transitively on the special points in a
given G0-orbit (in a given K-orbit). Thus Matsuki duality establishes a one to
one correspondence between the G0-orbits and the K-orbits in Y . In particular
each G0-orbit has a unique Matsuki dual.

Let S be a G0-orbit and let Q be its Matsuki dual. The vanishing number of
S is defined to be the codimension q of Q in Y .

The compactly supported cohomologies of a polarized homogeneous
vector bundle. We begin this subsection with the following lemma.

Lemma 3.1. Suppose
0 → F → G → H → 0

is a short exact sequence of analytic sheaves of (π∗(Dλ), G0)-modules on Y . As-
sume that for each p, the sheaf cohomology groups Hp(Y,F) and Hp(Y,H) are
admissible analytic G0-modules, isomorphic to the minimal globalizations of their
underlying Harish-Chandra modules. Then the same is true of Hp(Y,G).

Proof. Consider the sequence

Hp−1(Y,H) → Hp(Y,F) → Hp(Y,G).

Since a morphism of minimal globalizations has closed range, it follows that the
kernel of the second morphism is closed in Hp(Y,F). Therefore, by applying [6,
Corollary A.11] to the sequence

Hp(Y,F) → Hp(Y,G) → Hp(Y,H)

one deduces that Hp(Y,G) is Hausdorff. Thus Hp(Y,G) is an analytic G0-module.
Hence the desired result follows from [6, Lemma 10.11]. �

With respect to the polarized homogeneous vector bundles in the full flag space,
one has the following result.
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Proposition 3.2. Suppose X is the full flag space for G0 and S ⊆ X is a G0-
orbit. Choose a point x ∈ S and suppose V is a polarized module for G0[x]. Let
P(x, V ) denote the corresponding sheaf of polarized sections. Then we have the
following:

(a) For each p = 0, 1, 2, . . . , the compactly supported sheaf cohomology group

Hp
c (S,P(x, V ))

is an analytic G0-module, naturally isomorphic to the minimal globalization
of its underlying Harish-Chandra module.

(b) Let q denote the vanishing number of S. Then

Hp
c (S,P(x, V )) = 0 for p < q.

Proof. When V is a polarized module with infinitesimal character, then this
result is proved in [4]. Since the correspondence

W 7−→ P(x,W )X

defines an exact functor from the category of polarized G0[x]-modules to the
category of analytic sheaves of (π∗(Dλ), G0)-modules, using the previous lemma,
the general case follows. �

Fix y ∈ Y , let V be an irreducible polarized module for G0[y], put S = G0 · y and
let N = π−1(S) ⊆ X be the associated manifold. In order to study the compactly
supported sheaf cohomologies of the polarized sections P(y, V ) we introduce the
associated vector bundle W, defined on N .

Suppose y ∈ S is special and let K[y] denote the stabilizer of y in K. Then the
duality between G0 and K-orbits on X descends to a 1-1 correspondence between
G0[y] and K[y]-orbits on Xy [9]. In particular, there exists a unique closed G0[y]-
orbit on Xy whose Matsuki dual is the open K[y]-orbit. It follows there is a unique
G0-orbit O ⊆ N which is closed in N . Observe that the vanishing number of O is
equal to the vanishing number of S. We call O the associated orbit.

Applying the previous two results we now establish the following.

Lemma 3.3. Fix y ∈ Y , put S = G0 · y and let V be an irreducible polarized
module for G0[y]. Let W be the associated vector bundle defined on N = π−1(S) ⊆
X and let PW denote the corresponding sheaf of polarized sections. Then we have
the following.

(a) For each p = 0, 1, 2, . . . , the compactly supported sheaf cohomology group

Hp
c (N,PW)

is an analytic G0-module, naturally isomorphic to the minimal globalization
of its underlying Harish-Chandra module.
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(b) Let q denote the vanishing number of S and let O be the associated orbit in
N . Then

Hp
c (N,PW)) = 0 for p < q

and there exists a natural, G0-equivariant, continuous linear inclusion

Hq
c (N,PW) → Hq

c (O,PW |O).

Proof. Put U = N −O and consider the short exact sequence

0 → (PW |U)X → PX
W → (PW |O)X → 0.

Thus (a) follows from the previous two results and the long exact sequence in
cohomology provided we know the result for the sheaf cohomologies of (PW |U)X .
By choosing a secondG0-orbit S2 ⊆ U , that is closed in U and defining U2 = U−S2

we obtain the exact sequence

0 → (PW |U2)
X → (PW |U)X → (PW |S2)

X → 0.

Thus we reduce to the case where U is a G0-orbit open in N and the result follows
by Proposition 3.2.

Similar considerations can be used to establish (b). In particular, we only
need to add the observation that if S p is a G0-orbit contained in U then

dim(O) < dim(S p)

and thus Matsuki duality implies that the vanishing number qp of S p satisfies qp > q.
Thus, where U = N −O, we obtain

Hp(X, (PW |U)X) = 0 for p < q

and the desired emdedding is obtained from the long exact sequence in cohomology
applied to the first of the previous two short exact sequences. �

Theorem 3.4. Let Y be a flag space for G0 and suppose y ∈ Y . Let V be a
polarized G0[y]-module and let P(y, V ) denote the corresponding sheaf of polarized
sections. Suppose S is the G0-orbit of y and let q denote the vanishing number of
S. Then we have the following.

(a) For each p = 0, 1, 2, . . . , the compactly supported sheaf cohomology group

Hp
c (S,P(y, V ))

is an admissible analytic G0-module, naturally isomorphic to the minimal
globalization of its underlying Harish-Chandra module.

(b) Let q denote the vanishing number of S. Then Hp
c (S,P(y, V )) vanishes for

p < q.
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Proof. Using Lemma 3.1 we can reduce to the case where V is irreducible. Let

π : X → Y

be the canonical projection, put N = π−1(S) and let

W
↓
N

be the associated vector bundle. Let PW denote the corresponding sheaf of polar-
ized sections.

For x ∈ Xy = π−1({y}) let bx ⊆ py be the corresponding Borel subalgebra.
Let µ be the element of h∗ that specializes to the the bx-action on V/nxV . Thus µ
is the lowest weight in V and the corresponding ly-infinitesimal character is given
by λ = µ − ρ. Thus P(y, V )Y is an analytic sheaf of (π∗(Dλ), G0)-modules and
PX
W is an analytic sheaf of (Dλ, G0)-modules.

Observe that the direct image functor π∗ induces a functor from the category of
DNF sheaves of Dλ-modules to the category of DNF sheaves of π∗(Dλ)-modules.
More specifically, π∗PX

W is an analytic sheaf of (π∗(Dλ), G0)-modules. We will
deduce Theorem 3.4 from the following lemma.

Lemma 3.5. Maintain the above notations. Then we have the following:

(a) π∗PX
W
∼= P(y, V )Y as an analytic sheaf of (π∗(Dλ), G0)-modules.

(b) Let Rpπ∗ denote the p-th derived functor for the direct image. Then
Rpπ∗

(
PX
W

)
= 0 for p > 0.

Proof. Consider the following diagram

Xy
i→ N → X

↓ ↓ π ↓
{y} → S → Y

Since the map π is proper, by standard sheaf cohomology considerations it suffices
to show that

π∗ (PW) ∼= P(y, V ) and that Rpπ∗ (PW) = 0 for p > 0.

To establish the isomorphism π∗ (PW) ∼= P(y, V ), suppose that z ∈ S and let
Γ(Xz,W |Xz

) denote the global holomorphic sections of the holomorphic vector
bundle

W |Xz

↓
Xz

Let V denote the polarized homogeneous vector bundle over S corresponding to
V . Then there is a canonical isomorphism of polarized G0[y]-modules

Vy
∼= Γ(Xy,W |Xy

).
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In particular, if v ∈ Vy and x ∈ Xy then the natural projection of v into

Wx =
Vy

nxVy

determines a global section σ : Xy → W. Using this isomorphism, together with
the natural G0-action on ⋃

z∈S

Γ(Xz,W |Xz
)

we identify this union with V. Observe that the natural pz-action in Γ(Xz,W |Xz
)

corresponds to the pz-action on Vz. Suppose U is an open subset of S. We define
the isomorphism from π∗ (PW) (U) to P(y, V )(U) as follows. Let σ ∈ π∗ (PW) (U)
and suppose z ∈ U . Thus the restriction σ |Xz is a global holomorphic section of
the bundle W |Xz

. Put
γσ(z) = σ |Xz for z ∈ U.

Then one checks that γσ is a polarized section of V and that the correspondence

σ 7→ γσ

defines the desired isomorphism.
To establish the vanishing, we first note that the sheaf PW is locally free as

a sheaf of OX |N -modules and that the map π is proper. Therefore the desired
result can be deduced from the Borel-Weil-Bott theorem and Grauert’s results for
the direct image. In particular, for z ∈ S let OXz denote the sheaf of holomorphic
functions on Xz and put

W(z) = OXz

⊗
OX |Xz

PW |Xz .

Then W(z) is naturally isomorphic to the sheaf of holomorphic sections of the
bundle

W |Xz

↓
Xz

By the Borel-Weil-Bott theorem [3]

HP (Xz,W(z)) = 0 for p > 0.

Thus the desired result is deduced by standard techniques from Grauert’s Theo-
rem, [2]. �

To finish the proof of Theorem 3.4, observe that part (a) follows immediately from
Lemma 3.3, the previous lemma and the Leray spectral sequence. To establish
the vanishing from part (b), let O be the associated orbit in N . Then Matsuki
duality implies that the vanishing number of O is equal to q. Thus (b) also follows
from Lemma 3.3, Lemma 3.5 and the Leray spectral sequence. �
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When V is an irreducible polarized G0[y]-module and q is the vanishing number
of the G0-orbit S = G0 · y then the representation

Hq
c (S,P(y, V ))

will be called the standard analytic G0-module induced from V .

4. Geometric embedding

Suppose S ⊆ Y is a G0-orbit and let q denote the vanishing number of S. Choose
y ∈ S and let V be an irreducible polarized module for G0[y]. We now continue
our analysis of the standard analytic module Hq

c (S,P(y, V )).
Let N = π−1(S) be the associated manifold and let O be the associated orbit

in N . Thus O has vanishing number q. Choose x ∈ O ∩ Xy and let V/nxV be
the corresponding polarized module for G0[x]. Then we have the the associated
standard analytic module Hq

c (O,P(x, V/nxV )) determined by V .
The geometric embedding of Hq

c (S,P(y, V )) in Hq
c (O,P(x, V/nxV )) now fol-

lows immediately from our previous analysis.

Theorem 4.1. There exists a natural, G0-equivariant, continuous linear inclu-
sion

Hq
c (S,P(y, V )) → Hq

c (O,P(x, V/nxV )).

Proof. Let
W
↓
N

be the polarized equivariant vector bundle in X determined from V and let PW
denote the sheaf of polarized sections of W. Then

PW |O∼= P(x, V/nxV ).

Thus the desired result follows from Lemma 3.3, Lemma 3.5 and the Leray spectral
sequence. �

The standard Beilinson-Bernstein modules. In general, not much is known
about the underlying Harish-Chandra module of Hq

c (S,P(y, V )). However we
can establish non-vanishing result for Hq

c (S,P(y, V )) using information about the
Harish-Chandra module of Hq

c (O,P(x, V/nxV )). In order to state and prove the
result, we need to utilize the Beilinson-Bernstein construction of standard Harish-
Chandra modules on the full flag space, which is known to describe the Harish-
Chandra module of a standard analytic module in that case. We now review some
relevant points surrounding the Beilinson-Bernstein construction. We remark that
many sheaves in this section are defined on the topological space Xalg, where Xalg

denotes the full flag space equipped with the G-invariant Zariski topology.
For x ∈ Xalg let K[x] denote the stabilizer of x in K. By definition, a polarized

algebraic K[x]-module is a finite dimensional algebraic (K[x], bx)-module such



50 T. Bratten: A Geometric Embedding . . .

that the nilradical nx acts trivially. A morphism of polarized algebraic modules
is a linear map, equivariant for both the K[x] and the bx-actions. Suppose that x
is special. One knows there exists a natural equivalence between the categories of
polarized algebraic K[x]-modules and the category of polarized G0[x]-modules.

Let λ ∈ h∗ and let Dalg
λ be the corresponding twisted sheaf of differential

operators with regular coefficients, defined on the algebraic variety Xalg. By
definition, a Harish-Chandra sheaf with parameter λ is a coherent sheaf of Dalg

λ -

modules with compatible algebraic K-action [7]. Let Mcoh(Dalg
λ , K) denote the

corresponding category of Harish-Chandra sheaves. When M ∈ Mcoh(Dalg
λ , K)

then the sheaf cohomologies

Hp(Xalg,M) p = 0, 1, 2, . . .

are Harish-Chandra modules with infinitesimal character Θ = W · λ.
Let MHC(UΘ, K) denote the category of Harish-Chandra modules for (g, K)

with infinitesimal character Θ = W · λ. The global sections define a functor

Γ : Mcoh(Dalg
λ , K) → MHC(UΘ, K).

Beilinson and Bernstein observed that Γ has the left adjoint

∆λ : MHC(UΘ, K) → Mcoh(Dalg
λ , K)

given by

∆λ(M) = Dalg
λ

⊗
UΘ

M

where M is an object in MHC(UΘ, K) and UΘ = Γ(Xalg,Dalg
λ ). In fact, when

λ ∈ h∗ is antidominant, Beilinson and Bernstein have shown that the functor

Γ : Mcoh(Dalg
λ , K) → MHC(UΘ, K)

is exact and that the adjointness morphism defines an isomorphism between Γ◦∆λ

and the identity functor on MHC(UΘ, K).
Let ρ be one half the sum of the positive roots and let W be a polarized

algebraic K[x]-module. When bx acts by the specialization of λ + ρ ∈ h∗ then
Beilinson and Bernstein define a corresponding standard Harish-Chandra sheaf

I(x,W ) ∈ Mcoh(Dalg
λ , K)

[7]. Suppose that W is irreducible. Then there is a unique λ ∈ h∗ such that bx

acts by λ+ ρ. One knows that I(x,W ) has a unique irreducible Harish-Chandra
subsheaf J (x,W ) ∈ Mcoh(Dalg

λ , K). Put

I(x,W ) = Γ(Xalg, I(x,W )) and J(x,W ) = Γ(Xalg,J (x,W )).

The pair (x,W ) will be called a classifying data if λ is antidominant and if
J(x,W ) 6= 0. When (x,W ) is a classifying data then J(x,W ) is the unique
irreducible (g, K)-submodule of I(x,W ). An exact criteria for when (x,W ) is a
classifying data is known [10].
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Lemma 4.2. Suppose that (x,W ) is a classifying data. Let J (x,W ) denote the
corresponding irreducible Harish-Chandra sheaf in Mcoh(Dλ, K) and let J(x,W )
be the global sections of J (x,W ). Suppose K is an object from Mcoh(Dλ, K)
contained in ∆λ(J(x,W )), whose global sections are zero. Then K is contained in
the kernel of the adjointness morphism

∆λ(J(x,W )) → J (x,W ).

Proof. Let N denote the kernel of the adjointness morphism. Since J(x,W ) 6= 0,
we have the exact sequence

0 → N → ∆λ(J(x,W )) → J (x,W ) → 0.

Since J (x,W ) is irreducible, N is a maximal, K-equivariant subsheaf of coherent
Dλ-submodules in ∆λ(J(x,W )). Since Γ ◦∆λ is the identity, the global sections
of N are zero. Consider the sheaf

M = K +N ⊆ ∆λ(J(x,W )).

Then M is a K-equivariant subsheaf of coherent Dλ-submodules of ∆λ(J(x,W ))
containing N . Since M has global sections zero, M 6= ∆λ(J(x,W )). Thus
M = N and K ⊆ N . �

Nonvanishing for the geometric embedding. Suppose x ∈ X is special.
Then there is a unique θ-stable Cartan subgroup H0 of G0 contained in G0[x].
In particular, if N0 indicates the connected subgroup of G0[x] with Lie algebra
g0 ∩ nx then

G0[x] = H0 ·N0 with H0 ∩N0 = {0} .

Thus a finite-dimensional irreducible polarized representation W of G0[x] is noth-
ing but a finite-dimensional irreducible representation of H0 whose derivative we
write as λ+ ρ ∈ h∗. The representation W in turn carries a uniquely compatible
structure as an irreducible polarized algebraic K [x]-module. Let P(x,W ) be the
corresponding induced sheaf of polarized sections on O = G0 · x and put

I(x,W ) = Γ(Xalg, I(x,W )).

Let q denote the vanishing number of O. Then Hecht and Taylor have shown that
Hq

c (O,P(x,W )) is naturally isomorphic to the minimal globalization of I(x,W ).
Using this result, we are now ready to establish the nonvanishing clause of the
geometric embedding.

Theorem 4.3. Let S be a G0-orbit on Y and suppose q denotes the vanishing
number of S. Choose a special point y ∈ S and let V be an irreducible polarized
representation for G0[y]. Let O be the associated orbit in X and choose x ∈ O∩Xy.
Assume (x, V/nxV ) is a classifying data. Then Hq

c (S,P(y, V )) is non-zero. In
particular, Hq

c (S,P(y, V )) is naturally isomorphic to a topologically closed, non-
zero submodule of Hq

c (O,P(x, V/nxV )).
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Proof. Let N be the associated manifold in X and put U = N −O. Let

W
↓
N

associated vector bundle and let PW denote the corresponding sheaf of polarized
sections. Consider the short exact sequence

0 → (PW |U)X → (PW)X → (PW |O)X → 0.

The proof is by contradiction. Suppose Hq
c (S,P(y, V )) = 0. Since

Hq
c (S,P(y, V )) ∼= Hq(X, (PW)X)

we thus obtain a continuous G0-equivariant inclusion

Hq
c (O,P(x, V/nxV )) ∼= Hq

c (O,PW |O) → Hq+1
c (U,PW |U).

Put Λ = {G0 − orbits E ⊆ N : E has vanishing number q + 1}. Then, arguing as
in the previous section, we obtain a continuous G0-equivariant inclusion

Hq+1
c (U,PW |U) →

⊕
E∈Λ

Hq+1
c (E,PW |E).

Let J(x, V/nxV ) denote the unique irreducible Harish-Chandra submodule of
I(x, V/nxV ) and let J(x, V/nxV ) denote the closure of J(x, V/nxV ) in Hq

c (O,P(x,
V/nxV )). By composing the two inclusions above, one obtains an E ∈ Λ and a
continuous G0-equivariant inclusion

J(x, V/nxV ) → Hq+1
c (E,PW |E).

Choose a special point z ∈ E ∩Xy. Then

Hq+1
c (E,PW |E) ∼= Hq+1

c (E,P(z, V/nzV ))

so that the underlying Harish-Chandra module ofHq+1
c (E,PW |E) is the Beilinson-

Bernstein module I(z, V/nzV ). We therefore have an inclusion of Harish-Chandra
modules

J(x, V/nxV ) → I(z, V/nzV ).

Let λ ∈ h∗ such that bx and bz act on V/nxV and V/nzV , respectively by the
specialization of λ+ ρ. Put Θ = W · λ and consider the localization functor

∆λ : MHC(UΘ, K) → Mcoh(Dλ, K).

By our hypothesis, λ is antidominant. Let I(z, V/nzV ) be the standard Harish-
Chandra sheaf from Mcoh(Dλ, K) such that

I(z, V/nzV ) = Γ(X, I(z, V/nzV )).
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By the adjointness property, the inclusion of J(x, V/nxV ) in I(z, V/nzV ) defines
a non-zero morphism

ϕ : ∆λ(J(x, V/nxV )) → I(z, V/nzV ).

Thus we have the following exact sequence in Mcoh(Dλ, K)

0 → ker(ϕ) → ∆λ(J(x, V/nxV ))
ϕ→ im(ϕ) → 0

where ker(ϕ) and im(ϕ) denote the kernel and the image of ϕ, respectively. Since
the K-orbit of x has open intersection with the fiber Xy, it follows that x does
not belong to the closure of the K-orbit of z, thus the stalk im(ϕ)x is zero. On
the other hand, we claim that the stalk of the quotient

(∆λ(J(x, V/nxV ))/ ker(ϕ))x

is not zero. To establish this claim, observe that since Γ ◦ ∆λ is the identity, it
follows that

Γ(X, ker(ϕ)) = 0.

Let J (x, V/nxV ) denote the unique irreducible object in Mcoh(Dλ, K) such that

J(x, V/nxV ) = Γ(X,J (x, V/nxV )).

Therefore, by Lemma 4.2, ker(ϕ) is contained in the kernel of the canonical sur-
jection

∆λ(J(x, V/nxV )) → J (x, V/nxV ) → 0.

Therefore we have a surjection

∆λ(J(x, V/nxV ))/ ker(ϕ) → J (x, V/nxV ) → 0.

This last surjection implies the claim, since J (x, V/nxV )x 6= 0. �

5. Realizing some irreducible subrepresentations of principal series in
a complex reductive group

In this section we let G0 be a connected complex reductive Lie group. In order to
illustrate the embedding of the previous section, we will realize some irreducible
subrepresentations of the principal series.

Let C0 ⊆ G0 be a Cartan subgroup with Lie algebra c0 and let c ⊆ g be the
corresponding complexification. Fix a Borel subgroup B0 of G0 containing C0.
Let b0 denote the Lie algebra of B0 and let b ⊆ g indicate the complexification.
Thus the G0-orbit of b in X is closed. Based on this choice there is a simple 1-1
correspondence between the Weyl group W0 of c0 in g0 and the set of G0-orbits
in X as follows. Let Σ(c) indicate the set of roots c in g and let α0 be a root of
c0 in g0. Then the extension of α0 to a complex linear functional α ∈ c∗ is a root
of c in g. Thus we identify the roots Σ0 of c0 in g0 with a subset of Σ(c). In turn
W0 is identified with a subgroup of the Weyl group of c in g. Thus for w ∈ W0 we
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can define the Borel subalgebra w · b of g containing c. The application assigning
w ∈ W0 to the G0-orbit of w · b defines the desired 1-1 correspondence. Observe
that the dimension of the G0-orbit grows with the length of w. In particular, the
open G0-orbit on X corresponds to the longest element of W0.

Let
χ : H0 → C

be a continuous character. Then χ extends uniquely to a character of the sta-
bilizer G0 [w · b] of w · b in X and the derivative dχ of χ extends uniquely to a
1-dimensional complex representation of w · b. Thus χ determines an irreducible
polarized module for G0 [w · b]. We use the notation

A(w, χ)

to indicate the corresponding standard analytic module. When w is the identity
we simply write A(χ). In this case A(χ) is the principal series representation
consisting of the space of real analytic functions

f : G0 → C such that f(gb) = χ(b−1)f(g) for g ∈ G0 and b ∈ B0.

Let dχ indicate the natural extension of the differential of χ to an element of c∗

and identify dχ with an element of h∗ via the specialization to c∗ at w · b. Put

λ = dχ− ρ

the shifted differential in h∗. In particular, the sheaf used to define A(w, χ) is a
sheaf of Dλ-modules.

We will need the following result, which follows directly by an application
of the analytic version of the intertwining functor, established in [6, Proposition
9.10] (also consider [10]).

Proposition 5.1. Suppose λ = dχ− ρ. Let α ∈ Σ be a simple route and suppose

∨
α(λ) /∈ Z.

Specializing to c∗ via the point w ·b let χα : H0 → C be the corresponding character
and define

γ : H0 → C by χ · χ−1
α .

Then there exists a natural isomorphism

A(w, χ) ∼= A(sα · w, γ).

Observe that, via the identification made above, the shifted differential

τ = dγ − ρ ∈ h∗

satisfies the equation τ = sα(λ) = λ − ∨
α(λ)α. Hence, when λ is antidominant,

then so is τ . In particular, suppose β is a root. Then

∨
β(sα(λ)) = 2

〈β, sα(λ)〉
〈β, β〉

= 2
〈sα(β), λ〉

〈sα(β), sα(β)〉
=

∨
sα(β)(λ).
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Thus the claim is established, since sα · Σ+ = (Σ+ − {α}) ∪ {−α} and since
∨
α(λ) /∈ Z.

We assume that λ is antidominant and that A(w, χ) is a classifying module.
Thus A(w, χ) contains a unique irreducible submodule J(w, χ). In this section we
treat the case where w is the identity and consider the possibility of realizing the
irreducible submodule J(χ) of A(χ).

Recall we have identified the roots Σ0 of c0 in g0 with subset of Σ(c) ⊆ c∗.
Put

Σ0(χ) =
{
α ∈ Σ0 :

∨
α(dχ) ∈ Z

}
.

One knows that Σ0(χ) is a root subspace of Σ0. The roots of c in b define positive
systems Σ+

0 and Σ+
0 (χ) = Σ0(χ) ∩ Σ+

0 . Σ0(χ) will be called parabolic (at b) if
every simple root in Σ+

0 (χ) is simple for Σ+
0 .

Suppose Σ0(χ) is parabolic. Put

Σ0(u) = Σ+
0 − Σ+

0 (χ)

and define
S+ = Σ+

0 (χ) ∪ −Σ0(u).

Thus S+ is a positive set of roots for Σ0. In particular, there exists a unique
w ∈ W0 such that

wΣ+
0 = S+.

Define
p = w · b +

∑
α∈Σ+

0 (χ)

g−α

where g−α ⊆ g is the corresponding root subspace. Thus p is a parabolic subal-
gebra of g with Levi factor

l = c +
∑

α∈Σ+
0 (χ)

gα +
∑

α∈Σ+
0 (χ)

g−α and nilradical u =
∑

α∈Σ0(u)

g−α.

Lemma 5.2. Let k be the number of roots in Σ0(u). Then there is a sequence of
roots

α1, . . . , αk with αj ∈ Σ0(u)

such that αj+1 is simple with respect to the Borel subalgebra

sα1 · · · sαj
b.

Proof. In the case where Σ0(u) = Σ+
0 and Σ+

0 (χ) = ∅ a reference for this result
can be found in [6, Lemma 10.6]. The more general case is proved in the same
way. �

Observe that
w = sα1 · · · sαk

.
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Define
γ = χ · χ−1

α1
· · ·χ−1

αk
.

Then the shifted differential associated to γ is antidominant with respect to the
point w · b. Using the positive system Σ+

0 (χ) with respect to the Levi factor l, let
V be the irreducible l-module with lowest weight dγ. Then V is an irreducible
polarized representation for the normalizer G0 [p] of p in G0. Let A(p, V ) denote
the corresponding standard analytic module. Then we have the following result.

Theorem 5.3. Assume the principal series representation A(χ) is a classifying
module and let J(χ) ⊆ A(χ) denote the corresponding irreducible subrepresenta-
tion. Suppose Σ0(χ) is parabolic and define p and V as above. Then there is a
natural isomorphism

J(χ) ∼= A(p, V ).

Proof. Define γ and w as above. Then Proposition 5.1 and Lemma 5.2 determine
a natural isomorphism

A(χ) ∼= A(w, γ).

Let N ⊆ X be the associated manifold to the G0-orbit of p. Observe that N is
open in X and that the G0-orbit of w · b is closed in N . Therefore we have the
embedding

A(p, V ) ⊆ A(w, γ)

given by Theorem 4.1. In addition, A(p, V ) 6= {0} by Theorem 4.3. Since the
shifted differential for γ is antidominant, and since the G0-orbit of p is open, it
now follows from the work in [5] that A(p, V ) is irreducible. �
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