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Abstract. If equilateral triangles are erected outwardly on the sides
of any given triangle, then the circumcenters of the three erected trian-
gles form an equilateral triangle. This statement, known as Napoleon’s
theorem, and the configuration involved, usually called the Torricelli
configuration of the initial triangle, were generalized to d-dimensional
simplices (d ≥ 3) in [12]. It is obvious that for d ≥ 3 regular d-simplices
cannot be erected on the facets of an arbitrary initial d-simplex S. Thus,
instead of erecting such simplices, the authors of [12] used a related
sphere configuration which also occurs in the planar situation. In the
present paper, we give new d-dimensional analogues, mainly based on
a higher dimensional Torricelli configuration constructed with the help
of segments on lines through isogonal points and vertices of S. Inter-
esting further properties of d-dimensional Torricelli configurations are
obtained, too.
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1. Introduction

Napoleon’s Theorem states that if equilateral triangles ABC ′, BCA′, and CAB′

are erected outwardly on the sides of any triangle ABC, then the centroids C∗,
A∗, and B∗ of these three triangles form an equilateral triangle; see [11] and [7,
Corollary 4.1]. Also, the three triangles A∗B∗C∗ and A′B′C ′, and ABC turn
out to have the same centroid [7, Corollary 4.2]. The configuration involved is
shown in Figure 1 and has several other interesting properties that are described
in [11]. It is often referred to as the Torricelli configuration of ABC because
E. Torricelli used it to answer a question of P. de Fermat regarding the point whose
distances from the vertices of a given triangle ABC have minimal sum. Such a
point is known since then as the Fermat-Torricelli point of the triangle ABC.
The Fermat-Torricelli point of a d-simplex is defined similarly for every d ≥ 3.
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Figure 1

Referring to the Torricelli configuration in Figure 1, Torricelli and, independently,
B. Cavalieri proved that the circumcircles of ABC ′, BCA′, and CAB′ are con-
current, and Th. Simpson showed that the lines AA′, BB′, and CC ′ (also called
Simpson lines) are concurrent and that these two points of concurrence coincide;
see [1, Chapter II] for these and more historical details. Letting F be the common
point of concurrence, Torricelli showed that if the angles of ABC are less than
120◦ each, then F is the Fermat-Torricelli point of ABC, and that

AA′ = BB′ = CC ′ = FA + FB + FC. (1)

If one of the angles of ABC equals or exceeds 120◦, then the Fermat-Torricelli
point coincides with the vertex that holds that angle. Thus if one denotes the
Fermat-Torricelli point by F and the point of intersection of the lines AA′, BB′,
and CC ′ by F , then F coincides with F if none of the angles of ABC equals or
exceeds 120◦; otherwise F coincides with the vertex that holds the largest angle.

To extend Napoleon’s theorem and related results to higher dimensions in a
straightforward manner, one is faced with the obvious difficulty that it is impossi-
ble to erect regular d-simplices on the facets of an arbitrary d-simplex when d ≥ 3;



M. Hajja et al.: New Extensions of Napoleon’s Theorem to Higher Dimensions 255

see Remark 2 for questions and issues that arise in this connection. Thus we move
in a completely different direction closely related to that initiated in [12]. It is
based on constructing the Torricelli configuration in a reverse manner starting
with the Fermat-Torricelli point of the triangle.

Starting with a triangle ABC having an interior Fermat-Torricelli point F ,
one easily sees that the unit vectors emanating from F towards the vertices of
ABC add up to the zero vector O; see, e.g., [1, Theorem 18.3]. The points A′, B′,
and C ′ of Figure 1 can now be obtained by either (i) extending FA, FB, and FC
to meet the circumcircles of FBC, FCA, and FAB, respectively, or (ii) extending
FA, FB, and FC to points A′, B′, and C ′ so that (1) is satisfied. The first point
of view has been taken up in [12] and has led to interesting higher dimensional
analogues of Napoleon’s theorem. In this paper, we will take up the second point
of view.

2. Weighted pre-Torricelli configurations and their properties in dimen-
sion two

In this section, we introduce certain d-dimensional configurations that we have
chosen to refer to as pre-Torricelli, and we summarize their properties for the
case d = 2 in Theorem 1. This theorem encompasses Napoleon’s theorem and
the other statements pertaining to the Torricelli configuration, together with sim-
ilar statements about configurations in which the equilateral triangles are drawn
inwardly on the sides of ABC. It is designed as a preparation for the higher
dimensional analogues given in Theorems 2 and 4, and its particular statements
can, for example, be found in [2], [11], [1, Chapter II], and [7].

Definition 1 below is motivated by the fact that when the Fermat-Torricelli
point F of a d-simplex S = [A1, . . . , Ad+1] is interior, then the unit vectors ema-
nating from F towards the vertices of S add up to the zero vector O; see again [1,
Theorem 18.3]. Moreover, when F is the generalized Fermat-Torricelli point that
minimizes the sum

∑
wi‖F −Ai‖ for given positive weights wi, then the unit vec-

tors u1, . . . ,ud+1 emanating from F towards the vertices of S have the property
that

∑
wiui = O; cf. also [1, Theorem 18.37]. The converse is also true: If P is

a point that is not a vertex of S and if the unit vectors u1, . . . ,ud+1 emanating
from P towards the vertices of S have the property that

∑
wiui = O, then P is

the generalized Fermat-Torricelli point corresponding to the weights w1, . . . , wd+1.
This is proved in [8, Theorem 1.1] for equal weights, but the proof applies word
for word to any positive weights.

Definition 1. A d-dimensional weighted pre-Torricelli configuration {u, w, a, a′}
consists of affinely independent unit vectors u1, . . . ,ud+1, positive weights w1, . . . ,
wd+1, and non-zero real numbers a1, . . . , ad+1, a′

1, . . . , a
′
d+1 such that

w1u1 + · · ·+ wd+1ud+1 = O, where O is the zero vector, (2)

ai > a′
i for every i. (3)

When the weights are equal, the configuration is called a pre-Torricelli configura-
tion and is denoted by {u, a, a′}.
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The base or initial d-simplex in the configuration is the d-simplex S = [A1, . . . ,
Ad+1], where Ai = aiui.

The Torricelli d-simplex is the d-simplex S ′ = [A′
1, . . . , A

′
d+1], where A′

i = a′
iui,

and the i-th ear d-simplex Si is the d-simplex obtained from S by replacing Ai with
A′

i.

The centroidal Napoleon d-simplex is the d-simplex S∗ = [A∗
1, . . . , A

∗
d+1], where A∗

i

is the centroid of the i-th ear d-simplex Si.

The circumcentral Napoleon d-simplex is the d-simplex S◦ = [A◦
1, . . . , A

◦
d+1], where

A◦
i is the circumcenter of the i-th ear d-simplex Si.

The use of the prefix pre in the term pre-Torricelli reflects the fact that no condi-
tions on how a and a′ are related are imposed. It also gives the false impression
that we will later say what Torricelli configurations are. We expect this to be done
in later papers where we would explore what minimal conditions a pre-Torricelli
configuration has to obey in order that it maximally resembles the ordinary planar
Torricelli configuration. A Torricelli configuration would then be a pre-Torricelli
configuration that obeys those conditions.

The circumcentral Napoleon d-simplex will never be referred to except in Re-
mark 7 at the end of the paper. Note that in the ordinary planar Torricelli config-
uration where the ear triangles are equilateral, the centroidal and circumcentral
Napoleon triangles coincide.

Note also that the length ‖AiA
′
i‖ of the line segment AiA

′
i is ai− a′

i, and that
(2) is essentially the only dependence relation among the ui since they are affinely
independent.

In Theorem 1, as well as in Theorems 2 and 4, S, S ′, and S∗ refer to the base,
Torricelli, and centroidal Napoleon d-simplices described in Definition 1.

Theorem 1. Let T = {u, a, a′} be a pre-Torricelli configuration, and let s =
a1 + · · ·+ ad+1. If d = 2, then
(A) the following four statements are equivalent:

(A1) the centroids G, G′, and G∗ of S, S ′, and S∗ coincide,

(A2) any two of the centroids G, G′, and G∗ of S, S ′, and S∗ coincide,

(A3) the centroidal Napoleon triangle S∗ is equilateral,

(A4) ai − a′
i = aj − a′

j for all i and j in {1, . . . , d + 1},
(B) the following three statements are equivalent:

(B1) the circumcircles of the Si all pass through O,

(B2) ai − a′
i = s for all i in {1, . . . , d + 1},

(B3) the ear triangles are equilateral,

(C) the base or initial triangle is arbitrary in the sense that every triangle (in-
cluding degenerate triangles) is the base triangle of a (not necessarily unique)
pre-Torricelli configuration,
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(D) the Torricelli triangle is arbitrary in the sense that every triangle (including
degenerate triangles) is the Torricelli triangle of a (not necessarily unique)
pre-Torricelli configuration.

As mentioned earlier, the particular statements of this theorem can, for example,
be found in [2], [11], [1, Chapter II], and [7].

3. Remarks pertaining to weighted pre-Torricelli configurations in high-
er dimensions

Before extending Theorem 1 to higher dimensions, we find it helpful to give a few
remarks.

Remark 1. In Napoleon’s theorem stated at the very beginning of this article,
the vertices A∗, B∗, and C∗ of the Napoleon triangle were taken to be the centroids
of the ear triangles. Since the ear triangles are equilateral, these points could as
well have been taken to be the circumcenters of these triangles. This explains
why it is natural to introduce both the centroidal and circumcentral Napoleon
triangles in our definition of the pre-Torricelli configuration.

Remark 2. A main difficulty in extending Napoleon’s theorem to higher di-
mensions in a straightforward manner lies in the impossibility of erecting regular
d-simplices on the facets of an arbitrary initial d-simplex when d ≥ 3. One won-
ders here whether things would work if the d-simplices erected on the facets are
required merely to be regular in some weak sense. This very natural question is
related to the different weaker degrees of simplex regularity that abound in the
existing literature; see [4]. This type of approach will be taken up in another
project and is expected to lead to interesting questions. However, equilaterality
(or regularity) of a triangle can be characterized in many different ways that,
although equivalent for triangles, are completely different for d-simplices when
d ≥ 3, and especially when d ≥ 4. A natural type of regularity is obtained by
considering d-simplices in which two or more centers coincide. Recalling that the
centroid G of a d-simplex [A1, . . . , Ad+1] is the average A1+···+Ad+1

d+1
of its vertices

and that the circumcenter C is the d-sphere that passes through the vertices, one
may refer to a d-simplex in which G and C coincide as a (G, C)-regular d-simplex.
Similar definitions are obtained by taking other centers such as the incenter I, i.e.,
the center of the d-sphere that touches all the facets, and the Fermat-Torricelli
point F . These degrees of regularity and their relations to facial structures of a
d-simplex have been investigated earlier in [4], where it is proved that

S is (G, C)-regular ⇐⇒ S is (F , C)-regular

⇐⇒ S is (F ,G)-regular

⇐⇒ S has well-distributed edge-lengths in the sense

that the sum of squares of the edge-lengths of a

facet is the same for all facets,
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S is (C, I)-regular ⇐⇒ C is interior and S is equiradial in the sense that

its facets have equal circumradii,

S is (I,G)-regular ⇐⇒ S is equiareal in the sense that its facets

have equal volumes.

Note that for triangles all these degrees of regularity collapse to simple equilater-
ality; see [15, Exercise 1, p. 37], [9, pp. 78–79], and [6]. However, it is seen in [4]
that even a (G, C,F)-regular d-simplex is far from being regular.

In view of this, one would expect the statements (A3) and (B3) in Theorem
1 to take other forms in higher dimensions.

Remark 3. Consider the Torricelli configuration shown in Figure 1 and the point
F of concurrence of AA′, BB′, CC ′. If no angle of ABC is larger than 120◦, then
F is the point P that minimizes PA + PB + PC. This is not true if one of the
angles of ABC exceeds 120◦; see Figure 2. In this case, one wonders whether the
point F has any other significance, and it is natural to expect that F is the point
that minimizes a quantity of the type ∓PA∓PB∓PC. This false expectation is
asserted in the famous book [3, Chapter VII, § 5.2, pp. 356–358] and it was later
corrected in [2], [13], and [5]; see also [10] and [1, § 23.4]. In any case, the unit
vectors u, v, and w emanating from F to the vertices of ABC have the property
that ∓u∓ v∓w = O. Such points are usually referred to as isogonal points and
will be discussed in the next remark.

Remark 4. Statement (C) in Theorem 1 follows from the fact that every triangle
has at least one isogonal point, where a point P is said to be an isogonal point
of a d-simplex S if the unit vectors v1, . . . ,vd+1 emanating from P towards the
vertices of S satisfy ±v1±· · ·±vd+1 = O for some choice of ± signs. For a triangle
ABC, the isogonal points are described in [5]. Assuming that the angles B and
C of the triangle ABC satisfy (B ≥ 60◦ and C ≥ 60◦) or (B ≤ 60◦ and C ≤ 60◦),
we draw an equilateral triangle BCX and we let P be where the line AX meets
the circumcircle of BCX. Then P is an isogonal point. Since there are two
equilateral triangles BCX and BCX ′, we obtain two isogonal points. In fact, it
is shown in the last theorem of [5] that every non-equilateral triangle has exactly
two isogonal points, and that all the points on the circumcircle of an equilateral
triangle are isogonal points. The question whether similar statements about the
existence and significance of isogonal points hold in higher dimensions will not be
addressed here. Thus we will not seek a higher dimensional analogue of statement
(C) in this paper.
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Remark 5. Statement (D) of Theorem 1 states that the shape of the triangle
A′B′C ′ in the Torricelli configuration is arbitrary in the sense that given any
triangle UV W , there exists a triangle ABC in whose Torricelli configuration the
triangle A′B′C ′ is similar to UV W . This is proved in [7]. Higher dimensional
analogues of this are expected to be very difficult and will also not be addressed
in this paper.

Remark 6. In the Torricelli configuration in Figure 1, the triangles A∗B∗C∗

and A′B′C ′ are referred to as the negative Napoleon and negative Torricelli trian-
gles, respectively; see [7]. The corresponding positive triangles are the triangles
obtained when the equilateral triangles ABC ′, BCA′, and CAB′ are erected in-
wardly; for analogous properties of the obtained configuration see once more the
survey [11].

4. Properties of weighted pre-Torricelli configurations in higher dimen-
sions

In view of Theorem 1 and the remarks after it, we formulate and prove the follow-
ing theorem. It complements, and naturally has non-empty intersection with, the
results in [12], where similar generalizations of Napoleon’s theorem are obtained.

Theorem 2. Let T = {u, w, a, a′} be a weighted pre-Torricelli configuration and
let s = w1a1 + · · ·+ wd+1ad+1. Then

(A) the following four statements are equivalent:

(A1) the centroids G, G′, and G∗ of S, S ′, and S∗ coincide,

(A2) any two of the centroids G, G′, and G∗ of S, S ′, and S∗ coincide,
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(A3) the Fermat-Torricelli point, with respect to corresponding assumed
weights wi, of the centroidal Napoleon d-simplex S∗ coincides with its
centroid,

(A4)
ai−a′

i

wi
=

aj−a′
j

wj
for all i and j in {1, . . . , d + 1},

(B) the following two statements are equivalent:

(B1) the circumspheres of the d + 1 ear d-simplices Si all pass through O,

(B2) wi(ai − a′
i) = s for all i in {1, . . . , d + 1}.

Proof. (A) Let G, G′, and G∗ be the centroids of S, S ′, and S∗, respectively, and
let Gj be the centroid of Sj, j = 1, . . . , d + 1. Then

G =
1

d + 1

d+1∑
i=1

aiui, (4)

G′ =
1

d + 1

d+1∑
i=1

a′
iui, (5)

Gj =
1

d + 1

[(
d+1∑
i=1

aiui

)
− (aj − a′

j)uj

]
= G− 1

d + 1
(aj − a′

j)uj, (6)

G∗ =
1

d + 1

d+1∑
i=1

Gi = G− 1

(d + 1)2

d+1∑
i=1

(ai − a′
i)ui (7)

= G− 1

d + 1
(G−G′) =

1

d + 1
(dG + G′) . (8)

It follows from (8) that (d + 1)G∗ = dG + G′ and thus if any two of G, G′, and
G∗ coincide, then the three do. It also follows from (4) and (5) that

G = G′ ⇐⇒
d+1∑
i=1

(a′
i − ai)ui = O

⇐⇒ a′
i − ai

wi

=
a′

j − aj

wj

for all i and j in {1, . . . , d + 1},

because w1u1 + · · · + wd+1ud+1 = O is essentially the only dependence relation
among the ui. This shows that (A1), (A2), and (A4) are equivalent. To deal
with (A3), note that it follows from (6) that the d-simplex S∗ is similar to the
d-simplex S0 = [b1w1u1, . . . , bd+1wd+1ud+1], where bj = (aj − a′

j)/wj. This is seen
by translating each vertex Gi of S∗ by −G and then multiplying by −(d + 1).
Since bj > 0, it follows that O is the Fermat-Torricelli point of S0 with weights
w1, . . . , wd+1. If the bj are all equal, then b1w1u1 + · · · + bd+1wd+1ud+1 = O, and
O is the centroid of S0. Conversely, if O is the centroid of S0, then b1w1u1 + · · ·+
bd+1wd+1ud+1 = O, and therefore the bi are all equal, since w1u1+· · ·+wd+1ud+1 =
O is essentially the only dependence relation among the ui. Thus (A3) and (A4)
are equivalent, and the proof of (A) is complete.
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(B) This follows from the following equivalences:

The circumsphere of Sd+1 passes through O

⇐⇒ there exists an X such that

‖X‖ = ‖X − a1u1‖ = · · · = ‖X − adud‖ = ‖X − a′
d+1ud+1‖

⇐⇒ there exists an X such that

2X · u1 = a1, . . . , 2X · ud = ad, 2X · ud+1 = a′
d+1

⇐⇒ the system MX =C has a solution, where M is the matrix whose rows

are u1, . . . ,ud+1, and where C = [a1, . . . , ad, a
′
d+1]

T

⇐⇒ w1a1 + · · ·+ wdad + wd+1a
′
d+1 = 0 because w1u1 + · · ·+ wd+1ud+1 = O

is essentially the only dependence relation among the rows of M

⇐⇒ wd+1(ad+1 − a′
d+1) = s.

This proves that (B1) and (B2) are equivalent. �

With the exception of (B3), Theorem 1 follows from Theorem 2 by taking the
weights to be equal and by observing that if two centers of a triangle coincide
then it is equilateral. To cover (and prove an analogue of) (B3), we introduce the
notion of Torricelli regularity. Then Theorem 4 follows immediately.

Definition 2. A d-simplex is said to be Torricelli regular if it is the base d-simplex
in a pre-Torricelli configuration {u, a, a′} in which a1 + · · ·+ ad+1 = 0.

In view of the the investigation in [4], it would be interesting to explore how
Torricelli regularity is related to other degrees of regularity, such as equiareality,
equiradiality, etc. For triangles, the following theorem gives the answer.

Theorem 3. A triangle is Torricelli regular if and only if it is equilateral.

Proof. Let ABC be an equilateral triangle. To show that it is Torricelli regular,
we take the origin O to be any point on the smaller arc A1A2 of the circumcircle
of A1A2A3, and we let

u1 =
OA1

‖OA1‖
, u2 =

OA2

‖OA2‖
, u3 = − OA3

‖OA3‖
,

a1 = ‖OA1‖, a2 = ‖OA2‖, a3 = −‖OA3‖;

see Figure 3. Then Ai = aiui, i = 1, 2, 3. Also, u1 + u2 + u3 = O because the ui

are equally inclined, and a1 + a2 + a3 = 0 by Ptolemy’s theorem; see [14, p. 90].

Conversely, suppose that u1,u2, and u3 are unit vectors whose sum is O and that
a1, a2, a3 are real numbers whose sum is 0. We are to show that a1u1, a2u2, a3u3

are the vertices of an equilateral triangle. It follows from ‖u1‖ = ‖u2‖ = ‖u3‖ = 1
and u1 + u2 + u3 = O that ui · uj = −1/2 for all i 6= j.
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Therefore

‖a1u1 − a2u2‖2 − ‖a1u1 − a3u3‖2 =
(
a2

1 + a2
2 + a1a2

)
−
(
a2

1 + a2
3 + a1a3

)
= (a2 − a3) (a2 + a3 + a1)

= 0.

Therefore ‖a1u1 − a2u2‖ = ‖a1u1 − a3u3‖ and hence the triangle whose vertices
are a1u1, a2u2, a3u3 is equilateral, as desired. �

Now we are ready to present the announced Theorem 4.

Theorem 4. Let T = {u, a, a′} be a pre-Torricelli configuration and let s =
a1 + · · ·+ ad+1. Then

(A) the following four statements are equivalent:

(A1) the centroids G, G′, and G∗ of S, S ′, and S∗ coincide,

(A2) any two of the centroids G, G′, and G∗ of S, S ′, and S∗ coincide,

(A3) the Fermat-Torricelli point of the centroidal Napoleon d-simplex S∗ co-
incides with its centroid,

(A4) ai − a′
i = aj − a′

j for all i and j in {1, . . . , d + 1},
(B) the following four statements are equivalent:

(B1) the circumspheres of the d + 1 ear d-simplices Si all pass through O,

(B2) ai − a′
i = s for all i in {1, . . . , d + 1},

(B3) the ear d-simplices are Torricelli regular.

Remark 7. Let T = {u, a, a′} be a d-dimensional weighted pre-Torricelli config-
uration. Statements (A4) and (B2) in Theorems 1, 2, and 4 show that much of
the geometry of the configuration can be stated in terms of the tuples a and a′,
or rather the tuple a − a′. One of the geometric properties that was highlighted
in [12] pertains to what was referred to (in Definition 1) as the circumcentral
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Napoleon d-simplex S◦. We call this property (B4) and we write it down in three
forms that suit Theorems 1, 2, and 4, respectively.

(B4-1) The circumcentral Napoleon triangle S◦ is equilateral.

(B4-2) The (d − 1)-volumes Vi of the facets of the circumcentral Napoleon d-
simplex S◦ are proportional to the weights wi.

(B4-4) The circumcentral Napoleon d-simplex S◦ is equiareal (or, equivalently,
(I,G)-regular in the sense that its incenter I and centroid G coincide).

A main theorem in [12] says that if (B1) (or, equivalently, any of the statements in
(B)) holds in any of Theorems 1, 2, or 4, then the corresponding (B4) holds also.
On the other hand, the converse of this is not true even in dimension 2. To see this,
consider the pre-Torricelli configuration with equal weights and with a1 = a2 = a3

and a′
1 = a′

2 = a′
3. This is the configuration with equilateral base triangle and

with isosceles ear triangles. It is clear that the circumcentral Napoleon triangle is
equilateral for all such a and a′. However, (B2) is satisfied if and only if a′

1 = 4a1.
Note that in this particular example, (A4) (and hence all the statements in (A))
hold.

It would be interesting to write in terms of a and a′ a condition that is equiv-
alent to (B4). It would also be interesting to explore whether (B4) implies the
statements in (A).

Acknowledgments. The authors would like to thank Mr. Esam Darabseh for
drawing the figures.
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