
Beiträge zur Algebra und Geometrie
Contributions to Algebra and Geometry
Volume 49 (2008), No. 1, 165-175.

The Elementary Geometry of a
Triangular World with Hexagonal

Circles

Victor Pambuccian∗

Department of Integrative Studies, Arizona State University – West Campus
Phoenix, AZ 85069-7100, U.S.A.
e-mail: pamb@math.west.asu.edu

Abstract. We provide a collinearity based elementary axiomatics of
optimal quantifier complexity ∀∃∀∃ for the geometry inside a triangle
and reprove that collinearity cannot be defined in terms of segment
congruence, the metric being Hilbert’s projective metric.

MSC 2000: 51F20, 51A30, 51A45, 51G05
Keywords: Hilbert geometry inside a triangle, segment congruence,
collinearity, quantifier complexity

1. Introduction

Hilbert [7, Anh. 1] introduced a metric inside a bounded convex domain of the

Euclidean plane by defining the length of a segment AB – the rays
−→
AB and

−→
BA

intersecting the convex domain in the points B′ and A′ – as the logarithm of the
cross-ratio [A, B, B′, A′] of A′, A,B,B′, in case A 6= B, and 0 otherwise. In case
the boundary of the convex domain is an ellipse, the resulting geometry is Klein’s
model of plane hyperbolic geometry.

The geometry one obtains in case the boundary of the convex domain is a
triangle was first studied in [20], and then in [5] and [6]. Circles in this geometry
being hexagons, one may call it, with [2], Zenonian. In all of these papers, the
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triangle is embedded in the Euclidean plane over the real numbers and the metric
is defined in terms of the logarithm function. The resulting geometry is thus not
an elementary one, in the sense that there can be no axiom system expressed in
first-order logic having only this standard model, nor do logarithms make sense
in arbitrary ordered fields, which would be the most natural candidate to replace
the field of real numbers. Axiomatizations in first-order logic produce what is
called an elementary version of the geometry to be axiomatized, and in which
fewer theorems are true than in the standard versions over the real field (e.g. the
Archimedean behavior of any pair of segments can no longer hold in such an
elementary version). A comprehensive survey of axiomatizations of elementary
geometries can be found in the second part of [21].

Elementary hyperbolic geometry was born in 1903 when Hilbert [8], [7] pro-
vided, using the end-calculus to introduce coordinates, a first-order axiomatiza-
tion for it. By providing pure incidence-based definitions for the usual notions
of hyperbolic geometry (such as Tarski’s betweenness and equidistance, see [21]),
Menger [13] showed that elementary hyperbolic geometry can be expressed only
in terms of the notions of point, line, and incidence (or points and the ternary
relation of collinearity). He and his students have provided in [14]–[17], [1], [3],
[10], [11] readable incidence-based axiom systems for elementary hyperbolic ge-
ometry, culminating in the purely first-order logic axiom system of H. Skala [22].
For Menger [17, p. 91], the results obtained by Jenks [11] and by DeBaggis [3]
rank “among the most remarkable achievements in the theory of the hyperbolic
plane and in all of postulational geometry”.

The purpose of this paper is: (i) to axiomatize the geometry inside a triangle
in the manner of Menger-Skala, in a first-order language based on the notions of
point and the ternary relation L of collinearity; (ii) to prove that its quantifier
complexity is the lowest possible one; (iii) to define the notion of equidistance ≡ of
two point-pairs in terms of L in a manner that by-passes the notion of logarithm;
and (iv) to reprove (as this already follows from [5, Proposition 8]) that L is not
definable in terms of ≡.

The axiomatization is not meant to be ideal; its purpose is rather to show that
an elementary version of this geometry is possible and that it can be expressed in
terms of collinearity alone.

2. The elementary incidence geometry of the interior of a triangle

2.1. The informal axiom system

To describe in terms of incidence or collinearity what it is like to be inside a
triangle, one needs to first describe what it is like to be inside a convex curve.
In terms of the notion of betweenness, this has been first done by Sperner [23],
without a precise description of the class of models of the axiom system. A precise
description of the models of a like-minded axiom system was provided by Szczerba
[25]. In [1], [3], [10], [11] we find the axioms for the elementary incidence geometry
of the interior of a convex set in a projective plane. Here the term ‘convex’ has the
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meaning assigned to it by Steinitz [24, p. 34], a set with the property that any two
of its points can be joined by a line segment and for which there exists a projective
line it is disjoint from. To these axioms, H. Skala [22] adds the projective forms
of the Desargues and Pappus axioms, in which all the points are interior points1

(she allows for rimpoints (boundary points) as well, although, by the results of
[23] and [25], assuming these axioms for interior points only suffices), as well as
an axiom that would imply that the boundary is an ellipse in the projective plane
(Pascal’s theorem on hexagons inscribed in conics). What we need in our case is
to drop one of the axioms, which excludes weakly convex domains, having straight
segments in their rim (Axiom 7 in [22]), and to replace the Pascal axiom with one
implying that the boundary of the convex domain is a triangle, while keeping all
the other axioms.

The axiom system can be formulated either in a two-sorted first-order lan-
guage, with individual variables for points (upper-case) and lines (lower-case),
and a single binary relation | as primitive notion, with P |l to be read ‘point P is
incident with line l’, or in a one-sorted language, with points as the only variables
and the ternary relation of collinearity L, with L(abc) to be read as ‘a, b, c are
collinear points (not necessarily different)’. We shall first formulate the axioms in
an informal language paraphrasing the formal axioms in terms of the two-sorted
language, and then present the formal axioms in terms of L alone.

To shorten the statement of some of the axioms we define:

(1) the notion of betweenness β, with β(A, B, C) (‘B lies between A and C’)
to denote ‘the points A, B, and C are three distinct points and every line
through B intersects at least one line of each pair of intersecting lines which
pass through A and C;

(2) the notions of ray and segment in the usual way, i.e. a point X is on (incident

with) a ray
−→
AB (with A 6= B) if and only if X = A or X = B or β(A, X,B)

or β(A, B, X), and a point X is incident with the segment AB if and only
if X = A or X = B or β(A, X,B);

(3) the notion of ray parallelism, for two rays
−→
AB and

−→
CD, not part of the same

line – to be denoted by
−→
AB��

−→
CD – by the condition that every line that

meets one of the two rays meets the other ray or the segment AC. Two lines
or a line and a ray are said to be parallel if they contain parallel rays.

The axioms, which we present in informal language, their formalization being
straightforward, are:

A 1. Any two distinct points are on exactly one line.

A 2. Each line is on at least one point.

A 3. There exist three collinear and three non-collinear points.

1L. W. Szczerba told me in December 2003 that he had proved that Pappus for interior
points does imply Desargues for interior points, but the result was never published and there is
no manuscript containing the proof either. Since I do not know how to prove the implication, I
have decided to assume both axioms in this paper.
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Figure 1. The rim must be a triangle

A 4. Of three collinear points, at least one has the property that every line through
it intersects at least one of each pair of intersecting lines through the other two.

A 5. If P is not on l, then there exist two distinct lines on P not meeting l and
such that each line meeting l meets at least one of those two lines.

A 6. (Desargues) Let a, b, c be three different lines, O a point incident with each
of them, each containing pairs of distinct points (A1, A2), (B1, B2), and (C1, C2)
respectively. If M lies on the lines A1B1 and A2B2, N lies on the lines A1C1 and
A2C2, and P lies on the lines B1C1 and B2C2, then M , N , and P are collinear.

A 7. (Pappus) Let a and b be different lines containing points A1, A2, A3 and
B1, B2, B3 respectively, with Ai 6= Bj for all i, j ∈ {1, 2, 3} and Ai 6= Aj, Bi 6= Bj

for i 6= j. If M lies on the lines A1B2 and A2B1, N lies on the lines A1B3 and
A3B1, and P lies on the lines A2B3 and A3B2, then M , N , and P are collinear.

A 8. If P, X1, X2, X3, X4 are five points, with P 6= Xk, for all k = 1, 2, 3, 4, and

such that, for all m 6= n, Xm does not belong to the ray
−→

PXn, then there are
i, j ∈ {1, 2, 3, 4} with i 6= j, and there are points X, A,B,C, O such that X is

on the ray
−→

PXi, X 6= P , the triples (P, A, O), (X, B, O), (Xj, C,O) consist of

different collinear points, and
−→
PX��

−→
AB,

−→
PXj��

−→
AC,

−→
XXj��

−→
BC.

That the axioms A1–A6 characterize open convex domains in an ordered Pap-
pian projective plane, can be seen by noticing that, according to [1], with the
betweenness relation defined as above, the axioms A1–A5 imply both the linear
betweenness axioms and the Pasch axiom. By A5, a model of A1–A5 cannot con-
tain a projective line, and thus, by [4], would have to be disjoint from a projective
line as well. Thus, a model of A1–A7 satisfies all the axioms from [25], so it must
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be a convex open subset of an ordered Pappian projective plane. All that’s left to
show is the fact that the boundary of that open subset is a triangle.

The reason axiom A8 determines the shape of the boundary can be seen by
noticing that if the boundary is indeed a triangle with vertices ∆1, ∆2, ∆3 (we will
denote all rimpoints by capital Greek letters), with P a point in its interior, and

the four points Xi for i = 1, 2, 3, 4 are such that all the rays
−→

PXi are different, then

by the pigeonhole principle, at least two of the rays
−→

PXi must lie inside the same
closed triangles P∆k∆l for some k and l in {1, 2, 3}. Let’s denote two such rays

by
−→

PXi and
−→

PXj and let Σi and Σj denote the points in which they intersect the
sides of the triangle ∆1∆2∆3 (see Figure 1). One of Σi and Σj must be different
from ∆k and ∆l, and so there must be points on the side ∆k∆l of the rim triangle
that lie outside the segment ΣiΣj. W. l. o. g. me may assume that there is such a
point Γ on the open segment ∆k∆l with Σj strictly between Γ and Σi. Let Ω be a
point on the segment ∆k∆l, such that Γ lies strictly between Ω and Σj. Let O be

a point on the ray
−→
PΩ, and let A be a point on the open segment OP . By Pasch,

the ray
−→
ΓXj must intersect the segment PΣi, an intersection we denote by X; the

segments OX and AΣi must also intersect, an intersection we denote by B, and
the segments BΓ and OXj must intersect as well, an intersection we denote by
C (these two pairs of segments must intersect by Pasch as well). Given that the
triangles ABC and PXXj are perspective from a point (namely from O), they
must be, by Desargues – which holds, as first shown in [23], in the extended plane
as well – perspective from a line as well, and thus the sides AC and PXj must
meet in a point that is collinear with Γ and Σi, i.e. A, C, Σj must be collinear.
This proves that A8 holds in case the rim is a triangle.

To show that interiors of convex domains in Pappian projective planes which
satisfy A8 must have triangular rims, we first show that any point of the rim must
lie on a segment that belongs to the rim. Let P be an interior point and let Λ1

be an arbitrary point of the rim. Let X1 be a point on the open segment PΛ1, let
X2 and X3 be two points not on the line PΛ1, such that X1 lies between X2 and
X3, and let X4 be a point between X1 and X2. Let Λi denote the intersection of
the rays PXi, for i = 2, 3, 4, with the rim. By A8, at least one of the segments
ΛiΛj, with i 6= j must belong to the rim. Let us denote by i0 and j0 the pair of
indices for which Λi0Λj0 belongs to the rim. If one of i0 or j0 is 1, we are done.
If {i0, j0} is {2, 3} or {3, 4}, then we are also done, for then Λ1 would have to
belong to the segment Λ2Λ3 or Λ3Λ4. The only situation left, is that in which the
indices {i0, j0} is {2, 4}. Now keep the points X1, X2, X3 fixed and let X4 vary
on the open segment X2X1. If there is a position of X4, for which the pair of
indices i0, j0 A8 ensures to exist is other than {2, 4}, then we are done. Suppose
that, for all values of X strictly between X1 and X2, we have that Λ2Λ belongs to
the rim, were by Λ we have denoted the intersection of the ray PX with the rim.
Denote by A, a point in the extended plane, the intersection of the line PΛ1 with
the line Λ2Λ4. Then all the points on the open segment Λ2A must be rimpoints.
To see this, notice that, for any point Z on the open segment Λ2A, the segment
PZ will intersect the open segment X1X2 in a point X, and Λ2Λ, where Λ is the



170 V. Pambuccian: The Elementary Geometry of a Triangular World . . .

point of intersection of the ray PX with the rim, must belong to the rim. If Λ
were not collinear with Λ2 and Λ4, then we would have rays emanating from P
and intersecting the rim in two distinct points (ray PΛ intersects segment Λ2Λ4

or ray PΛ4 intersects segment Λ2Λ), contradicting the convexity of the domain.
If A = Λ1, then we are done, for then Λ1Λ2 belongs to the rim. If A 6= Λ1, then
A lies on the ray PΛ1. Thus the three points of the extended plane P, Λ1, A are
either in the order (i) PΛ1A or in the order (ii) PAΛ1. Let R be a point inside
or domain such that P lies strictly between X4 and R. By Pasch, in case (i),
the line RΛ1 intersects the open segment Λ4A in what must be a rimpoint, say
∆. Now, on the segment joining R with ∆, we find another rimpoint, namely Λ1,
contradicting the convexity of our domain. In case (ii), the segment X4Λ1 must
intersect the open segment Λ4A in what must be a rimpoint, say ∆. Thus on the
segment joining X4 with the rimpoint Λ1 we find another rimpoint, namely ∆,
again contradicting the convexity of our domain.

The rim is thus composed of a union of segments. There cannot be fewer than
three such segments, and there cannot be more either, for if there were four or
more segments belonging to the rim, which are part of different lines, then we could
choose four points Λi, with i ∈ {1, 2, 3, 4}, each lying inside a different segment,
and we could pick any interior point P and any points Xi on the segments PΛi,
making it impossible to find X, A,B,C, O as required by A8.

2.2. The formal axiom system

We will now express the axiom system presented earlier in terms of points (which
will now be denoted by lower-case letters) and collinearity (the relation symbol
L) alone.

We first define � |, with ab � | cd to be read as ‘the ray
→
ab is parallel to a line

cd’, as in [19], by

ab � | cd :⇔ (∀uv)(∃t)¬(L(abu) ∧ L(cdu))

∧(L(cdu) → (L(bvt) ∧ (L(aut) ∨ L(cdt)))),

and then define
ab �� cd :⇔ ab � | cd ∧ cd � | ab.

Here ab �� cd stands for ‘the ray
−→
ab is parallel to the ray

−→
cd ’. The reason why

we use a different definition from that given in Section 2.1 will become apparent
when we will discuss the quantifier complexity of the axiom system. The quantifier
complexity of the old definition is ∀∃∀∃ whereas that of the one above is ∀∃. We
also define the betweenness relation (B(abc) stands for ‘b lies between a and c’)
as

B(abc) :⇔ (∀uv)(∃w) L(bvw) ∧ (L(auw) ∨ L(cuw)).

and the relation λ, with λ(abc) to be read as ‘points a, b, c are collinear and
different’, by

λ(abc) :⇔ L(abc) ∧ a 6= b ∧ b 6= c ∧ c 6= a.

The axioms are:
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L 1. L(aba),

L 2. L(abc) → L(cba) ∧ L(bac),

L 3. a 6= b ∧ L(abc) ∧ L(abd) → L(acd),

L 4. (∃abc) L(abc),

L 5. (∃abc)¬L(abc),

L 6. (∀a0a1a2uv∃w) L(a0a1a2) → [
∨2

i=0 L(aivw) ∧ (L(ai+1uw) ∨ L(ai−1uw))],

L 7. (∀a1a2p∃q1q2∀uv∃w)¬L(a1a2p) → [¬L(pq1q2) ∧ ¬(L(a1a2u) ∧ (L(pq1u)
∨L(pq2u))) ∧ (L(a1a2u) ∧ ¬L(a1a2v) → (L(uvw) ∧ (L(pq1w) ∨ L(pq2w)))],

L 8. L(oa1a2) ∧ L(ob1b2) ∧ L(oc1c2) ∧ L(a1b1m) ∧ L(a2b2m) ∧ L(a1c1n)
∧L(a2c2n) ∧ L(b1c1p) ∧ L(b2c2p) ∧ ¬L(oa1b1) ∧ ¬L(ob1c1)
∧¬L(oa1c1) ∧ a1 6= a2 ∧ o 6= a2 ∧ o 6= b2 ∧ o 6= c2 → L(mnp),

L 9. L(a1a2a3) ∧ L(b1b2b3) ∧
∧

i6=j(ai 6= aj ∧ bi 6= bj) ∧
∧

1≤i,j≤3 ai 6= bj

∧L(a1b2m) ∧ L(a2b1m) ∧ L(a1b3n) ∧ L(a3b1n) ∧ L(a2b3p) ∧ L(a3b2p)
→ L(mnp),

L 10. (∀px1x2x3x4)(∃xoabc) (
∧

i6=j ¬B(pxixj)) → λ(oap)
∧[

∨
i6=j(λ(ocxj) ∧ (B(pxxi) ∨B(pxix)) ∧ bc �� xxj ∧ ac �� pxj)]

∧λ(obx) ∧ ab �� px.

Here L1–L3 correspond to the axioms A1, A2; L4, L5 to A3; L6 to A4; L7 to
A5; L8 and L9 are the Desargues and Pappus axioms; L10 corresponds to A8.
The quantifier complexity of this axiom system is ∀∃∀∃, as both axioms L7 and
L10 have this quantifier complexity. We will now prove that this complexity is
minimal, i.e. that there is no axiom system in the same language for the theory
axiomatized by L1–L10 all of whose axioms have lower quantifier complexity.

2.3. Optimal quantifier complexity

The proof that this is so, i.e. that there is no ∀∃∀-axiom system for our theory, is
based on the idea used in the proof in [19] that plane hyperbolic geometry axiom-
atized with L alone has complexity ∀∃∀∃. Let D denote the theory axiomatized
by L1–L10.

Lemma 1. There is no ∀∃∀-axiom system for D.

Proof. According to [12] (cf. also [9, p. 299]), a theory T is axiomatizable
by means of ∀∃∀-sentences if the union of any ascending ≤1-chain of models of
T is a model of T . Two models A and B are such that A≤1B if and only if
A⊆B and for any purely existential formula ϕ(x), where x = (x1, . . . , xk) are free
variables occurring in ϕ, and for any k-tuple a = (a1, . . . , an) with ai elements of
the universe of A, we have

B|= ϕ(a) ⇒ A|= ϕ(a). (1)
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Thus T is axiomatizable by means of ∀∃∀-sentences if and only if the union of any
sequence of models An, with n ∈ N and An ≤1 An+1, is a model of T . We shall
construct such an ascending chain of models of D, whose union is not a model
of D. Let K(K, r) denote the model of D in the Euclidean coordinate plane over
an ordered field K, whose point-set is the interior of an equilateral triangle with
center at the origin (0, 0) with circumradius r, r ∈ K, r > 0. Let K denote
the real closure of the ordered field K. Let, for all n ≥ 1, An := K(Kn, rn).
Let K1 = Q, r1 = 1, and let, for all n ≥ 1, Kn+1 = Kn(tn), εn = 1

tn
, and

rn+1 = rn−εn, where Kn(tn) denotes the field of fractions of the ring of polynomials
in tn, an indeterminate, and the order of Kn is extended to Kn(tn) by defining
(
∑k

i=0 ait
i)(

∑m
i=0 bjt

j)−1 – where ai, bj ∈ K, with ak 6= 0 and bm 6= 0 – to be
> 0 if and only if akbm > 0. Under this ordering x < tn for all x ∈ Kn, and
thus εn is infinitely small with regard to the elements of Kn. That (1) is satisfied
with A= An and B= An+1 can be seen by noticing that the validity in A of any
existential formula ϕ(x), in which the free variables x = (x1, . . . xk) are interpreted
as elements in A, translates into the validity in the underlying field K of A of a
system of equations, negated equations, and inequalities. It follows from Tarski’s
elimination of quantifiers for real closed fields that if such a system is not solvable
in K (which is a real closed field), then it cannot be solvable, with the same
interpretation of x in any real closed field which is an extension of K either.

Now U:= ∪n≥1An is not a model of D as there are no (limiting) parallels (see
[19] for a proof). �

We have thus shown that

Theorem 1. L1–L10 is a ∀∃∀∃-axiom system of minimal quantifier complexity
for the collinearity theory of the interior of triangles in Pappian ordered projective
planes.

3. Defining the metric

To define the congruence of two segments in this geometry one proceeds exactly
like in the case of hyperbolic geometry, as done in [17]. Given two segments P1P2

and P ′
1P

′
2 on two lines l and l′ which are parallel (i.e. which meet in a rimpoint Π),

we can assume that we have renamed the endpoints of the two segments such that
−→

P2P1��
−→

P ′
2P

′
1. Let mi be the line through Pi which is parallel to l′ and different

from l (such a line exists by A5), and let m′
i be the line through P ′

i which is
parallel to l and different from l′. Let Ai be the point of intersection of mi and
m′

i. The two segments are congruent precisely if A1, A2, Π are collinear, or, put

otherwise, if
−→

A2A1��
−→

P2P1. If the two segments P1P2 and P ′
1P

′
2 lie on two lines l

and l′ which are not parallel, then there is a line m which is a common parallel
to l and l′, which can chosen to be the line joining two ‘ends’ of l and l′ which do
not lie on the same side of the triangle forming the rim. We then say that P1P2

and P ′
1P

′
2 are congruent if there is a segment MN on m to which they are both

congruent.
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To see that this notion coincides with the notion of segment congruence in
terms of a Hilbert metric, notice that the latter amounts to the equality of two
cross-ratios, and that our definition is saying precisely the same thing, given that
cross-ratios are preserved under perspectivities. If we denote, in the case in which
the two segments lie on parallel lines, the other end of l with ∆ and the other end
of l′ with Γ (thus l intersects the rim in the rimpoints Π and ∆, and l′ intersects it
in Π and Γ), and we denote by P the intersection of the line A1A2 with Γ∆ (which
is either a line or a side of the rim, making P a point in the former case, and a
rimpoint in the latter) then the perspectivity with center ∆ maps P, A1, A2, Π
into Γ, P1, P2, Π, whereas the perspectivity with center Γ maps P, A1, A2, Π into
∆, P ′

1, P
′
2, Π. The cross ratios [P1, P2, Π, ∆] and [P ′

1, P
′
2, Π, Γ] are both equal to

[A1, A2, Π, P ].
Unlike in hyperbolic geometry, it is not possible to define collinearity in terms

of segment congruence. To see this, let P be Phadke’s [20] model for this geometry,
which consists of the first quadrant of the affine plane over R, with the distance
%(a, b) between two points a = (α, β) and b = (γ, δ), with α, β, γ, δ positive real
numbers, defined as | log(α/γ)| if the line L(a, b) joining a and b does not make
a positive intercept on the x axis; | log(β/δ)| if L(a, b) does not make a positive
intercept on the y axis; | log((αδ)/(βγ))| if L(a, b) makes positive intercepts on
both axes. The mapping ϕ : P→ P, defined by ϕ(x, y) = (x2, y2) preserves
segment congruence, but not collinearity. By Padoa’s method, collinearity is not
definable in terms of segment congruence, even if we allow for logical means beyond
first-order logic that would capture more – or all the – aspects of P. This fact
also follows from [5, Proposition 4 (iii), Proposition 8].

Given that Proposition 7 of [5], which states that the pure segment congruence
theory of the triangular world is precisely that of a two-dimensional Minkowski
geometry (normed 2-dimensional space), remains valid when R is replaced by
an Archimedean ordered Euclidean field (the norm will then take its values in
the positive cone of that field), we can provide an infinitary Lω1ω axiomatization
for the pure segment congruence theory by using the result in [18], which states
that the betweenness relation of the Minkowski geometry can be defined in terms
of segment congruence. One simply needs to add to the axiom system of a two-
dimensional Minkowski geometry, rephrased in terms of segment congruence alone,
an axiom stating that the set of all points equidistant from a fixed point is a
hexagon. Note that in [18], the definition of ϕn on page 8 should be changed to

ϕn+1(a, b, x) :⇔ ϕn(a, b, x) ∧ [(∀x3)(∃x1x2y) ϕ0(a, b, x3)

→
2∧

i=1

ϕ0(a, b, xi) ∧ xy ≡2 x3x ∧ xy ≤ x1x2].
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