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Abstract. We introduce the notion of variations of Hodge structures
(VHS) in para-complex geometry and define the associated period map.
Moreover, we construct VHS from special (para-)complex and (para-)
Kähler manifolds and prove that they provide solutions of (metric) tt∗-
bundles (cf. [3] for the complex case). In the case of odd weight we
relate the period map to the (para-)pluriharmonic maps associated to
tt∗-bundles (cf. [18], [19]).
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1. Introduction

In complex geometry it is known that (metric) tt∗-bundles provide a generalization
of variations Hodge structures (cf. [3]). Moreover one [18, D] can associate to any
metric tt∗-bundle (E, D, S, g) a pluriharmonic map into GL(r, R)/O(p, q) where
(p, q) with r = p + q is the signature of the metric g. In this paper we relate for a
variation of Hodge structures of odd weight this pluriharmonic map to the period
map of the variation of Hodge structures.

More recently the author [19] introduced the para-complex notion of tt∗-
bundles. Examples of such structures on the tangent bundle of a special para-
Kähler manifold were given in the same reference. In the complex setting special
Kähler manifolds carry a polarized variation of Hodge structures of weight one.
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This is one way to see that they provide tt∗-structures. The described information
suggest to study the question if one can generalize VHS and their period maps
to para-complex geometry, if the tangent bundle of special para-Kähler manifold
carries such VHS, if these VHS provide para-tt∗-bundles and if one can identify
the related para-pluriharmonic maps. This program is carried out in this paper.

2. Para-complex differential geometry

We shortly recall some notions and facts of para-complex differential geometry.
For a more complete source we refer to [7].

In para-complex geometry one replaces the complex structure J with J2 =
−1 (on a finite dimensional vector space V ) by the para-complex structure τ ∈
End (V ) satisfying τ 2 = 1 and one requires that the ±1-eigenspaces have the
same dimension. An almost para-complex structure on a smooth manifold M is
an endomorphism-field τ , which is a point-wise para-complex structure. If the
eigen-distributions T±M are integrable τ is called para-complex structure on M
and M is called a para-complex manifold. As in the complex case, there exists a
tensor, also called Nijenhuis tensor, which is the obstruction to the integrability
of the para-complex structure.

The real algebra, which is generated by 1 and by the para-complex unit e
with e2 = 1, is called the para-complex numbers and denoted by C. For all
z = x + ey ∈ C with x, y ∈ R we define the para-complex conjugation as ·̄ : C →
C, x + ey 7→ x− ey and the real and imaginary parts of z by <(z) := x,=(z) := y.
The free C-module Cn is a para-complex vector space where its para-complex
structure is just the multiplication with e and the para-complex conjugation of C
extends to ·̄ : Cn → Cn, v 7→ v̄.

Note, that zz̄ = x2 − y2. Therefore the algebra C is sometimes called the
hypercomplex numbers. The circle S1 = {z = x + iy ∈ C |x2 + y2 = 1} is replaced
by the four hyperbola {z = x + ey ∈ C |x2 − y2 = ±1}. We define S̃1 to be the
hyperbola given by the one parameter group {z(θ) = cosh(θ) + e sinh(θ) | θ ∈ R}.

A para-complex vector space (V, τ) endowed with a pseudo-Euclidean metric
g is called para-hermitian vector space, if g is τ -anti-invariant, i.e. τ ∗g = −g. The
para-unitary group of V is defined as the group of automorphisms

Uπ(V ) := Aut(V, τ, g) := {L ∈ GL(V )|[L, τ ] = 0 and L∗g = g}

and its Lie-algebra is denoted by uπ(V ). For Cn = Rn ⊕ eRn the standard para-
hermitian structure is defined by the above para-complex structure and the metric
g = diag(1,−1) (cf. Example 7 of [7]). The corresponding para-unitary group is
given by (cf. Proposition 4 of [7]):

Uπ(Cn)=

{(
A B
B A

)
|A, B∈End(Rn), AT A−BT B=1n, AT B−BT A=0

}
.

(2.1)
There exist two bi-gradings on the exterior algebra: The one is induced by the
splitting in T±M and denoted by ΛkT ∗M =

⊕
k=p+q

Λp+,q−T ∗M and induces an
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obvious bi-grading on exterior forms with values in a vector bundle E. The second
is induced by the decomposition of the para-complexified tangent bundle TMC =
TM ⊗R C into the subbundles T 1,0

p M and T 0,1
p M which are defined as the ±e-

eigenbundles of the para-complex linear extension of τ . This induces a bi-grading
on the C-valued exterior forms noted ΛkT ∗MC =

⊕
k=p+q

Λp,q T ∗M and finally on the

C-valued differential forms on M Ωk
C(M) =

⊕
k=p+q

Ωp,q(M). In the case (1, 1) and

(1+, 1−) the two gradings induced by τ coincide, in the sense that Λ1,1 T ∗M =
(Λ1+,1− T ∗M) ⊗ C. The bundles Λp,q T ∗M are para-complex vector bundles in
the following sense: A para-complex vector bundle of rank r over a para-complex
manifold (M, τ) is a smooth real vector bundle π : E → M of rank 2r endowed
with a fiber-wise para-complex structure τE ∈ Γ(End (E)). We denote it by
(E, τE). In the following text we always identify the fibers of a para-complex
vector bundle E of rank r with the free C-module Cr. One has a notion of para-
holomorphic vector bundles [16], too. In Proposition 2 of the same reference we
have shown, that a para-complex connection with vanishing (0, 2)-curvature on a
para-complex vector bundle E induces a para-holomorphic structure on E. This
generalizes a well-known theorem of complex geometry.

Let us transfer some notions of hermitian linear algebra (cf. [21]): A para-
hermitian sesquilinear scalar product is a non-degenerate sesquilinear form h :
Cr ×Cr → C, i.e. it satisfies (i) h is non-degenerate: Given w ∈ Cr such that for
all v ∈ Cr h(v, w) = 0, then it follows w = 0, (ii) h(v, w) = h(w, v), ∀ v, w ∈ Cr,
and (iii) h(λv, w) = λh(v, w), ∀ λ ∈ C; v, w ∈ Cr. The standard para-hermitian
sesquilinear scalar product is given by

(z, w)Cr := z · w̄ =
r∑

i=1

ziw̄i, for z = (z1, . . . , zr), w = (w1, . . . , wr) ∈ Cr.

The para-hermitian conjugation is defined by C 7→ Ch = C̄t for C ∈ End (Cr) =
End C(Cr) and C is called para-hermitian if and only if Ch = C. We denote by
herm(Cr) the set of para-hermitian endomorphisms and by Herm(Cr) = herm(Cr)
∩GL(r, C). We remark, that there is no notion of para-hermitian signature, since
from h(v, v) = −1 for an element v ∈ Cr we obtain h(ev, ev) = 1.

Proposition 1. Given an element C of End(Cr) then it holds (Cz,w)Cr =
(z, Chw)Cr , ∀z, w ∈ Cr. The set herm(Cr) is a real vector space. There is a
bijective correspondence between Herm(Cr) and para-hermitian sesquilinear scalar
products h on Cr given by H 7→ h(·, ·) := (H·, ·)Cr .

A para-hermitian metric h on a para-complex vector-bundle E over a para-complex
manifold (M, τ) is a smooth fiber-wise para-hermitian sesquilinear scalar product.

To unify the complex and the para-complex case we introduce some notations:
First we note J ε where J ε2 = ε1 with ε ∈ {±1}. The εcomplex unit is denoted
by î, i.e. î := e, for ε = 1, and î = i, for ε = −1. Further we introduce Cε with
C1 = C and C−1 = C. In the rest of this work we extend our language by the
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following ε-notation: If a word has a prefix ε with ε ∈ {±1}, i.e. is of the form
εX, this expression is replaced by

εX :=

{
X, for ε = −1,

para-X, for ε = 1.

The εunitary group and its Lie-algebra are

U ε(p, q) :=

{
Uπ(Cr), for ε = 1,

U(p, q), for ε = −1
and uε(p, q) :=

{
uπ(Cr), for ε = 1,

u(p, q), for ε = −1,

where in the complex case (p, q) for r = p + q is the hermitian signature.
Further we use the notation

Hermε
p,q(Cr

ε) :=

{
Herm(Cr), for ε = 1,

Hermp,q(Cr), for ε = −1,

hermε
p,q(Cr

ε) :=

{
herm(Cr), for ε = 1,

hermp,q(Cr), for ε = −1,

where, for p + q = r, Hermp,q(Cr) are the hermitian matrices of hermitian sig-
nature (p, q) and hermp,q(Cr) are the hermitian matrices with respect to the
standard hermitian product of hermitian signature (p, q) on Cr. The standard
εhermitian sesquilinear scalar product is (z, w)Cr

ε
:= z · w̄ =

∑r
i=1 ziw̄i, for z =

(z1, . . . , zr), w = (w1, . . . , wr) ∈ Cr
ε and we note

cosε(x) :=

{
cos(x), for ε = −1,

cosh(x), for ε = 1
and sinε(x) :=

{
sin(x), for ε = −1,

sinh(x), for ε = 1.

3. Variations of εHodge structures

3.1. εHodge structures and their variations

In this section we introduce the notion of variations of εHodge structures in para-
complex geometry and recall variations of Hodge structures which are classical
objects in complex geometry. We follow the notations of [2] which is a reference
and contains references for further study of variations of Hodge structures. The
para-complex version seems to be new.

Definition 1.
(a) A real εHodge structure of weight w ∈ N is a real vector space H on the

εcomplexification of which there is a decomposition into εcomplex vector
spaces

HCε =
⊕

w=p+q

Hp,q with p, q ∈ N (3.1)

and where
Hp,q = Hq,p with p, q ∈ N. (3.2)

The εcomplex conjugation ·̄ is relative to the real structure on HCε = H⊗Cε.
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(b) Suppose, that an εHodge structure of weight w carries a bilinear form b :
H ×H → R which satisfies the following Riemannian bilinear relations

(i) The Cε-linear extension of the bilinear form b, also denoted by b, sat-
isfies b(x, y) = 0 if x ∈ Hp,q and y ∈ Hr,s for (r, s) 6= (w − p, w − q) =
(q, p),

(ii) The bilinear form b defines an εhermitian sesquilinear scalar product
(compare Section 2) on Hp,q by h(x, y) = (−1)w(w−1)/2îp−qb(x, ȳ).

Then we call this εHodge structure weakly polarized.

(c) Suppose, that a (complex) Hodge structure of weight w carries a bilinear
form b : H × H → R which satisfies the first Riemannian bilinear relation
(i) and in addition

(ii) The bilinear form b defines a positive definite hermitian sesquilinear
form on Hp,q by h(x, y) = (−1)w(w−1)/2ip−qb(x, ȳ).

Then we call this Hodge structure strongly polarized.

(d) An εHodge structure of weight w is called polarized if it is weakly polarized
or strongly polarized.

Closely related to the εHodge decomposition is the following filtration

F p =
⊕
a≥p

Ha,b, p = 0, . . . , w, (3.3)

which satisfies for an εHodge structure of weight w the relation

HCε = F p ⊕ Fw−p+1, p = 1, . . . , w. (3.4)

Any filtration which obeys equation (3.4) is called an εHodge filtration. Such as
an εHodge decomposition induces an εHodge filtration we obtain from an εHodge
filtration an εHodge decomposition by Hp,q = F p ∩ F q, with p + q = w. This
εHodge decomposition satisfies the relation (3.3).

We remark further, that the first Riemannian bilinear relation (cf. Definition
1) is equivalent to (F p)⊥ = Fw−p+1, p = 1, . . . , w, where ⊥ is taken with respect to
the bilinear from b. Now we are going to consider deformations of these structures:

Definition 2. A (real) variation of εHodge structures (εVHS) is a triple (E,∇,
F p), where E is a real vector bundle over an (connected) εcomplex base manifold
(M, J ε), ∇ is a flat connection and F p is a filtration of ECε by εholomorphic sub-
bundles of ECε, which is a point-wise εHodge structure satisfying the infinitesimal
period relation or the Griffiths transversality

∇χF p ⊂ F p−1, ∀χ ∈ T 1,0M. (3.5)

A polarization of a variation of εHodge structures (E,∇, F p) consists of a non-
degenerate bilinear form b ∈ Γ(E∗ ⊗ E∗) having the following properties

(i) b induces a polarization on each fiber obeying the first and the second bilinear
relation,
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(ii) b is parallel with respect to ∇.

Remark 1. In complex geometry VHS roughly arise on the Hodge-decomposition
of the cohomology of smoothly varying families of Kähler manifolds Xt where t
is the parameter of the variation (cf. [2] Chapter 4 for details). To ensure that
the Hodge-numbers hp,q(Xt) are constant in t one needs a result, which states
that the kernel of a family Dt of elliptic differential operators depends upper-
semi-continuously on t. Unfortunately this does not generalize to para-complex
geometry for the following reason: If we consider an (almost) para-complex man-
ifold M2n endowed with a para-hermitian metric g the metric is forced to have
split signature, i.e. signature (n, n). As a consequence the naturally associated
differential operators are no longer elliptic and we are not able to use the above
cited theory.

A class of εVHS which is related to the special geometry of (Euclidean) su-
persymmetry is discussed in the next subsection.

3.2. εVHS and special εKähler manifolds

Each fiber of the εcomplex tangent bundle

TMCε = T 1,0M ⊕ T 0,1M

carries a natural εHodge structure of weight 1 :

0 = F 2
x ⊂ F 1

x = T 1,0
x M ⊂ F 0

x = TCε
x M. (3.6)

We recall that an affine special εKähler manifold (M, J,∇, g) (cf. [1, 15, 7]) is an
εKähler manifold endowed with a flat torsion-free connection ∇, such that (∇, J ε)
is special, i.e. ∇J ε is symmetric and ∇ω = 0, where ω is the εKähler form. The
complex version of the next lemma and proposition was proved in [3] and we
generalize it to the para-complex case.

Lemma 1. Let ∇ be a torsion-free flat connection on the εcomplex manifold
(M, J ε). Then F 1 = T 1,0M is an εholomorphic subbundle of F 0 = TCεM with
respect to the εholomorphic structure defined by ∇ (compare Section 2) if and only
if (∇, J ε) is special, i.e. ∇J ε is symmetric.

Proof. The condition of F 1 to be εholomorphic is equivalent to

∇Ȳ X = 0 for all X, Y ∈ O(T 1,0M)

and the condition of (∇, J ε) to be special is equivalent to

(∇XJ ε)(Ȳ ) = (∇Ȳ J ε)(X) for all X, Y ∈ O(T 1,0M),

due to the following short argument:

Let X, Y ∈ Γ(T 1,0M) or X, Y ∈ Γ(T 0,1M)

(∇XJ ε)(Y ) = ∇XJ εY − J ε∇XY = ±î∇XY − J ε∇XY,
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which is symmetric as one sees by choosing vector fields X and Y such that
[X,Y ] = 0. Let now X, Y ∈Γ(T 1,0M) be εholomorphic vector fields, i.e. LX(J ε)=
0 where L is the Lie-derivative. Then it holds

0 = LX(J ε)Ȳ = [X, J εȲ ]− J ε[X, Ȳ ]

= ∇XJ εȲ −∇JεȲ X − J ε∇X Ȳ + J ε∇Ȳ X

= (∇XJ ε)Ȳ − (∇Ȳ J ε)X +∇Ȳ J εX −∇JεȲ X

= [(∇XJ ε)Ȳ − (∇Ȳ J ε)X] + 2̂i∇Ȳ X.

This finishes the proof. �

From the lemma we obtain:

Proposition 2. Let (M, J ε) be an εcomplex manifold, ∇ be a torsion-free flat
connection and F • defined as in equation (3.6).

1. Then (M, J ε,∇) is an affine special εcomplex manifold if and only if ∇ and
F • give a variation of εHodge structures of weight 1 on TMCε.

2. Then (M, J ε,∇, g) is an affine special εKähler manifold if and only if ∇,
F • and ω(·, ·) = g(J ε·, ·) give a variation of polarized εHodge structures of
weight 1 on TMCε.

In [8] the following notion of a conical special εKähler manifold (M, J ε, g,∇, ζ) is
introduced, i.e. an affine special εKähler manifold (M, J ε, g,∇) endowed with a
vector field ζ, such that

∇ζ = Dζ = Id, (3.7)

where D is the Levi-Civita connection of g. In the same reference it is shown,
that

LζJ
ε = 0. (3.8)

This implies that the distribution D = span{ζ, J εζ} is integrable. The space
of leaves, i.e. integral manifolds of D is denoted by M̄ . If (M, J ε, g,∇, ζ) is a
projective special εKähler manifold (cf. [8]) of (real) dimension 2n + 2 then the
canonical quotient map π : M → M̄ is an εholomorphic submersion onto an
εcomplex manifold of (real) dimension 2n. The manifold M̄ inherits an εKähler
metric ḡ from the metric g such that π is a pseudo-Riemannian submersion. In
this case it holds in particular g(ζ, ζ) = −εg(J εζ, J εζ) 6= 0. The affine geometry
of conical special para-Kähler manifolds was studied in [9].

In the remaining part of this section we shortly discuss the polarized variation
of Hodge structure of weight 3 on V = TM → M̄ related to a projective special
εKähler manifold (M, J ε, g,∇, ζ):

Let us consider the real line bundle L, which is generated by ζ. We use g(ζ, ζ) =
−εg(J εζ, J εζ) 6= 0 to obtain TM = L ⊕ J ε(L) ⊕ L′, such that L′ ∼= TM̄ is the
orthogonal complement of L ⊕ J ε(L) with respect to the pseudo-metric g. From
condition (3.7) we conclude

∇L|L′ = L′. (3.9)



292 L. Schäfer: Variations of (para-)Hodge Structures . . .

Now we can define the Hodge filtration: We set F 0 = TMCε . The relation (3.8)
implies that ζ + ε îJ εζ generates the εholomorphic line bundle F 3 = L1,0 ⊂ TMCε .
From the Riemannian bilinear relation it follows (F 3)⊥ = F 1, where ⊥ is taken
with respect to the εKähler form ω of g which is extended Cε-bilinearly. It remains
to define F 2 = T 1,0M . The Griffiths transversality ∇F 3 ⊂ F 2 is a consequence
of equation (3.9) and L′ ∼= TM̄ . The condition ∇F 2 ⊂ F 1 follows from equation
(3.9) by similiar arguments as in [5]. This means we have defined a variation of
εHodge structures of weight 3 by

F 3 = L1,0 ⊂ F 2 = T 1,0M ⊂ F 1 = (F 3)⊥ ⊂ F 0 = TMCε ,

which is polarized by the εKähler form ω.

4. Period domains of variations of εHodge structures

We recall some information about period domains of variations of εHodge struc-
tures and have a closer look at the description of these either as homogeneous
spaces or as flag manifolds, since this is crucial to understand our later results. A
reference for the complex case is the book [2]. Again the complex case is classical
and the para-complex case is new.

We introduce the period domain parameterizing the set of polarized εHodge
structures on a fixed real vector space H having a fixed weight w and fixed εHodge
numbers hp,q. Such an εHodge structure is determined by specifying a flag Fw ⊂
Fw−1 ⊂ . . . ⊂ F 0 of fixed type satisfying the two bilinear relations. The set of such
flags satisfying the first bilinear relation is usually called D̃ and can be described
in a homogeneous model GCε/B where GCε is the group of automorphisms of HCε

fixing the polarization b and B is the stabilizer of some given reference structure
F •

o .

Proposition 3. The set D̃ classifying εHodge decompositions of weight w with
fixed εHodge numbers hp,q which obey the first bilinear relation is a flag manifold
of type (fw, . . . , fv), fp = dim F p, v =

[
w+1

2

]
, such that

(i) in the case of even weight w = 2v each F p, for p = w, . . . , v +1, is isotropic
with respect to the bilinear form b,

(ii) in the case of odd weight w = 2v − 1 each F p, for p = w, . . . , v, is isotropic
with respect to the bilinear form b.

It can also be identified with the homogeneous manifold GCε/B.

Proof. (i) In the case of even weight we recover the spaces F p, for p = 0, . . . , (w−
v + 1) = v + 1, from F p, for p = w, . . . , v, by using the decomposition

HCε = F p ⊕⊥ Fw−p+1,

where ⊥ is taken with respect to the non-degenerate εhermitian sesquilinear form
b(·, ·̄). The condition on F p, for p = w, . . . , v + 1, to be isotropic is the first
Riemannian bilinear relation.



L. Schäfer: Variations of (para-)Hodge Structures . . . 293

(ii) In fact, for odd weight, one can recover the whole flag from F p for p = w, . . . , v,
by using the decomposition

HCε = F p ⊕⊥ Fw−p+1,

where ⊥ is taken with respect to the non-degenerate εhermitian sesquilinear form
b(·, ·̄). The condition on F p, for p = w, . . . , v, to be isotropic is in the case of odd
weight w inherited from the first Riemannian bilinear relation. �

In the complex case B is a parabolic subgroup. There seems to be no equiva-
lent para-complex notion in the literature. The subset of D̃ classifying εHodge
structures which also satisfy the second bilinear relation is called D. As a non-
degeneracy or a positivity condition the second bilinear relation defines an open
subset of D̃.

Proposition 4. The period domain D classifying εHodge filtrations F • of fixed
dimension fp = dim F p satisfying both bilinear relations is an open subset of D̃
and it is a homogeneous manifold D = G/V , where G is the group of linear
automorphisms of H preserving b and V = G ∩B.

We consider the case of Hodge structures which are strongly polarized. Given the
space G/V , we call G/K where K is the maximal compact subgroup of G the
‘associated symmetric space’ and denote the canonical map by π : G/V → G/K.

The case of odd weight

Now we have a glance at the groups G, V and K and the associated flag manifolds
for εHodge structures of odd weight. Using this we describe for strongly polarized
variations of Hodge structures the map π at the level of flag manifolds. This de-
scription is needed later to relate the (classical) period map to the εpluriharmonic
maps appearing in εtt∗-geometry.

In the case of odd weight w = 2l+1 for l = v−1 the form b is anti-symmetric
due to the first Riemannian bilinear relation and hence a symplectic form on H.
In particular the real dimension of H is even. Hence the group G is the symplectic
group Sp(H, b) ∼= Sp(Rr) with r = dimRH ∈ 2N. The maximal compact subgroup
of Sp(Rr) is K = U(r).

We define the b-isotropic εcomplex vector space L =
⊕l

p=0 Hw−p,p = Fw−l = F v.

One sees by equation (3.4)
HCε = L⊕ L. (4.1)

Since they have the same dimension, L and L are, by the first bilinear relation, La-
grangian subspaces. We further fix a reference structure F •

o . Taking successively
εunitary bases1

{f i}dim(L)
i=1

and
{f i

o}
dim(Lo)
i=1 (4.2)

1This means a basis with h(fi, fj) = ±δij .
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with respect to the εhermitian sesquilinear scalar product h(·, ·)=(−1)w(w−1)/2îp−q

b(·, ·̄) of the flags
Hw,0 ⊂ Hw,0 ⊕Hw−1,1 ⊂ · · · ⊂ L

and
Hw,0

o ⊂ Hw,0
o ⊕Hw−1,1

o ⊂ · · · ⊂ Lo

and extending these with {f̄ i}dim(Lo)
i=1 and {f̄ i

o}
dim(Lo)
i=1 on L and Lo to symplectic

bases one sees that Sp(Rr) acts transitively by change of the basis from {f i
o}

dim(Lo)
i=1

to {f i}dim(Lo)
i=1 .

(i) First we discuss the complex case. If we have a strongly polarized variation of
Hodge structures, then the stabilizer of F •

o is the group V = Πl
p=0 U( hw−p,p). The

map π : G/V → G/K is at this level nothing else than the forgetful map from
the flag Hw,0 ⊂ Hw,0 ⊕ Hw−1,1 ⊂ · · · ⊂ L to the subspace L. We remark, that
the stabilizer of Lo is contained in the group U(r), if we assume the variation of
Hodge structures to be strongly polarized.

If we consider a weakly polarized variation of Hodge structures, then the stabilizer
of F •

o is the group V = Πl
p=0 U(kp, lp), where (kp, lp), with hp,q = kp + lp, is the

hermitian signature of h restricted to Hw−p,p with q = w − p.

The stabilizer of Lo is in this case an element of the group U(k, l), where r =
2(k + l) and (k, l) is the hermitian signature of h on Lo, i.e. k =

∑
kp and

l =
∑

lp.

Given a variation of Hodge structures of odd weight over the complex base man-
ifold (M, J) we denote by L the (holomorphic) map

L : M → Sp(Rr)/U(k, l), (4.3)

x 7→ Lx. (4.4)

The Grassmannian of Lagrangian subspaces, on which h has signature (k, l) will
be denoted by Grk,l

0 (Cr) and on which h is positive definite will be denoted by
Gr0(Cr) = Grr,0

0 (Cr).

(ii) In the para-complex case the stabilizer of Lo is the group Uπ(Cn), with r = 2n,
compare equation (2.1). As before given a variation of para-Hodge structures of
odd weight w over the para-complex base manifold (M, τ) we denote by L the
(para-holomorphic) map

L : M → Sp(Rr)/Uπ(Cn), (4.5)

x 7→ Lx. (4.6)

The associated Grassmannian of Lagrangian subspaces will be denoted by Grn
0

(C2n) with r = 2n.

5. εtt∗-bundles and associated εpluriharmonic maps

In this section we recall the notion of (metric) εtt∗-bundles and explain the corre-
spondence between metric εtt∗-bundles and εpluriharmonic maps, which was given
in [18, 19].
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Definition 3. An εtt∗-bundle (E, D, S) over an εcomplex manifold (M, J ε) is
a real vector bundle E → M endowed with a connection D and a section S ∈
Γ(T ∗M ⊗ End E) which satisfy the εtt∗-equation

Rθ = 0 for all θ ∈ R, (5.1)

where Rθ is the curvature tensor of the connection Dθ defined by

Dθ
X := DX + cosε(θ)SX + sinε(θ)SJεX for all X ∈ TM. (5.2)

A metric εtt∗-bundle (E, D, S, g) is an εtt∗-bundle (E, D, S) endowed with a pos-
sibly indefinite D-parallel fiber metric g such that for all p ∈ M

g(SXY, Z) = g(Y, SXZ) for all X, Y, Z ∈ TpM. (5.3)

Remark 2. 1) If (E, D, S) is an εtt∗-bundle then (E, D, Sθ) is an εtt∗-bundle for
all θ ∈ R, where Sθ := Dθ −D = cosε(θ)S + sinε(θ)SJε . The same remark applies
to metric εtt∗-bundles.

2) The flatness of the connection Dθ can be expressed in a set of equations on D
and S which can be found in [18, 19].

Given a metric εtt∗-bundle (E, D, S, g), we consider the flat connection Dθ for a
fixed θ ∈ R. Any Dθ-parallel frame s = (s1, . . . , sr) of E defines a map

G = G(s) : M → Symp,q(Rr); x 7→ G(x) := (gx(si(x), sj(x))), (5.4)

where (p, q) is the signature of the metric g.

Let G/K be a pseudo-Riemannian symmetric space with associated symmetric
decomposition g = p ⊕ k. We recall that a map f : (M, J ε) → G/K is said
to be admissible, if the εcomplex linear extension of its differential maps T 1,0

x M
(respectively T 0,1

x M) to an Abelian subspace of pCε = p⊗ Cε for all x ∈ M .

If M is simply-connected then it was shown in [18, 19], that G : M → Symp,q(Rr)

is εpluriharmonic and that it induces an admissible εpluriharmonic map G̃ : M
G→

Symp,q(Rr) →̃S(p, q).

Conversely, we constructed in [18, 19] a metric εtt∗-bundle (E = M × R2r, D =
∂ − εS, S = εdG̃, g =< G·, · >R2r) over a simply-connected manifold from an
admissible εpluriharmonic map G̃ : M → S(p, q). If M is not simply-connected,
then we have to replace the maps G and G̃ by twisted εpluriharmonic maps (cf. [19]
Theorems 5 and 6).

6. Variations of εHodge structures as εtt∗-bundles

In this section we recall the result of Hertling [3] that variations of Hodge struc-
tures give solutions of metric tt∗-bundles and generalize it to para-complex ge-
ometry and symplectic εtt∗-bundles. Our presentation differs from that of [3],
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since we give this result in the language of real differential geometry. Again, the
para-complex version seems to be new.

Let (E,∇, F p) be a (real) variation of εHodge structures of weight w. The
εcomplexified connection of ∇ on ECε = E ⊗ Cε will be denoted by ∇c. Griffiths
transversality and the εholomorphicity of the subbundles F p gives

∇c : Γ(F p) → Λ1,0(F p−1) + Λ0,1(F p) (6.1)

and εcomplex conjugation yields

∇c : Γ(F
p
) → Λ0,1(F

p−1
) + Λ1,0(F

p
). (6.2)

Summarizing one obtains with Hp,w−p = F p ∩ F
w−p

∇c : Γ(Hp,w−p) → Λ1,0(Hp,w−p) + Λ0,1(Hp,w−p)︸ ︷︷ ︸
D

+

Λ1,0(Hp−1,w+1−p) + Λ0,1(Hp+1,w−1−p)︸ ︷︷ ︸
S

. (6.3)

Using the decomposition induced by the εHodge structure and by the bi-degree
of differential forms, one can find, that the curvature of ∇c vanishes if and only
if (Ec, D, S) defines an εtt∗-bundle. In addition the εcomplex conjugation κ = ·̄
respects the εHodge decomposition and it is ∇cκ = 0. Again the decomposition
induced by the εHodge structure and the bi-degree of differential forms imply that
Dκ = 0, i.e. D leaves E invariant and that Sκ = κS, i.e. S leaves E invariant,
too.

If b is a polarization of the above variation of εHodge structures (E,∇, F p), then
∇b = 0 and ∇cκ = 0 yield after decomposing with respect to the εHodge structure
the equations Dg = 0 and g(S·, ·) = g(·, S·) with g = Re h. Concluding we obtain
the proposition:

Proposition 5. Let (E,∇, F p) be a (real) variation of εHodge structures of
weight w with a polarization b, then (ECε , D, S, g = Reh) and (E, D, S, g = Reh)
with D and S as defined in equation (6.3) are metric εtt∗-bundles.

The above consideration holds for Ω = Imh, too. This implies DΩ = 0 and
Ω(S·, ·) = Ω(·, S·). Hence we have proven

Proposition 6. Let (E,∇, F p) be a (real) variation of εHodge structures of
weight w with a polarization b, then (ECε , D, S, Ω = Imh) and (E, D, S, Ω = Imh)
with D and S as defined in equation (6.3) are symplectic εtt∗-bundles.

7. The period map of a variation of εHodge structures

Like period domains describe εHodge structures, εholomorphic maps into period
domains describe variations of εHodge structures, in the sense of the following
proposition which is in the complex case due to Griffiths (cf. [2] Chapter 4.5). We
only consider the simply connected case:
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Proposition 7. Let (M, J ε) be a simply connected εcomplex manifold and G/V
the period domain classifying polarized εHodge structures of given weight and
εHodge numbers, then giving a variation of εHodge structures is equivalent to
giving an εholomorphic map from M to G/V which satisfies the Griffiths transver-
sality condition. Such maps are called period maps.

Let (E,∇, F p) be a variation of εHodge structures of odd weight w over the
εcomplex base manifold (M, J ε) endowed with a polarization b where E has rank
r and where fp = dim Fp. Denote by (E, D, S, g) the corresponding εtt∗-bundle
constructed in proposition 5. We suppose, that M is simply connected.

Like in Section 5 we examine the metric g in a D0 = ∇-parallel frame s of E. The
flat frame is chosen as constructed in Section 4. The metric g defines a smooth
map

G : M → Symp,q(Rr) = {A ∈ Mat(Rr) |A = At and A has signature (p, q)}.
(7.1)

In the complex case (p, q) = (2k, 2l) is the symmetric signature of g. We remark
that for a variation of para-Hodge structures the metric g is forced to have split
signature (p, q) = (n, n) with n = 1

2
dimRH.

The map G will be called the fundamental matrix of the variation of εHodge struc-
tures (E,∇, F p) and as above Symp,q(Rr) is identified with the pseudo-Riemannian
symmetric space GL(r, R)/O(p, q).

We recall that for odd weight each fiber of E has the structure of a symplectic
vector space and consequently it holds rkRE = r = 2n ∈ 2N.

Theorem 1. Let (E,∇, F p) be a polarized variation of εHodge structures of odd
weight w with polarization b over the εcomplex base manifold (M, J ε). Let r = 2n
be the real rank of E.

Then the fundamental matrix G takes values in the totally geodesic submanifold

i : Grk,l
0 (C2n) = Sp(R2n)/U(k, l) → GL(r, R)/O(2k, 2l), for ε = −1, (7.2)

i : Grn
0 (C2n) = Sp(R2n)/Uπ(Cn) → GL(r, R)/O(n, n), for ε = 1 (7.3)

and coincides with the map L, i.e. G = i ◦ L : M → GL(r, R)/O(p, q).

Proof. Given a point x ∈ M we put V = ECε
x and V R = Ex

∼= Rr. To any
polarized εHodge structure F p of odd weight w with polarization b the map L
associated a Lagrangian subspace L ∈ Grk,l

0 (V ) in the complex and a Lagrangian
subspace L ∈ Grn

0 (V ) in the para-complex case (see Section 4). We define a scalar
product gL = Re h|L on L ⊂ V . The projection onto the real points

Re : V → V R (7.4)

induces an isomorphism L ∼= V R. Its inverse we denote by Φ = ΦL : V R → L.

Claim:
i(L) = Φ∗

L gL =: GL. (7.5)
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We first show the Sp(Rr)-equivariance of the map

L 7→ GL. (7.6)

From the definition of ΦL we obtain with Λ ∈ Sp(Rr):

ΦΛL = Λ ◦ ΦL ◦ Λ−1
|Rr (7.7)

and from this the transformation law of GL

GΛL = Φ∗
ΛLg

ΛL = (Λ−1)∗Φ∗
LΛ

∗gΛL = (Λ−1)∗Φ∗
Lg
L = (Λ−1)∗GL = Λ ·GL. (7.8)

Let F p
o be the reference flag of V Cε

o with dim F p
o = fp. We calculate GLo in the

basis {f i
o}

dim(Lo)
i=1 constructed in equation (4.2)

(GL0(Ref i
o, Ref j

o )) = 1p,q, after permutation. (7.9)

This yields
Φ∗
L0

gL0 = 1p,q. (7.10)

The proof is finished, since G(x) = GL(x) = i(L(x)). �

Corollary 1. Let (E,∇, F p) be a polarized variation of εHodge structures of
odd weight w with polarization b over the εcomplex base manifold (M, J ε). Then
the map L : M → Grk,l

0 (Cr
ε) = Sp(Rr)/U ε(k, l) is εpluriharmonic.

Proof. This follows from the εpluriharmonicity of the fundamental matrix G :
M → GL(r, R)/O(p, q), since G = i ◦ L, where i is a totally geodesic immersion
and consequently, by a well-known result about εpluriharmonic maps (cf. [18, 19]),
the εpluriharmonicity of L is equivalent to that of G. �

The last theorem and the last corollary can be specialized for variations of Hodge
structures (this means ε = −1.), which are strongly polarized:

Theorem 2. Let (E,∇, F p) be a strongly polarized variation of Hodge structures
of odd weight w with polarization b over the complex base manifold (M, J). Then
the fundamental matrix G takes values in the totally geodesic submanifold

i : Gr0(Cr) = Grr,0
0 (Cr) = Sp(Rr)/U(r) → GL(r, R)/O(r) (7.11)

and coincides with the map L = π ◦ P : M → G/K, i.e. G = i ◦ L : M →
GL(r, R)/O(r).

With the same argument as before, we obtain the

Corollary 2. Let (E,∇, F p) be a strongly polarized variation of Hodge struc-
tures of odd weight w with polarization b over the complex base manifold (M, J).
Then the map L : M → Gr0(Cr) = Grr,0

0 (Cr) = Sp(Rr)/U(r) is pluriharmonic.

This means our results generalize the following result for strongly polarized com-
plex variations of Hodge structures of odd weight:

Theorem 3. (cf. [2] Theorem 14.4.1) Let f : M → G/V be a period mapping
and π : G/V → G/K, as defined in Section 4 the canonical map to the associated
locally symmetric space. Then π ◦ f is pluriharmonic.
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Zbl 0543.14005−−−−−−−−−−−−
[6] Cecotti, S.; Vafa, C.: Topological-antitopological fusion. Nuclear Physics B

367 (1991), 351–461.

[7] Cortés, V.; Mayer, C.; Mohaupt, T.; Saueressig, F.: Special Geometry of
Euclidean Supersymmetry I: Vectormultiplets. J. High Energy Phys. JHEP03
(2004) 028, hep-th/0312001 2004.

[8] Cortés, V.: Projective special (para)-Kähler manifolds. Part of work in prepa-
ration with T. Mohaupt.

[9] Cortés, V.; Lawn, M.-A.; Schäfer, L.: Parabolic spheres and special para-
Kähler manifolds. Int. Journal of Geometric Methods in Modern Physics
3(5,6) (2006), 995–1009.
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[21] Schäfer, L.: Harmonic bundle solutions of topological-antitopological fusion

in para-complex geometry. To appear in Diff. Geom. and Appl.

[22] Simpson, C. T.: Higgs bundles and local systems. Publ. Math., Inst. Hautes
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