Variations of (para-)Hodge Structures and their Period Maps in tt^* -geometry

Lars Schäfer

D-20146 Hamburg, Germany e-mail: schaefer@math.uni-hamburg.de

Abstract. We introduce the notion of variations of Hodge structures (VHS) in para-complex geometry and define the associated period map. Moreover, we construct VHS from special (para-)complex and (para-) Kähler manifolds and prove that they provide solutions of (metric) tt^* -bundles (cf. [3] for the complex case). In the case of odd weight we relate the period map to the (para-)pluriharmonic maps associated to tt^* -bundles (cf. [18], [19]).

MSC 2000: 53C43, 58E20, 32G20

Keywords: tt^* -bundles, (para-)pluriharmonic maps, special (para-)complex and special (para-)Kähler manifolds, variations of (para-)Hodge structure, period maps

1. Introduction

In complex geometry it is known that (metric) tt^* -bundles provide a generalization of variations Hodge structures (cf. [3]). Moreover one [18, D] can associate to any metric tt^* -bundle (E, D, S, g) a pluriharmonic map into $GL(r, \mathbb{R})/O(p, q)$ where (p, q) with r = p + q is the signature of the metric g. In this paper we relate for a variation of Hodge structures of odd weight this pluriharmonic map to the period map of the variation of Hodge structures.

More recently the author [19] introduced the para-complex notion of tt^* bundles. Examples of such structures on the tangent bundle of a special para-Kähler manifold were given in the same reference. In the complex setting special Kähler manifolds carry a polarized variation of Hodge structures of weight one.

0138-4821/93 $2.50 \odot 2008$ Heldermann Verlag

This is one way to see that they provide tt^* -structures. The described information suggest to study the question if one can generalize VHS and their period maps to para-complex geometry, if the tangent bundle of special para-Kähler manifold carries such VHS, if these VHS provide para- tt^* -bundles and if one can identify the related para-pluriharmonic maps. This program is carried out in this paper.

2. Para-complex differential geometry

We shortly recall some notions and facts of para-complex differential geometry. For a more complete source we refer to [7].

In para-complex geometry one replaces the complex structure J with $J^2 = - \not\Vdash$ (on a finite dimensional vector space V) by the para-complex structure $\tau \in$ End (V) satisfying $\tau^2 = \not\Vdash$ and one requires that the ± 1 -eigenspaces have the same dimension. An almost para-complex structure on a smooth manifold M is an endomorphism-field τ , which is a point-wise para-complex structure. If the eigen-distributions $T^{\pm}M$ are integrable τ is called para-complex structure on Mand M is called a para-complex manifold. As in the complex case, there exists a tensor, also called Nijenhuis tensor, which is the obstruction to the integrability of the para-complex structure.

The real algebra, which is generated by 1 and by the para-complex unit ewith $e^2 = 1$, is called the para-complex numbers and denoted by C. For all $z = x + ey \in C$ with $x, y \in \mathbb{R}$ we define the para-complex conjugation as $\overline{\cdot} : C \to C, x + ey \mapsto x - ey$ and the real and imaginary parts of z by $\Re(z) := x, \Im(z) := y$. The free C-module C^n is a para-complex vector space where its para-complex structure is just the multiplication with e and the para-complex conjugation of Cextends to $\overline{\cdot} : C^n \to C^n, v \mapsto \overline{v}$.

Note, that $z\overline{z} = x^2 - y^2$. Therefore the algebra *C* is sometimes called the *hypercomplex* numbers. The circle $\mathbb{S}^1 = \{z = x + iy \in \mathbb{C} \mid x^2 + y^2 = 1\}$ is replaced by the four hyperbola $\{z = x + ey \in C \mid x^2 - y^2 = \pm 1\}$. We define $\tilde{\mathbb{S}}^1$ to be the hyperbola given by the one parameter group $\{z(\theta) = \cosh(\theta) + e \sinh(\theta) \mid \theta \in \mathbb{R}\}$.

A para-complex vector space (V, τ) endowed with a pseudo-Euclidean metric g is called *para-hermitian vector space*, if g is τ -anti-invariant, i.e. $\tau^*g = -g$. The *para-unitary group of* V is defined as the group of automorphisms

$$U^{\pi}(V) := \operatorname{Aut}(V, \tau, g) := \{ L \in GL(V) | [L, \tau] = 0 \text{ and } L^*g = g \}$$

and its Lie-algebra is denoted by $\mathfrak{u}^{\pi}(V)$. For $C^n = \mathbb{R}^n \oplus e\mathbb{R}^n$ the standard parahermitian structure is defined by the above para-complex structure and the metric $g = \operatorname{diag}(\mathbb{H}, -\mathbb{H})$ (cf. Example 7 of [7]). The corresponding para-unitary group is given by (cf. Proposition 4 of [7]):

$$U^{\pi}(C^{n}) = \left\{ \begin{pmatrix} A & B \\ B & A \end{pmatrix} \mid A, B \in \operatorname{End}(\mathbb{R}^{n}), A^{T}A - B^{T}B = \mathscr{W}_{n}, A^{T}B - B^{T}A = 0 \right\}.$$
(2.1)

There exist two bi-gradings on the exterior algebra: The one is induced by the splitting in $T^{\pm}M$ and denoted by $\Lambda^{k}T^{*}M = \bigoplus_{k=p+q} \Lambda^{p+,q-}T^{*}M$ and induces an

obvious bi-grading on exterior forms with values in a vector bundle E. The second is induced by the decomposition of the *para-complexified* tangent bundle $TM^C = TM \otimes_{\mathbb{R}} C$ into the subbundles $T_p^{1,0}M$ and $T_p^{0,1}M$ which are defined as the $\pm e$ eigenbundles of the para-complex linear extension of τ . This induces a bi-grading on the C-valued exterior forms noted $\Lambda^k T^*M^C = \bigoplus_{k=p+q} \Lambda^{p,q} T^*M$ and finally on the C-valued differential forms on $M \ \Omega_C^k(M) = \bigoplus_{k=p+q} \Omega^{p,q}(M)$. In the case (1, 1) and (1+, 1-) the two gradings induced by τ coincide, in the sense that $\Lambda^{1,1} T^*M =$ $(\Lambda^{1+,1-} T^*M) \otimes C$. The bundles $\Lambda^{p,q} T^*M$ are para-complex vector bundles in the following sense: A *para-complex vector bundle* of rank r over a para-complex manifold (M, τ) is a smooth real vector bundle $\pi : E \to M$ of rank 2r endowed with a fiber-wise para-complex structure $\tau^E \in \Gamma(\text{End}(E))$. We denote it by (E, τ^E) . In the following text we always identify the fibers of a para-complex vector bundle E of rank r with the free C-module C^r . One has a notion of para-

holomorphic vector bundles [16], too. In Proposition 2 of the same reference we have shown, that a para-complex connection with vanishing (0, 2)-curvature on a para-complex vector bundle E induces a para-holomorphic structure on E. This generalizes a well-known theorem of complex geometry.

Let us transfer some notions of hermitian linear algebra (cf. [21]): A parahermitian sesquilinear scalar product is a non-degenerate sesquilinear form h: $C^r \times C^r \to C$, i.e. it satisfies (i) h is non-degenerate: Given $w \in C^r$ such that for all $v \in C^r$ h(v, w) = 0, then it follows w = 0, (ii) $h(v, w) = \overline{h(w, v)}$, $\forall v, w \in C^r$, and (iii) $h(\lambda v, w) = \lambda h(v, w)$, $\forall \lambda \in C$; $v, w \in C^r$. The standard para-hermitian sesquilinear scalar product is given by

$$(z,w)_{C^r} := z \cdot \bar{w} = \sum_{i=1}^r z^i \bar{w}^i, \text{ for } z = (z^1, \dots, z^r), w = (w^1, \dots, w^r) \in C^r.$$

The para-hermitian conjugation is defined by $C \mapsto C^h = \overline{C}^t$ for $C \in \text{End}(C^r) =$ End $_C(C^r)$ and C is called para-hermitian if and only if $C^h = C$. We denote by herm (C^r) the set of para-hermitian endomorphisms and by $\text{Herm}(C^r) = \text{herm}(C^r) \cap GL(r,C)$. We remark, that there is no notion of para-hermitian signature, since from h(v,v) = -1 for an element $v \in C^r$ we obtain h(ev,ev) = 1.

Proposition 1. Given an element C of $End(C^r)$ then it holds $(Cz, w)_{C^r} = (z, C^h w)_{C^r}, \forall z, w \in C^r$. The set $herm(C^r)$ is a real vector space. There is a bijective correspondence between $Herm(C^r)$ and para-hermitian sesquilinear scalar products h on C^r given by $H \mapsto h(\cdot, \cdot) := (H \cdot, \cdot)_{C^r}$.

A para-hermitian metric h on a para-complex vector-bundle E over a para-complex manifold (M, τ) is a smooth fiber-wise para-hermitian sesquilinear scalar product.

To unify the complex and the para-complex case we introduce some notations: First we note J^{ϵ} where $J^{\epsilon^2} = \epsilon \not\models$ with $\epsilon \in \{\pm 1\}$. The ϵ complex unit is denoted by \hat{i} , i.e. $\hat{i} := e$, for $\epsilon = 1$, and $\hat{i} = i$, for $\epsilon = -1$. Further we introduce \mathbb{C}_{ϵ} with $\mathbb{C}_1 = C$ and $\mathbb{C}_{-1} = \mathbb{C}$. In the rest of this work we extend our language by the following ϵ -notation: If a word has a prefix ϵ with $\epsilon \in \{\pm 1\}$, i.e. is of the form ϵX , this expression is replaced by

$$\epsilon X := \begin{cases} X, \text{ for } \epsilon = -1, \\ \text{para-X, for } \epsilon = 1 \end{cases}$$

The ϵ unitary group and its Lie-algebra are

$$U^{\epsilon}(p,q) := \begin{cases} U^{\pi}(C^r), \text{ for } \epsilon = 1, \\ U(p,q), \text{ for } \epsilon = -1 \end{cases} \text{ and } \mathfrak{u}^{\epsilon}(p,q) := \begin{cases} \mathfrak{u}^{\pi}(C^r), \text{ for } \epsilon = 1, \\ \mathfrak{u}(p,q), \text{ for } \epsilon = -1, \end{cases}$$

where in the complex case (p,q) for r = p + q is the hermitian signature.

Further we use the notation

$$\operatorname{Herm}_{p,q}^{\epsilon}(\mathbb{C}_{\epsilon}^{r}) := \begin{cases} \operatorname{Herm}(C^{r}), \text{ for } \epsilon = 1, \\ \operatorname{Herm}_{p,q}(\mathbb{C}^{r}), \text{ for } \epsilon = -1, \end{cases}$$
$$\operatorname{herm}_{p,q}^{\epsilon}(\mathbb{C}_{\epsilon}^{r}) := \begin{cases} \operatorname{herm}(C^{r}), \text{ for } \epsilon = 1, \\ \operatorname{herm}_{p,q}(\mathbb{C}^{r}), \text{ for } \epsilon = -1, \end{cases}$$

where, for p + q = r, $\operatorname{Herm}_{p,q}(\mathbb{C}^r)$ are the hermitian matrices of hermitian signature (p,q) and $\operatorname{herm}_{p,q}(\mathbb{C}^r)$ are the hermitian matrices with respect to the standard hermitian product of hermitian signature (p,q) on \mathbb{C}^r . The standard ϵ hermitian sesquilinear scalar product is $(z,w)_{\mathbb{C}^r_{\epsilon}} := z \cdot \bar{w} = \sum_{i=1}^r z^i \bar{w}^i$, for $z = (z^1, \ldots, z^r), w = (w^1, \ldots, w^r) \in \mathbb{C}^r_{\epsilon}$ and we note

$$\cos_{\epsilon}(x) := \begin{cases} \cos(x), \text{ for } \epsilon = -1, \\ \cosh(x), \text{ for } \epsilon = 1 \end{cases} \text{ and } \sin_{\epsilon}(x) := \begin{cases} \sin(x), \text{ for } \epsilon = -1, \\ \sinh(x), \text{ for } \epsilon = 1. \end{cases}$$

3. Variations of ϵ Hodge structures

3.1. ϵ Hodge structures and their variations

In this section we introduce the notion of variations of ϵ Hodge structures in paracomplex geometry and recall variations of Hodge structures which are classical objects in complex geometry. We follow the notations of [2] which is a reference and contains references for further study of variations of Hodge structures. The para-complex version seems to be new.

Definition 1.

(a) A real ϵ Hodge structure of weight $w \in \mathbb{N}$ is a real vector space H on the ϵ complexification of which there is a decomposition into ϵ complex vector spaces

$$H^{\mathbb{C}_{\epsilon}} = \bigoplus_{w=p+q} H^{p,q} \text{ with } p,q \in \mathbb{N}$$
(3.1)

and where

$$H^{p,q} = H^{q,p} \text{ with } p, q \in \mathbb{N}.$$
(3.2)

The ϵ complex conjugation $\overline{\cdot}$ is relative to the real structure on $H^{\mathbb{C}_{\epsilon}} = H \otimes \mathbb{C}_{\epsilon}$.

- (b) Suppose, that an ϵHodge structure of weight w carries a bilinear form b : H × H → ℝ which satisfies the following Riemannian bilinear relations
 - (i) The \mathbb{C}_{ϵ} -linear extension of the bilinear form b, also denoted by b, satisfies b(x, y) = 0 if $x \in H^{p,q}$ and $y \in H^{r,s}$ for $(r, s) \neq (w - p, w - q) = (q, p)$,
 - (ii) The bilinear form b defines an ϵ hermitian sesquilinear scalar product (compare Section 2) on $H^{p,q}$ by $h(x,y) = (-1)^{w(w-1)/2} \hat{i}^{p-q} b(x,\bar{y})$.

Then we call this ϵ Hodge structure weakly polarized.

- (c) Suppose, that a (complex) Hodge structure of weight w carries a bilinear form b : H × H → ℝ which satisfies the first Riemannian bilinear relation (i) and in addition
 - (ii) The bilinear form b defines a positive definite hermitian sesquilinear form on $H^{p,q}$ by $h(x,y) = (-1)^{w(w-1)/2} i^{p-q} b(x,\bar{y}).$

Then we call this Hodge structure strongly polarized.

(d) An ϵ Hodge structure of weight w is called polarized if it is weakly polarized or strongly polarized.

Closely related to the ϵ Hodge decomposition is the following filtration

$$F^p = \bigoplus_{a \ge p} H^{a,b}, \ p = 0, \dots, w,$$
(3.3)

which satisfies for an ϵ Hodge structure of weight w the relation

$$H^{\mathbb{C}_{\epsilon}} = F^p \oplus \overline{F^{w-p+1}}, \ p = 1, \dots, w.$$
(3.4)

Any filtration which obeys equation (3.4) is called an ϵ Hodge filtration. Such as an ϵ Hodge decomposition induces an ϵ Hodge filtration we obtain from an ϵ Hodge filtration an ϵ Hodge decomposition by $H^{p,q} = F^p \cap \overline{F^q}$, with p + q = w. This ϵ Hodge decomposition satisfies the relation (3.3).

We remark further, that the first Riemannian bilinear relation (cf. Definition 1) is equivalent to $(F^p)^{\perp} = F^{w-p+1}$, $p = 1, \ldots, w$, where \perp is taken with respect to the bilinear from b. Now we are going to consider deformations of these structures:

Definition 2. A (real) variation of ϵ Hodge structures (ϵ VHS) is a triple (E, ∇, F^p), where E is a real vector bundle over an (connected) ϵ complex base manifold $(M, J^{\epsilon}), \nabla$ is a flat connection and F^p is a filtration of $E^{\mathbb{C}_{\epsilon}}$ by ϵ holomorphic subbundles of $E^{\mathbb{C}_{\epsilon}}$, which is a point-wise ϵ Hodge structure satisfying the infinitesimal period relation or the Griffiths transversality

$$\nabla_{\chi} F^p \subset F^{p-1}, \ \forall \chi \in T^{1,0} M.$$
(3.5)

A polarization of a variation of ϵ Hodge structures (E, ∇, F^p) consists of a nondegenerate bilinear form $b \in \Gamma(E^* \otimes E^*)$ having the following properties

 (i) b induces a polarization on each fiber obeying the first and the second bilinear relation, (ii) b is parallel with respect to ∇ .

Remark 1. In complex geometry VHS roughly arise on the Hodge-decomposition of the cohomology of smoothly varying families of Kähler manifolds X_t where tis the parameter of the variation (cf. [2] Chapter 4 for details). To ensure that the Hodge-numbers $h^{p,q}(X_t)$ are constant in t one needs a result, which states that the kernel of a family D_t of elliptic differential operators depends uppersemi-continuously on t. Unfortunately this does not generalize to para-complex geometry for the following reason: If we consider an (almost) para-complex manifold M^{2n} endowed with a para-hermitian metric g the metric is forced to have split signature, i.e. signature (n, n). As a consequence the naturally associated differential operators are no longer elliptic and we are not able to use the above cited theory.

A class of ϵ VHS which is related to the special geometry of (Euclidean) supersymmetry is discussed in the next subsection.

3.2. ϵ VHS and special ϵ Kähler manifolds

Each fiber of the ϵ complex tangent bundle

$$TM^{\mathbb{C}_{\epsilon}} = T^{1,0}M \oplus T^{0,1}M$$

carries a natural ϵ Hodge structure of weight 1 :

$$0 = F_x^2 \subset F_x^1 = T_x^{1,0} M \subset F_x^0 = T_x^{\mathbb{C}_{\epsilon}} M.$$
(3.6)

We recall that an affine special $\epsilon K \ddot{a}hler manifold (M, J, \nabla, g)$ (cf. [1, 15, 7]) is an $\epsilon K \ddot{a}hler$ manifold endowed with a flat torsion-free connection ∇ , such that (∇, J^{ϵ}) is special, i.e. ∇J^{ϵ} is symmetric and $\nabla \omega = 0$, where ω is the $\epsilon K \ddot{a}hler$ form. The complex version of the next lemma and proposition was proved in [3] and we generalize it to the para-complex case.

Lemma 1. Let ∇ be a torsion-free flat connection on the ϵ complex manifold (M, J^{ϵ}) . Then $F^1 = T^{1,0}M$ is an ϵ -holomorphic subbundle of $F^0 = T^{\mathbb{C}_{\epsilon}}M$ with respect to the ϵ -holomorphic structure defined by ∇ (compare Section 2) if and only if (∇, J^{ϵ}) is special, i.e. ∇J^{ϵ} is symmetric.

Proof. The condition of F^1 to be ϵ holomorphic is equivalent to

$$\nabla_{\bar{Y}} X = 0$$
 for all $X, Y \in \mathcal{O}(T^{1,0}M)$

and the condition of (∇, J^{ϵ}) to be special is equivalent to

$$(\nabla_X J^{\epsilon})(\bar{Y}) = (\nabla_{\bar{Y}} J^{\epsilon})(X)$$
 for all $X, Y \in \mathcal{O}(T^{1,0}M)$,

due to the following short argument:

Let $X, Y \in \Gamma(T^{1,0}M)$ or $X, Y \in \Gamma(T^{0,1}M)$

$$(\nabla_X J^{\epsilon})(Y) = \nabla_X J^{\epsilon} Y - J^{\epsilon} \nabla_X Y = \pm \hat{i} \nabla_X Y - J^{\epsilon} \nabla_X Y,$$

which is symmetric as one sees by choosing vector fields X and Y such that [X,Y] = 0. Let now $X, Y \in \Gamma(T^{1,0}M)$ be ϵ holomorphic vector fields, i.e. $\mathcal{L}_X(J^{\epsilon}) = 0$ where \mathcal{L} is the Lie-derivative. Then it holds

$$0 = \mathcal{L}_X(J^{\epsilon})\bar{Y} = [X, J^{\epsilon}\bar{Y}] - J^{\epsilon}[X, \bar{Y}]$$

$$= \nabla_X J^{\epsilon}\bar{Y} - \nabla_{J^{\epsilon}\bar{Y}}X - J^{\epsilon}\nabla_X\bar{Y} + J^{\epsilon}\nabla_{\bar{Y}}X$$

$$= (\nabla_X J^{\epsilon})\bar{Y} - (\nabla_{\bar{Y}}J^{\epsilon})X + \nabla_{\bar{Y}}J^{\epsilon}X - \nabla_{J^{\epsilon}\bar{Y}}X$$

$$= [(\nabla_X J^{\epsilon})\bar{Y} - (\nabla_{\bar{Y}}J^{\epsilon})X] + 2\hat{i}\nabla_{\bar{Y}}X.$$

This finishes the proof.

From the lemma we obtain:

Proposition 2. Let (M, J^{ϵ}) be an ϵ complex manifold, ∇ be a torsion-free flat connection and F^{\bullet} defined as in equation (3.6).

- Then (M, J^ϵ, ∇) is an affine special ϵ complex manifold if and only if ∇ and F• give a variation of ϵHodge structures of weight 1 on TM^{C_ϵ}.
- Then (M, J^ϵ, ∇, g) is an affine special ϵKähler manifold if and only if ∇, F[•] and ω(·, ·) = g(J^ϵ·, ·) give a variation of polarized ϵHodge structures of weight 1 on TM^{C_ϵ}.

In [8] the following notion of a conical special $\epsilon K \ddot{a}hler manifold (M, J^{\epsilon}, g, \nabla, \zeta)$ is introduced, i.e. an affine special $\epsilon K \ddot{a}hler manifold (M, J^{\epsilon}, g, \nabla)$ endowed with a vector field ζ , such that

$$\nabla \zeta = D\zeta = Id, \tag{3.7}$$

where D is the Levi-Civita connection of g. In the same reference it is shown, that

$$\mathcal{L}_{\zeta} J^{\epsilon} = 0. \tag{3.8}$$

This implies that the distribution $\mathcal{D} = \operatorname{span}\{\zeta, J^{\epsilon}\zeta\}$ is integrable. The space of *leaves*, i.e. integral manifolds of \mathcal{D} is denoted by \overline{M} . If $(M, J^{\epsilon}, g, \nabla, \zeta)$ is a *projective special* $\epsilon K \ddot{a}h ler manifold$ (cf. [8]) of (real) dimension 2n + 2 then the canonical quotient map $\pi : M \to \overline{M}$ is an ϵ holomorphic submersion onto an ϵ complex manifold of (real) dimension 2n. The manifold \overline{M} inherits an $\epsilon K \ddot{a}h ler$ metric \overline{g} from the metric g such that π is a pseudo-Riemannian submersion. In this case it holds in particular $g(\zeta, \zeta) = -\epsilon g(J^{\epsilon}\zeta, J^{\epsilon}\zeta) \neq 0$. The affine geometry of conical special para-K $\ddot{a}h ler$ manifolds was studied in [9].

In the remaining part of this section we shortly discuss the polarized variation of Hodge structure of weight 3 on $V = TM \rightarrow \overline{M}$ related to a projective special ϵK ähler manifold $(M, J^{\epsilon}, g, \nabla, \zeta)$:

Let us consider the real line bundle L, which is generated by ζ . We use $g(\zeta, \zeta) = -\epsilon g(J^{\epsilon}\zeta, J^{\epsilon}\zeta) \neq 0$ to obtain $TM = L \oplus J^{\epsilon}(L) \oplus L'$, such that $L' \cong T\overline{M}$ is the orthogonal complement of $L \oplus J^{\epsilon}(L)$ with respect to the pseudo-metric g. From condition (3.7) we conclude

$$\nabla L_{|L'} = L'. \tag{3.9}$$

Now we can define the Hodge filtration: We set $F^0 = TM^{\mathbb{C}_{\epsilon}}$. The relation (3.8) implies that $\zeta + \epsilon \, i J^{\epsilon} \zeta$ generates the ϵ holomorphic line bundle $F^3 = L^{1,0} \subset TM^{\mathbb{C}_{\epsilon}}$. From the Riemannian bilinear relation it follows $(F^3)^{\perp} = F^1$, where \perp is taken with respect to the ϵ Kähler form ω of g which is extended \mathbb{C}_{ϵ} -bilinearly. It remains to define $F^2 = T^{1,0}M$. The Griffiths transversality $\nabla F^3 \subset F^2$ is a consequence of equation (3.9) and $L' \cong T\overline{M}$. The condition $\nabla F^2 \subset F^1$ follows from equation (3.9) by similiar arguments as in [5]. This means we have defined a variation of ϵ Hodge structures of weight 3 by

$$F^{3} = L^{1,0} \subset F^{2} = T^{1,0}M \subset F^{1} = (F^{3})^{\perp} \subset F^{0} = TM^{\mathbb{C}_{\epsilon}},$$

which is polarized by the ϵ Kähler form ω .

4. Period domains of variations of ϵ Hodge structures

We recall some information about period domains of variations of ϵ Hodge structures and have a closer look at the description of these either as homogeneous spaces or as flag manifolds, since this is crucial to understand our later results. A reference for the complex case is the book [2]. Again the complex case is classical and the para-complex case is new.

We introduce the period domain parameterizing the set of polarized ϵ Hodge structures on a fixed real vector space H having a fixed weight w and fixed ϵ Hodge numbers $h^{p,q}$. Such an ϵ Hodge structure is determined by specifying a flag $F^w \subset$ $F^{w-1} \subset \ldots \subset F^0$ of fixed type satisfying the two bilinear relations. The set of such flags satisfying the first bilinear relation is usually called \tilde{D} and can be described in a homogeneous model $G_{\mathbb{C}_{\epsilon}}/B$ where $G_{\mathbb{C}_{\epsilon}}$ is the group of automorphisms of $H^{\mathbb{C}_{\epsilon}}$ fixing the polarization b and B is the stabilizer of some given reference structure F_o^{\bullet} .

Proposition 3. The set \tilde{D} classifying ϵ Hodge decompositions of weight w with fixed ϵ Hodge numbers $h^{p,q}$ which obey the first bilinear relation is a flag manifold of type $(f_w, \ldots, f_v), f_p = \dim F^p, v = \left[\frac{w+1}{2}\right]$, such that

- (i) in the case of even weight w = 2v each F^p , for $p = w, \ldots, v+1$, is isotropic with respect to the bilinear form b,
- (ii) in the case of odd weight w = 2v 1 each F^p , for $p = w, \ldots, v$, is isotropic with respect to the bilinear form b.

It can also be identified with the homogeneous manifold $G_{\mathbb{C}_{\epsilon}}/B$.

Proof. (i) In the case of even weight we recover the spaces F^p , for $p = 0, \ldots, (w - v + 1) = v + 1$, from F^p , for $p = w, \ldots, v$, by using the decomposition

$$H^{\mathbb{C}_{\epsilon}} = F^p \oplus_{\perp} \overline{F^{w-p+1}},$$

where \perp is taken with respect to the non-degenerate ϵ hermitian sesquilinear form $b(\cdot, \bar{\cdot})$. The condition on F^p , for $p = w, \ldots, v + 1$, to be isotropic is the first Riemannian bilinear relation.

(ii) In fact, for odd weight, one can recover the whole flag from F^p for $p = w, \ldots, v$, by using the decomposition

$$H^{\mathbb{C}_{\epsilon}} = F^p \oplus_{\perp} \overline{F^{w-p+1}}.$$

where \perp is taken with respect to the non-degenerate ϵ hermitian sesquilinear form $b(\cdot, \bar{\cdot})$. The condition on F^p , for $p = w, \ldots, v$, to be isotropic is in the case of odd weight w inherited from the first Riemannian bilinear relation.

In the complex case B is a parabolic subgroup. There seems to be no equivalent para-complex notion in the literature. The subset of \tilde{D} classifying ϵ Hodge structures which also satisfy the second bilinear relation is called D. As a nondegeneracy or a positivity condition the second bilinear relation defines an open subset of \tilde{D} .

Proposition 4. The period domain D classifying ϵ Hodge filtrations F^{\bullet} of fixed dimension $f^p = \dim F^p$ satisfying both bilinear relations is an open subset of \tilde{D} and it is a homogeneous manifold D = G/V, where G is the group of linear automorphisms of H preserving b and $V = G \cap B$.

We consider the case of Hodge structures which are strongly polarized. Given the space G/V, we call G/K where K is the maximal compact subgroup of G the 'associated symmetric space' and denote the canonical map by $\pi : G/V \to G/K$.

The case of odd weight

Now we have a glance at the groups G, V and K and the associated flag manifolds for ϵ Hodge structures of odd weight. Using this we describe for strongly polarized variations of Hodge structures the map π at the level of flag manifolds. This description is needed later to relate the (classical) period map to the ϵ pluriharmonic maps appearing in ϵtt^* -geometry.

In the case of odd weight w = 2l + 1 for l = v - 1 the form b is anti-symmetric due to the first Riemannian bilinear relation and hence a symplectic form on H. In particular the real dimension of H is even. Hence the group G is the symplectic group $Sp(H, b) \cong Sp(\mathbb{R}^r)$ with $r = \dim_{\mathbb{R}} H \in 2\mathbb{N}$. The maximal compact subgroup of $Sp(\mathbb{R}^r)$ is K = U(r).

We define the *b*-isotropic ϵ complex vector space $\mathcal{L} = \bigoplus_{p=0}^{l} H^{w-p,p} = F^{w-l} = F^{v}$. One sees by equation (3.4)

$$H^{\mathbb{C}_{\epsilon}} = \mathcal{L} \oplus \overline{\mathcal{L}}.$$
(4.1)

Since they have the same dimension, \mathcal{L} and $\overline{\mathcal{L}}$ are, by the first bilinear relation, Lagrangian subspaces. We further fix a reference structure F_o^{\bullet} . Taking successively ϵ unitary bases¹

$$\{f^i\}_{i=1}^{\dim(\mathcal{L})}$$

and

$$\{f_o^i\}_{i=1}^{\dim(\mathcal{L}_o)} \tag{4.2}$$

¹This means a basis with $h(f_i, f_j) = \pm \delta_{ij}$.

with respect to the ϵ hermitian sesquilinear scalar product $h(\cdot, \cdot) = (-1)^{w(w-1)/2} \hat{i}^{p-q} b(\cdot, \bar{\cdot})$ of the flags

$$H^{w,0} \subset H^{w,0} \oplus H^{w-1,1} \subset \dots \subset \mathcal{L}$$

and

$$H_o^{w,0} \subset H_o^{w,0} \oplus H_o^{w-1,1} \subset \cdots \subset \mathcal{L}_o$$

and extending these with $\{\overline{f}^i\}_{i=1}^{\dim(\mathcal{L}_o)}$ and $\{\overline{f}^i_o\}_{i=1}^{\dim(\mathcal{L}_o)}$ on $\overline{\mathcal{L}}$ and $\overline{\mathcal{L}}_o$ to symplectic bases one sees that $Sp(\mathbb{R}^r)$ acts transitively by change of the basis from $\{f^i_o\}_{i=1}^{\dim(\mathcal{L}_o)}$ to $\{f^i\}_{i=1}^{\dim(\mathcal{L}_o)}$.

(i) First we discuss the complex case. If we have a strongly polarized variation of Hodge structures, then the stabilizer of F_o^{\bullet} is the group $V = \prod_{p=0}^l U(h^{w-p,p})$. The map $\pi : G/V \to G/K$ is at this level nothing else than the forgetful map from the flag $H^{w,0} \subset H^{w,0} \oplus H^{w-1,1} \subset \cdots \subset \mathcal{L}$ to the subspace \mathcal{L} . We remark, that the stabilizer of \mathcal{L}_o is contained in the group U(r), if we assume the variation of Hodge structures to be strongly polarized.

If we consider a weakly polarized variation of Hodge structures, then the stabilizer of F_o^{\bullet} is the group $V = \prod_{p=0}^{l} U(k_p, l_p)$, where (k_p, l_p) , with $h^{p,q} = k_p + l_p$, is the hermitian signature of h restricted to $H^{w-p,p}$ with q = w - p.

The stabilizer of \mathcal{L}_o is in this case an element of the group U(k, l), where r = 2(k+l) and (k, l) is the hermitian signature of h on \mathcal{L}_o , i.e. $k = \sum k_p$ and $l = \sum l_p$.

Given a variation of Hodge structures of odd weight over the complex base manifold (M, J) we denote by L the (holomorphic) map

$$L: M \to Sp(\mathbb{R}^r)/U(k,l),$$
 (4.3)

$$x \mapsto \mathcal{L}_x.$$
 (4.4)

The Grassmannian of Lagrangian subspaces, on which h has signature (k, l) will be denoted by $\operatorname{Gr}_0^{k,l}(\mathbb{C}^r)$ and on which h is positive definite will be denoted by $\operatorname{Gr}_0(\mathbb{C}^r) = \operatorname{Gr}_0^{r,0}(\mathbb{C}^r)$.

(ii) In the para-complex case the stabilizer of \mathcal{L}_o is the group $U^{\pi}(\mathbb{C}^n)$, with r = 2n, compare equation (2.1). As before given a variation of para-Hodge structures of odd weight w over the para-complex base manifold (M, τ) we denote by L the (para-holomorphic) map

$$L: M \to Sp(\mathbb{R}^r)/U^{\pi}(C^n),$$
 (4.5)

$$x \mapsto \mathcal{L}_x.$$
 (4.6)

The associated Grassmannian of Lagrangian subspaces will be denoted by $\operatorname{Gr}_0^n(C^{2n})$ with r = 2n.

5. ϵtt^* -bundles and associated ϵ pluriharmonic maps

In this section we recall the notion of (metric) ϵtt^* -bundles and explain the correspondence between metric ϵtt^* -bundles and ϵ pluriharmonic maps, which was given in [18, 19].

Definition 3. An ϵtt^* -bundle (E, D, S) over an ϵ complex manifold (M, J^{ϵ}) is a real vector bundle $E \to M$ endowed with a connection D and a section $S \in \Gamma(T^*M \otimes \operatorname{End} E)$ which satisfy the ϵtt^* -equation

$$R^{\theta} = 0 \quad for \ all \quad \theta \in \mathbb{R}, \tag{5.1}$$

where R^{θ} is the curvature tensor of the connection D^{θ} defined by

$$D_X^{\theta} := D_X + \cos_{\epsilon}(\theta) S_X + \sin_{\epsilon}(\theta) S_{J^{\epsilon}X} \quad for \ all \quad X \in TM.$$
(5.2)

A metric ϵtt^* -bundle (E, D, S, g) is an ϵtt^* -bundle (E, D, S) endowed with a possibly indefinite D-parallel fiber metric g such that for all $p \in M$

$$g(S_XY,Z) = g(Y,S_XZ) \quad for \ all \qquad X,Y,Z \in T_pM.$$
(5.3)

Remark 2. 1) If (E, D, S) is an ϵtt^* -bundle then (E, D, S^{θ}) is an ϵtt^* -bundle for all $\theta \in \mathbb{R}$, where $S^{\theta} := D^{\theta} - D = \cos_{\epsilon}(\theta)S + \sin_{\epsilon}(\theta)S_{J^{\epsilon}}$. The same remark applies to metric ϵtt^* -bundles.

2) The flatness of the connection D^{θ} can be expressed in a set of equations on D and S which can be found in [18, 19].

Given a metric ϵtt^* -bundle (E, D, S, g), we consider the flat connection D^{θ} for a fixed $\theta \in \mathbb{R}$. Any D^{θ} -parallel frame $s = (s_1, \ldots, s_r)$ of E defines a map

$$G = G^{(s)} : M \to \operatorname{Sym}_{p,q}(\mathbb{R}^r); \quad x \mapsto G(x) := (g_x(s_i(x), s_j(x))), \tag{5.4}$$

where (p,q) is the signature of the metric g.

Let G/K be a pseudo-Riemannian symmetric space with associated symmetric decomposition $\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{k}$. We recall that a map $f : (M, J^{\epsilon}) \to G/K$ is said to be *admissible*, if the ϵ complex linear extension of its differential maps $T_x^{1,0}M$ (respectively $T_x^{0,1}M$) to an Abelian subspace of $\mathfrak{p}^{\mathbb{C}_{\epsilon}} = \mathfrak{p} \otimes \mathbb{C}_{\epsilon}$ for all $x \in M$.

If M is simply-connected then it was shown in [18, 19], that $G: M \to Sym_{p,q}(\mathbb{R}^r)$ is ϵ pluriharmonic and that it induces an admissible ϵ pluriharmonic map $\tilde{G}: M \xrightarrow{G} Sym_{p,q}(\mathbb{R}^r) \xrightarrow{\sim} S(p,q)$.

Conversely, we constructed in [18, 19] a metric ϵtt^* -bundle $(E = M \times \mathbb{R}^{2r}, D = \partial - \epsilon S, S = \epsilon d\tilde{G}, g = \langle G \cdot, \cdot \rangle_{\mathbb{R}^{2r}})$ over a simply-connected manifold from an admissible ϵ pluriharmonic map $\tilde{G} : M \to S(p,q)$. If M is not simply-connected, then we have to replace the maps G and \tilde{G} by twisted ϵ pluriharmonic maps (cf. [19] Theorems 5 and 6).

6. Variations of ϵ Hodge structures as ϵtt^* -bundles

In this section we recall the result of Hertling [3] that variations of Hodge structures give solutions of metric tt^* -bundles and generalize it to para-complex geometry and symplectic ϵtt^* -bundles. Our presentation differs from that of [3], since we give this result in the language of real differential geometry. Again, the para-complex version seems to be new.

Let (E, ∇, F^p) be a (real) variation of ϵ Hodge structures of weight w. The ϵ complexified connection of ∇ on $E^{\mathbb{C}_{\epsilon}} = E \otimes \mathbb{C}_{\epsilon}$ will be denoted by ∇^c . Griffiths transversality and the ϵ holomorphicity of the subbundles F^p gives

$$\nabla^c : \Gamma(F^p) \to \Lambda^{1,0}(F^{p-1}) + \Lambda^{0,1}(F^p)$$
(6.1)

and ϵ complex conjugation yields

$$\nabla^c: \, \Gamma(\overline{F}^p) \to \Lambda^{0,1}(\overline{F}^{p-1}) + \Lambda^{1,0}(\overline{F}^p).$$
(6.2)

Summarizing one obtains with $H^{p,w-p} = F^p \cap \overline{F}^{w-p}$

$$\nabla^{c} : \Gamma(H^{p,w-p}) \to \underbrace{\Lambda^{1,0}(H^{p,w-p}) + \Lambda^{0,1}(H^{p,w-p})}_{D} + \underbrace{\Lambda^{1,0}(H^{p-1,w+1-p}) + \Lambda^{0,1}(H^{p+1,w-1-p})}_{S}.$$
(6.3)

Using the decomposition induced by the ϵ Hodge structure and by the bi-degree of differential forms, one can find, that the curvature of ∇^c vanishes if and only if (E^c, D, S) defines an ϵtt^* -bundle. In addition the ϵ complex conjugation $\kappa = \overline{\cdot}$ respects the ϵ Hodge decomposition and it is $\nabla^c \kappa = 0$. Again the decomposition induced by the ϵ Hodge structure and the bi-degree of differential forms imply that $D\kappa = 0$, i.e. D leaves E invariant and that $S\kappa = \kappa S$, i.e. S leaves E invariant, too.

If b is a polarization of the above variation of ϵ Hodge structures (E, ∇, F^p) , then $\nabla b = 0$ and $\nabla^c \kappa = 0$ yield after decomposing with respect to the ϵ Hodge structure the equations Dg = 0 and $g(S, \cdot) = g(\cdot, S)$ with g = Re h. Concluding we obtain the proposition:

Proposition 5. Let (E, ∇, F^p) be a (real) variation of ϵ Hodge structures of weight w with a polarization b, then $(E^{\mathbb{C}_{\epsilon}}, D, S, g = \operatorname{Re} h)$ and $(E, D, S, g = \operatorname{Re} h)$ with D and S as defined in equation (6.3) are metric ϵ tt^{*}-bundles.

The above consideration holds for $\Omega = \text{Im}h$, too. This implies $D\Omega = 0$ and $\Omega(S, \cdot) = \Omega(\cdot, S)$. Hence we have proven

Proposition 6. Let (E, ∇, F^p) be a (real) variation of ϵ Hodge structures of weight w with a polarization b, then $(E^{\mathbb{C}_{\epsilon}}, D, S, \Omega = Imh)$ and $(E, D, S, \Omega = Imh)$ with D and S as defined in equation (6.3) are symplectic ϵ tt^{*}-bundles.

7. The period map of a variation of ϵ Hodge structures

Like period domains describe ϵ Hodge structures, ϵ holomorphic maps into period domains describe variations of ϵ Hodge structures, in the sense of the following proposition which is in the complex case due to Griffiths (cf. [2] Chapter 4.5). We only consider the simply connected case:

Proposition 7. Let (M, J^{ϵ}) be a simply connected ϵ complex manifold and G/V the period domain classifying polarized ϵ Hodge structures of given weight and ϵ Hodge numbers, then giving a variation of ϵ Hodge structures is equivalent to giving an ϵ holomorphic map from M to G/V which satisfies the Griffiths transversality condition. Such maps are called period maps.

Let (E, ∇, F^p) be a variation of ϵ Hodge structures of odd weight w over the ϵ complex base manifold (M, J^{ϵ}) endowed with a polarization b where E has rank r and where $f_p = \dim F_p$. Denote by (E, D, S, g) the corresponding ϵtt^* -bundle constructed in proposition 5. We suppose, that M is simply connected.

Like in Section 5 we examine the metric g in a $D^0 = \nabla$ -parallel frame s of E. The flat frame is chosen as constructed in Section 4. The metric g defines a smooth map

$$G: M \to \operatorname{Sym}_{p,q}(\mathbb{R}^r) = \{ A \in \operatorname{Mat}(\mathbb{R}^r) \, | \, A = A^t \text{ and } A \text{ has signature } (p,q) \}.$$
(7.1)

In the complex case (p,q) = (2k, 2l) is the symmetric signature of g. We remark that for a variation of para-Hodge structures the metric g is forced to have split signature (p,q) = (n,n) with $n = \frac{1}{2} \dim_{\mathbb{R}} H$.

The map G will be called the *fundamental matrix* of the variation of ϵ Hodge structures (E, ∇, F^p) and as above $\operatorname{Sym}_{p,q}(\mathbb{R}^r)$ is identified with the pseudo-Riemannian symmetric space $GL(r, \mathbb{R})/O(p, q)$.

We recall that for odd weight each fiber of E has the structure of a symplectic vector space and consequently it holds $\operatorname{rk}_{\mathbb{R}} E = r = 2n \in 2\mathbb{N}$.

Theorem 1. Let (E, ∇, F^p) be a polarized variation of ϵ Hodge structures of odd weight w with polarization b over the ϵ complex base manifold (M, J^{ϵ}) . Let r = 2nbe the real rank of E.

Then the fundamental matrix G takes values in the totally geodesic submanifold

$$i : Gr_0^{k,l}(\mathbb{C}^{2n}) = Sp(\mathbb{R}^{2n})/U(k,l) \to GL(r,\mathbb{R})/O(2k,2l), \text{ for } \epsilon = -1, (7.2)$$
$$i : Gr_0^n(C^{2n}) = Sp(\mathbb{R}^{2n})/U^{\pi}(C^n) \to GL(r,\mathbb{R})/O(n,n), \text{ for } \epsilon = 1$$
(7.3)

and coincides with the map L, i.e. $G = i \circ L : M \to GL(r, \mathbb{R})/O(p, q)$.

Proof. Given a point $x \in M$ we put $V = E_x^{\mathbb{C}_{\epsilon}}$ and $V^{\mathbb{R}} = E_x \cong \mathbb{R}^r$. To any polarized ϵ Hodge structure F^p of odd weight w with polarization b the map L associated a Lagrangian subspace $\mathcal{L} \in \operatorname{Gr}_0^{k,l}(V)$ in the complex and a Lagrangian subspace $\mathcal{L} \in \operatorname{Gr}_0^n(V)$ in the para-complex case (see Section 4). We define a scalar product $g^{\mathcal{L}} = \operatorname{Re} h|_{\mathcal{L}}$ on $\mathcal{L} \subset V$. The projection onto the real points

$$\operatorname{Re} \,:\, V \to V^{\mathbb{R}} \tag{7.4}$$

induces an isomorphism $\mathcal{L} \cong V^{\mathbb{R}}$. Its inverse we denote by $\Phi = \Phi_{\mathcal{L}} : V^{\mathbb{R}} \to \mathcal{L}$. Claim:

$$i(\mathcal{L}) = \Phi_{\mathcal{L}}^* g^{\mathcal{L}} =: G^{\mathcal{L}}.$$
(7.5)

We first show the $Sp(\mathbb{R}^r)$ -equivariance of the map

$$\mathcal{L} \mapsto G^{\mathcal{L}}.\tag{7.6}$$

From the definition of $\Phi_{\mathcal{L}}$ we obtain with $\Lambda \in Sp(\mathbb{R}^r)$:

$$\Phi_{\Lambda\mathcal{L}} = \Lambda \circ \Phi_{\mathcal{L}} \circ \Lambda_{|\mathbb{R}^r}^{-1} \tag{7.7}$$

and from this the transformation law of $G^{\mathcal{L}}$

$$G^{\Lambda\mathcal{L}} = \Phi^*_{\Lambda\mathcal{L}} g^{\Lambda\mathcal{L}} = (\Lambda^{-1})^* \Phi^*_{\mathcal{L}} \Lambda^* g^{\Lambda\mathcal{L}} = (\Lambda^{-1})^* \Phi^*_{\mathcal{L}} g^{\mathcal{L}} = (\Lambda^{-1})^* G^{\mathcal{L}} = \Lambda \cdot G^{\mathcal{L}}.$$
 (7.8)

Let F_o^p be the reference flag of $V_o^{\mathbb{C}_{\epsilon}}$ with dim $F_o^p = f_p$. We calculate $G^{\mathcal{L}_o}$ in the basis $\{f_o^i\}_{i=1}^{\dim(\mathcal{L}_o)}$ constructed in equation (4.2)

$$(G^{\mathcal{L}_0}(\operatorname{Re} f_o^i, \operatorname{Re} f_o^j)) = \mathbb{H}_{p,q}, \text{after permutation.}$$
(7.9)

This yields

$$\Phi^*_{\mathcal{L}_0} g^{\mathcal{L}_0} = \mathscr{W}_{p,q}. \tag{7.10}$$

The proof is finished, since $G(x) = G^{L(x)} = i(L(x))$.

Corollary 1. Let (E, ∇, F^p) be a polarized variation of ϵ Hodge structures of odd weight w with polarization b over the ϵ complex base manifold (M, J^{ϵ}) . Then the map $L: M \to Gr_0^{k,l}(\mathbb{C}^r_{\epsilon}) = Sp(\mathbb{R}^r)/U^{\epsilon}(k, l)$ is ϵ pluriharmonic.

Proof. This follows from the ϵ -pluriharmonicity of the fundamental matrix $G : M \to \operatorname{GL}(r, \mathbb{R})/O(p, q)$, since $G = i \circ L$, where *i* is a totally geodesic immersion and consequently, by a well-known result about ϵ -pluriharmonic maps (cf. [18, 19]), the ϵ -pluriharmonicity of *L* is equivalent to that of *G*.

The last theorem and the last corollary can be specialized for variations of Hodge structures (this means $\epsilon = -1$.), which are strongly polarized:

Theorem 2. Let (E, ∇, F^p) be a strongly polarized variation of Hodge structures of odd weight w with polarization b over the complex base manifold (M, J). Then the fundamental matrix G takes values in the totally geodesic submanifold

$$i: Gr_0(\mathbb{C}^r) = Gr_0^{r,0}(\mathbb{C}^r) = Sp(\mathbb{R}^r)/U(r) \to GL(r,\mathbb{R})/O(r)$$
(7.11)

and coincides with the map $L = \pi \circ \mathcal{P} : M \to G/K$, i.e. $G = i \circ L : M \to GL(r, \mathbb{R})/O(r)$.

With the same argument as before, we obtain the

Corollary 2. Let (E, ∇, F^p) be a strongly polarized variation of Hodge structures of odd weight w with polarization b over the complex base manifold (M, J). Then the map $L: M \to Gr_0(\mathbb{C}^r) = Gr_0^{r,0}(\mathbb{C}^r) = Sp(\mathbb{R}^r)/U(r)$ is pluriharmonic.

This means our results generalize the following result for strongly polarized complex variations of Hodge structures of odd weight:

Theorem 3. (cf. [2] Theorem 14.4.1) Let $f : M \to G/V$ be a period mapping and $\pi : G/V \to G/K$, as defined in Section 4 the canonical map to the associated locally symmetric space. Then $\pi \circ f$ is pluriharmonic.

References

- Alekseevsky, D. V.; Cortés, V.; Devchand, C.: Special complex manifolds. J. Geom. Phys. 42 (2002), 85–105.
- [2] Carlson, J.; Müller-Stach, S.; Peters, C.: Period Mappings and Period Domains. Cambridge University Press 2003.
 Zbl 1030.14004
- [3] Hertling, C.: tt^{*} geometry, Frobenius manifolds, their connections, and the construction for singularities. J. Reine Angew. Math. 555 (2003), 77–161.
 Zbl 1040.53095
- [4] Bertram, W.: The Geometry of Jordan and Lie-Structures. Lecture Notes in Mathematics 1754, Springer-Verlag, Berlin 2000.
 Zbl 1014.17024
- [5] Bryant, R. L.; Griffiths, P. A.: Some observations on the infinitesimal period relations for regular threefolds with trivial canonical bundle. Arithmetic and geometry, Vol. II, Prog. Math. 36 (1983), Birkhäuser Boston, 77–102.

Zbl 0543.14005

- [6] Cecotti, S.; Vafa, C.: Topological-antitopological fusion. Nuclear Physics B 367 (1991), 351–461.
- [7] Cortés, V.; Mayer, C.; Mohaupt, T.; Saueressig, F.: Special Geometry of Euclidean Supersymmetry I: Vectormultiplets. J. High Energy Phys. JHEP03 (2004) 028, hep-th/0312001 2004.
- [8] Cortés, V.: *Projective special (para)-Kähler manifolds*. Part of work in preparation with T. Mohaupt.
- [9] Cortés, V.; Lawn, M.-A.; Schäfer, L.: Parabolic spheres and special para-Kähler manifolds. Int. Journal of Geometric Methods in Modern Physics 3(5,6) (2006), 995–1009.
- [10] Cortés, V.; Schäfer, L.: Topological-antitopological fusion equations, pluriharmonic maps and special Kähler manifolds. Progress in Mathematics 234 (2005), 59–74
 Zbl 1077.53060
- [11] Cruceanu, V.; Fortuny, P.; Gadea, P. M.: A survey on paracomplex geometry. Rocky Mt. J. Math. 26(1) (1996), 83–115.
 Zbl 0856.53049
- [D] Dubrovin, B.: Geometry and integrability of topological-antitopological fusion. Commun. Math. Phys. 152 (1993), 539–564.
 Zbl 0771.53042
- [12] Eells, J.; Sampson, J. H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86 (1964), 109–160.
 Zbl 0122.40102
- [13] Erdem, S.: Paraholomorphic structures and the connections of vector bundles over paracomplex manifolds. New Zealand J. Math., Vol. 30(1) (2001), 41–50.
 Zbl 1071.53522
- [14] Etayo, F.; Santamaria, R.; Trias, U. R.: The geometry of a Bi-Lagrangian manifold. Differ. Geom. Appl. 24(1) (2006), 33–59.
 Zbl 1101.53047
- [15] Freed, D. S.: Special Kähler manifolds. Commun. Math. Phys. 203(1) (1999), 31–52.
 Zbl 0940.53040

- [16] Lawn, M.-A.; Schäfer, L.: Decompositions of para-complex vector-bundles and para-complex affine immersions. Result. Math. vol. 48(3/4) (2005), 246–274.
 Zbl 1116.53020
- [17] Libermann, P.: Sur les structures presque paracomplexes. C. R. Acad. Sci., Paris 234 (1952), 2517–2519.
 Zbl 0046.15601
- [18] Schäfer, L.: tt*-bundles and pluriharmonic maps. Ann. Global Anal. Geom.
 28(3) (2005), 285–300.
 Zbl 1082.58011
- [19] Schäfer, L.: tt*-bundles in para-complex geometry, special para-Kähler manifolds and para-pluriharmonic maps. Differ. Geom. Appl. 24(1) (2006), 60–89.
 Zbl 1093.53046
- [20] Schäfer, L.: Harmonic bundles, topological-antitopological fusion and the related puriharmonic maps. J. Geom. Phys. 56(5) (2006), 830–842.

Zbl 1089.58011

- [21] Schäfer, L.: Harmonic bundle solutions of topological-antitopological fusion in para-complex geometry. To appear in Diff. Geom. and Appl.
- [22] Simpson, C. T.: *Higgs bundles and local systems*. Publ. Math., Inst. Hautes Étud. Sci. **75** (1992), 5–95.
 Zbl 0814.32003

Received January 26, 2007