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Abstract. We introduce the notion of variations of Hodge structures
(VHS) in para-complex geometry and define the associated period map.
Moreover, we construct VHS from special (para-)complex and (para-)
Kéhler manifolds and prove that they provide solutions of (metric) ¢¢*-
bundles (cf. [3] for the complex case). In the case of odd weight we
relate the period map to the (para-)pluriharmonic maps associated to
tt*-bundles (cf. [18], [19]).
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1. Introduction

In complex geometry it is known that (metric) ¢£*-bundles provide a generalization
of variations Hodge structures (cf. [3]). Moreover one [18, D] can associate to any
metric tt*-bundle (£, D, S, g) a plurtharmonic map into GL(r,R)/O(p, q) where
(p,q) with r = p+ ¢ is the signature of the metric g. In this paper we relate for a
variation of Hodge structures of odd weight this pluriharmonic map to the period
map of the variation of Hodge structures.

More recently the author [19] introduced the para-complex notion of ¢t*-
bundles. Examples of such structures on the tangent bundle of a special para-
Kahler manifold were given in the same reference. In the complex setting special
Kéhler manifolds carry a polarized variation of Hodge structures of weight one.
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This is one way to see that they provide tt*-structures. The described information
suggest to study the question if one can generalize VHS and their period maps
to para-complex geometry, if the tangent bundle of special para-Kahler manifold
carries such VHS, if these VHS provide para-tt*-bundles and if one can identify
the related para-pluriharmonic maps. This program is carried out in this paper.

2. Para-complex differential geometry

We shortly recall some notions and facts of para-complex differential geometry.
For a more complete source we refer to [7].

In para-complex geometry one replaces the complex structure J with J? =
—J¥ (on a finite dimensional vector space V') by the para-complex structure 7 €
End (V) satisfying 72 = W and one requires that the +1-eigenspaces have the
same dimension. An almost para-complex structure on a smooth manifold M is
an endomorphism-field 7, which is a point-wise para-complex structure. If the
eigen-distributions T=M are integrable 7 is called para-complex structure on M
and M is called a para-complex manifold. As in the complex case, there exists a
tensor, also called Nijenhuis tensor, which is the obstruction to the integrability
of the para-complex structure.

The real algebra, which is generated by 1 and by the para-complex unit e
with €2 = 1, is called the para-compler numbers and denoted by C. For all
z=ux+ ey € C with x,y € R we define the para-complex conjugation as - : C' —
C,x+ ey — x — ey and the real and imaginary parts of z by R(2) := z,J(2) = y.
The free C-module C" is a para-complex vector space where its para-complex
structure is just the multiplication with e and the para-complex conjugation of C'
extends to~: C" — C", v — 0.

Note, that 2z = x? — y?. Therefore the algebra C' is sometimes called the
hypercomplez numbers. The circle S* = {z = x + 1y € C|2? + y? = 1} is replaced
by the four hyperbola {z = z + ey € C'|2? — y> = £1}. We define S! to be the
hyperbola given by the one parameter group {z(f) = cosh(f) + esinh(0) |6 € R}.

A para-complex vector space (V, 1) endowed with a pseudo-Euclidean metric
g is called para-hermaitian vector space, if g is T-anti-invariant, i.e. 7¢g = —¢g. The
para-unitary group of V' is defined as the group of automorphisms

U™(V):=Aut(V,1,9) . ={L € GL(V)|[L,7] =0 and L*g = g}

and its Lie-algebra is denoted by u™(V). For C" = R"™ @ eR"™ the standard para-
hermitian structure is defined by the above para-complex structure and the metric
g = diag(¥, =) (cf. Example 7 of [7]). The corresponding para-unitary group is
given by (cf. Proposition 4 of [7]):

U (C™) = {(é i) | A, BEEnd(R"), ATA- BT B=W,, ATB—BTA:O} :
(2.1)

There exist two bi-gradings on the exterior algebra: The one is induced by the

splitting in 7M and denoted by A*T*M = @ APH%T*M and induces an
k=p+q
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obvious bi-grading on exterior forms with values in a vector bundle E. The second
is induced by the decomposition of the para-complezified tangent bundle TM¢ =
TM ®g C into the subbundles T)°M and T»'M which are defined as the te-
eigenbundles of the para-complex linear extension of 7. This induces a bi-grading
on the C-valued exterior forms noted A¥T*M® = @ AP4T*M and finally on the
k=p+q
C-valued differential forms on M QL (M) = @ QP4(M). In the case (1,1) and
k=p+q

(1+,1—) the two gradings induced by 7 coincide, in the sense that A1 T*M =
(A'1=T*M) ® C. The bundles AP4T*M are para-complex vector bundles in
the following sense: A para-complex vector bundle of rank r over a para-complex
manifold (M, 7) is a smooth real vector bundle 7 : E — M of rank 2r endowed
with a fiber-wise para-complex structure 7% € T'(End (E)). We denote it by
(E,77). In the following text we always identify the fibers of a para-complex
vector bundle F of rank r with the free C-module C”. One has a notion of para-
holomorphic vector bundles [16], too. In Proposition 2 of the same reference we
have shown, that a para-complex connection with vanishing (0, 2)-curvature on a
para-complex vector bundle E induces a para-holomorphic structure on E. This
generalizes a well-known theorem of complex geometry.

Let us transfer some notions of hermitian linear algebra (cf. [21]): A para-
hermitian sesquilinear scalar product is a non-degenerate sesquilinear form h :
C" x C" — C, i.e. it satisfies (i) h is non-degenerate: Given w € C” such that for
all v € C" h(v,w) = 0, then it follows w = 0, (ii) h(v,w) = h(w,v), YV v,w € C",
and (iil) h(Av,w) = Ah(v,w), Y X € C; v,w € C". The standard para-hermitian
sesquilinear scalar product is given by

s
(z,w)or =2z -w = Zziwi, for 2 = (2',...,2"),w = (w',...,w") € C".
i=1

The para-hermitian conjugation is defined by C + C" = C* for C' € End (C") =
End ¢(C") and C is called para-hermitian if and only if C" = C. We denote by
herm(C") the set of para-hermitian endomorphisms and by Herm(C") = herm(C")
NGL(r,C). We remark, that there is no notion of para-hermitian signature, since
from h(v,v) = —1 for an element v € C" we obtain h(ev, ev) = 1.

Proposition 1.  Given an element C of End(C") then it holds (Cz,w)cr =
(z,CMu)cr, Yz,w € CT. The set herm(C") is a real vector space. There is a

bijective correspondence between Herm(C™) and para-hermitian sesquilinear scalar
products h on C" given by H +— h(-,-) := (H-,")cr.

A para-hermitian metric h on a para-complex vector-bundle E over a para-complex
manifold (M, 7) is a smooth fiber-wise para-hermitian sesquilinear scalar product.

To unify the complex and the para-complex case we introduce some notations:
First we note J¢ where J* = ¥ with ¢ € {£1}. The ecomplex unit is denoted
by i,ie. 1:=e, fore =1, and 7 = i, for e = —1. Further we introduce C. with
C; = C and C_; = C. In the rest of this work we extend our language by the
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following e-notation: If a word has a prefix € with € € {£1}, i.e. is of the form
€X, this expression is replaced by

X, fi =—1
X , for € ,
para-X, for € = 1.
The eunitary group and its Lie-algebra are

Ur(Cm), fore=1,
U(p,q), fore=—1

u™(C"), for e =1,
u(pa q)> for € = _17

U(p,q) == { and u‘(p, q) = {

where in the complex case (p, q) for r = p + ¢ is the hermitian signature.
Further we use the notation

H "), fore=1

Herme (C7) = erm(C"), for e =1,
P Herm,, ,(C"), for e = —1,

herm(C"), for e =1,

herm; (C) :=
erm o(C.) {hermpvq(@”), for e = —1,

where, for p + ¢ = r, Herm, ,(C") are the hermitian matrices of hermitian sig-
nature (p,q) and herm, ,(C") are the hermitian matrices with respect to the
standard hermitian product of hermitian signature (p,q) on C". The standard
chermitian sesquilinear scalar product is (z,w)cr == z-w = Y., z'w", for z =

(24,27, w=(w',...,w") € CT and we note

for e = —1
cosc(x) = {cos(m), ore " and sin(z) :

cosh(z), fore =1 sinh(z), for e = 1.

{sin(m), for e = —1,

3. Variations of eHodge structures

3.1. eHodge structures and their variations

In this section we introduce the notion of variations of eHodge structures in para-
complex geometry and recall variations of Hodge structures which are classical
objects in complex geometry. We follow the notations of [2] which is a reference
and contains references for further study of variations of Hodge structures. The
para-complex version seems to be new.

Definition 1.
(a) A real eHodge structure of weight w € N is a real vector space H on the
ecomplezification of which there is a decomposition into ecomplex vector

spaces
HC = @ HP with p,qg € N (3.1)
w=p+q
and where
Hpra = HPP with p,q € N. (3.2)

The ecomplex conjugation - is relative to the real structure on H* = H®C,.
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(b) Suppose, that an eHodge structure of weight w carries a bilinear form b :
H x H — R which satisfies the following Riemannian bilinear relations

(i) The C.-linear extension of the bilinear form b, also denoted by b, sat-
isfies b(z,y) =0 if v € H?9 and y € H™® for (r,s) # (w —p,w —q) =
(¢:p),

(ii) The bilinear form b defines an ehermitian sesquilinear scalar product
(compare Section 2) on HP? by h(z,y) = (—1)*®@=1/2ip=9p(z, 7).
Then we call this e Hodge structure weakly polarized.
(c) Suppose, that a (complex) Hodge structure of weight w carries a bilinear
form b : H x H — R which satisfies the first Riemannian bilinear relation
(i) and in addition

(ii) The bilinear form b defines a positive definite hermitian sesquilinear
form on HP by h(z,y) = (—1)*@=1/2p=ap(z ).

Then we call this Hodge structure strongly polarized.

(d) An eHodge structure of weight w is called polarized if it is weakly polarized
or strongly polarized.

Closely related to the eHodge decomposition is the following filtration

FP=@H" p=0,...,w, (3.3)

azp
which satisfies for an eHodge structure of weight w the relation
HC =FP@ Fv—rtl p=1, ... w. (3.4)

Any filtration which obeys equation (3.4) is called an eHodge filtration. Such as
an eHodge decomposition induces an eHodge filtration we obtain from an eHodge
filtration an eHodge decomposition by HP? = FP N F4, with p + ¢ = w. This
eHodge decomposition satisfies the relation (3.3).

We remark further, that the first Riemannian bilinear relation (cf. Definition
1) is equivalent to (FP)t = F*=PFl p =1, ... w, where L is taken with respect to
the bilinear from b. Now we are going to consider deformations of these structures:

Definition 2. A (real) variation of e Hodge structures (¢ VHS) is a triple (E,V,
FP), where E is a real vector bundle over an (connected) ecomplex base manifold
(M, J¢), V is a flat connection and FP is a filtration of E% by eholomorphic sub-
bundles of E%<, which is a point-wise e Hodge structure satisfying the infinitesimal
period relation or the Griffiths transversality

V, FP C FP~1 vy e TYOM. (3.5)

A polarization of a variation of eHodge structures (E,V, F?) consists of a non-
degenerate bilinear form b € I'(E* @ E*) having the following properties
(i) b induces a polarization on each fiber obeying the first and the second bilinear
relation,
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(ii) b is parallel with respect to V.

Remark 1. In complex geometry VHS roughly arise on the Hodge-decomposition
of the cohomology of smoothly varying families of Kahler manifolds X; where ¢
is the parameter of the variation (cf. [2] Chapter 4 for details). To ensure that
the Hodge-numbers hP?(X;) are constant in ¢ one needs a result, which states
that the kernel of a family D, of elliptic differential operators depends upper-
semi-continuously on ¢. Unfortunately this does not generalize to para-complex
geometry for the following reason: If we consider an (almost) para-complex man-
ifold M?" endowed with a para-hermitian metric g the metric is forced to have
split signature, i.e. signature (n,n). As a consequence the naturally associated
differential operators are no longer elliptic and we are not able to use the above
cited theory.

A class of €VHS which is related to the special geometry of (Euclidean) su-
persymmetry is discussed in the next subsection.

3.2. eVHS and special eKahler manifolds

Each fiber of the ecomplex tangent bundle
TM® =T""M & T"'M
carries a natural eHodge structure of weight 1 :
0=F2C F'=T"M Cc F? =T M. (3.6)

We recall that an affine special e Kihler manifold (M, J,V, g) (cf. [1, 15, 7]) is an
eKéahler manifold endowed with a flat torsion-free connection V, such that (V, J)
is special, i.e. VJ€ is symmetric and Vw = 0, where w is the eKéahler form. The
complex version of the next lemma and proposition was proved in [3] and we
generalize it to the para-complex case.

Lemma 1. Let V be a torsion-free flat connection on the ecompler manifold
(M, J¢). Then F' = T*°M is an eholomorphic subbundle of F° = T M with
respect to the eholomorphic structure defined by V (compare Section 2) if and only
if (V,J¢) is special, i.e. VJ is symmetric.

Proof. The condition of F! to be eholomorphic is equivalent to
VX =0 for all X,Y € O(T"°M)
and the condition of (V, J¢) to be special is equivalent to
(VxJ)NY) = (Vg J)(X) for all X,Y € O(T"M),

due to the following short argument:
Let X, Y e I(T*YM) or X,Y € I(T™' M)

(VxJ)NY) =VxJY — JVxY = £iVxY — JVY,
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which is symmetric as one sees by choosing vector fields X and Y such that
[X,Y]=0. Let now X, Y €'(T"°M) be e¢holomorphic vector fields, i.e. Lx(J)=
0 where L is the Lie-derivative. Then it holds

0 = Lx(JVY =[X,JV] - J[X,Y]
= VxJY —V,5X — JVxY + JVsyX

= (VxJ)Y — (Vg J)X + VyJX —V,p X
= [(VxJ)Y — (VyJ)X] + 2V X.

This finishes the proof. O

From the lemma we obtain:

Proposition 2.  Let (M, J¢) be an ecomplex manifold, V be a torsion-free flat
connection and F* defined as in equation (3.6).

1. Then (M, J¢, V) is an affine special ecomplex manifold if and only if V and
F* give a variation of eHodge structures of weight 1 on T M.

2. Then (M, J,V,g) is an affine special e Kdihler manifold if and only if V,
F* and w(-,-) = g(J*,+) give a variation of polarized e Hodge structures of
weight 1 on TM®-.

In [8] the following notion of a conical special e Kihler manifold (M, J¢, g,V,() is
introduced, i.e. an affine special eKéhler manifold (M, J¢, g, V) endowed with a
vector field ¢, such that

V(= D¢ =1Id, (3.7)

where D is the Levi-Civita connection of g. In the same reference it is shown,
that
LeJ=0. (3.8)

This implies that the distribution D = span{(, J°C} is integrable. The space
of leaves, i.e. integral manifolds of D is denoted by M. If (M, J¢ ¢, V,() is a
projective special e Kahler manifold (cf. [8]) of (real) dimension 2n + 2 then the
canonical quotient map 7 : M — M is an eholomorphic submersion onto an
ecomplex manifold of (real) dimension 2n. The manifold M inherits an eKihler
metric g from the metric g such that 7 is a pseudo-Riemannian submersion. In
this case it holds in particular g(¢,() = —eg(J¢, J¢) # 0. The affine geometry
of conical special para-Kahler manifolds was studied in [9].

In the remaining part of this section we shortly discuss the polarized variation
of Hodge structure of weight 3 on V= TM — M related to a projective special
eKéahler manifold (M, J¢, g,V,():

Let us consider the real line bundle L, which is generated by (. We use ¢((, () =
—eg(J¢, J¢) # 0 to obtain TM = L @& J¢(L) @ L', such that L' = TM is the
orthogonal complement of L & J¢(L) with respect to the pseudo-metric g. From
condition (3.7) we conclude

Vi =L (3.9)
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Now we can define the Hodge filtration: We set F© = TM%. The relation (3.8)
implies that ¢ 4 €iJ¢ generates the eholomorphic line bundle F? = L0 ¢ T M.
From the Riemannian bilinear relation it follows (F?3)* = F! where L is taken
with respect to the eKéhler form w of g which is extended C.-bilinearly. It remains
to define F? = TH°M. The Griffiths transversality VI3 C F? is a consequence
of equation (3.9) and L' = TM. The condition VF? C F* follows from equation
(3.9) by similiar arguments as in [5]. This means we have defined a variation of
eHodge structures of weight 3 by

FP=L"CcF=T"McF'=(F)*cF’"=TM"%,

which is polarized by the eKéhler form w.

4. Period domains of variations of eHodge structures

We recall some information about period domains of variations of eHodge struc-
tures and have a closer look at the description of these either as homogeneous
spaces or as flag manifolds, since this is crucial to understand our later results. A
reference for the complex case is the book [2]. Again the complex case is classical
and the para-complex case is new.

We introduce the period domain parameterizing the set of polarized eHodge
structures on a fixed real vector space H having a fixed weight w and fixed eHodge
numbers hP4. Such an eHodge structure is determined by specifying a flag F'* C
Fv=l c ... C FY of fixed type satisfying the two bilinear relations. The set of such
flags satisfying the first bilinear relation is usually called D and can be described
in a homogeneous model G¢, /B where G, is the group of automorphisms of H®
fixing the polarization b and B is the stabilizer of some given reference structure
F».

Proposition 3. The set D classifying e Hodge decompositions of weight w with
fized e Hodge numbers hP? which obey the first bilinear relation is a flag manifold

of type (fu,---, fv), fp =dimFP v = [“’T“], such that

(i) in the case of even weight w = 2v each F?, forp = w,...,v+1, is isotropic
with respect to the bilinear form b,

(ii) in the case of odd weight w = 2v — 1 each F?, for p=w, ..., v, is isotropic
with respect to the bilinear form b.

It can also be identified with the homogeneous manifold Ge,/B.

Proof. (i) In the case of even weight we recover the spaces F? forp=0,..., (w—
v+1)=v+1, from FP for p=w,...,v, by using the decomposition

HC = fr g, Fopi,

where L is taken with respect to the non-degenerate ehermitian sesquilinear form
b(-,). The condition on F?, for p = w,...,v + 1, to be isotropic is the first
Riemannian bilinear relation.
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(ii) In fact, for odd weight, one can recover the whole flag from F? for p = w, ..., v,
by using the decomposition

HCe:Fp@J_W’

where L is taken with respect to the non-degenerate ehermitian sesquilinear form
b(-,7). The condition on F?, for p = w,...,v, to be isotropic is in the case of odd
weight w inherited from the first Riemannian bilinear relation. U

In the complex case B is a parabolic subgroup. There seems to be no equiva-
lent para-complex notion in the literature. The subset of D classifying eHodge
structures which also satisfy the second bilinear relation is called D. As a non-
degeneracy or a positivity condition the second bilinear relation defines an open
subset of D.

Proposition 4. The period domain D classifying e Hodge filtrations F'* of fixed
dimension f? = dim F? satisfying both bilinear relations is an open subset of D
and it is a homogeneous manifold D = G/V, where G is the group of linear
automorphisms of H preserving b and V =GN B.

We consider the case of Hodge structures which are strongly polarized. Given the
space G/V, we call G/K where K is the maximal compact subgroup of G the
‘associated symmetric space’ and denote the canonical map by 7: G/V — G/K.

The case of odd weight

Now we have a glance at the groups GG,V and K and the associated flag manifolds
for eHodge structures of odd weight. Using this we describe for strongly polarized
variations of Hodge structures the map 7 at the level of flag manifolds. This de-
scription is needed later to relate the (classical) period map to the epluriharmonic
maps appearing in ett*-geometry.

In the case of odd weight w = 2l +1 for [ = v —1 the form b is anti-symmetric
due to the first Riemannian bilinear relation and hence a symplectic form on H.
In particular the real dimension of H is even. Hence the group G is the symplectic
group Sp(H,b) = Sp(R") with r = dimg H € 2N. The maximal compact subgroup
of Sp(R") is K = U(r).

We define the b-isotropic ecomplex vector space L = @;:0 Hv—pp = vl = pv,
One sees by equation (3.4)
H =LaL. (4.1)

Since they have the same dimension, £ and L are, by the first bilinear relation, La-
grangian subspaces. We further fix a reference structure F;. Taking successively
eunitary bases!

i1 dim(L
{rhs®
and
iy dim(L,
{fayse (42)
!This means a basis with h(fi, f;) = £6;;.




294 L. Schéfer: Variations of (para-)Hodge Structures ...

with respect to the ehermitian sesquilinear scalar product h(-, -) = (—1)»(w=1/2p—q
b(-,~) of the flags
H c H @ H" M C.-. CL

and
Hw,O Hw,O D Hw—l,l e C L’o

and extending these with {f}3%) and {fi}3m=) on T and T, to symplectic

bases one sees that Sp(R") acts transitively by change of the basis from { f, Z}dlm °)

to {fz}dlm

(i) First we discuss the complex case. If we have a strongly polarized variation of
Hodge structures, then the stabilizer of F; is the group V = anzo U(h*~PP). The
map 7 : G/V — G/K is at this level nothing else than the forgetful map from
the flag HY® ¢ H*9 @ H¥ 5! C ... C L to the subspace L. We remark, that
the stabilizer of L, is contained in the group U(r), if we assume the variation of
Hodge structures to be strongly polarized.

If we consider a weakly polarized variation of Hodge structures, then the stabilizer
of F? is the group V = Hfu:o U(k,,l,), where (k,,l,), with h?? = k, + [,, is the
hermitian signature of h restricted to HY7P? with ¢ = w — p.

The stabilizer of L, is in this case an element of the group U(k,[), where r =
2(k +1) and (k,l) is the hermitian signature of h on L,, i.e. k = >k, and
l=>"1,.

Given a variation of Hodge structures of odd weight over the complex base man-
ifold (M, J) we denote by L the (holomorphic) map

L: M — Sp@R"/Uk,I), (4.3)

r — L. (4.4)

The Grassmannian of Lagrangian subspaces, on which h has signature (k,[) will

be denoted by Grg’l(CT) and on which A is positive definite will be denoted by
Cro(C") = Gry°(Cn).

(ii) In the para-complex case the stabilizer of L, is the group U™ (C"™), with r = 2n,

compare equation (2.1). As before given a variation of para-Hodge structures of

odd weight w over the para-complex base manifold (M, 7) we denote by L the
(para-holomorphic) map

L:M — Sp@R")/U(C"), (4.5)
r — L. (4.6)

The associated Grassmannian of Lagrangian subspaces will be denoted by Gr{
(C?") with r = 2n.

5. ett*-bundles and associated epluriharmonic maps

In this section we recall the notion of (metric) ett*-bundles and explain the corre-

spondence between metric ett*-bundles and epluriharmonic maps, which was given
n [18, 19].
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Definition 3. An ett*-bundle (E, D, S) over an ecomplex manifold (M, J) is
a real vector bundle E — M endowed with a connection D and a section S €
['(T*M @ End E) which satisfy the ett*-equation

R*=0 forall 0€R, (5.1)
where R? is the curvature tensor of the connection DY defined by
DY := Dx + cos.(0)Sx +sin.(0)Syex forall X € TM. (5.2)

A metric ett*-bundle (E, D, S, g) is an ett*-bundle (E, D, S) endowed with a pos-
sibly indefinite D-parallel fiber metric g such that for all p € M

9(SxY, Z) = g(Y,SxZ) foral  X,Y,Z€T,M. (5.3)

Remark 2. 1) If (E, D, S) is an ett*-bundle then (E, D, S%) is an ett*-bundle for
all @ € R, where S? := DY — D = cos.(0)S + sin.(0)Ss.. The same remark applies
to metric ett*-bundles.

2) The flatness of the connection DY can be expressed in a set of equations on D
and S which can be found in [18, 19].

Given a metric ett*-bundle (E, D, S, g), we consider the flat connection D? for a
fixed § € R. Any D’-parallel frame s = (s, ...,s,) of E defines a map

G=GY:M— Sym, ,(R"); 2+ G(z) = (g.(si(v),s;(x))), (5.4)

where (p, ¢) is the signature of the metric g.

Let G/K be a pseudo-Riemannian symmetric space with associated symmetric
decomposition g = p @ €. We recall that a map f : (M,J¢) — G/K is said
to be admissible, if the ecomplex linear extension of its differential maps T2 M
(respectively T M) to an Abelian subspace of p® = p @ C, for all x € M.

If M is simply-connected then it was shown in [18, 19], that G : M — Sym,, ,(R")

is epluriharmonic and that it induces an admissible epluriharmonic map G : M A
Symypq(R") = S(p, q).

Conversely, we constructed in [18, 19] a metric ett*-bundle (F = M x R*, D =
d—¢S, S =eG,g=<G-,- >ge2r) over a simply-connected manifold from an
admissible epluriharmonic map G : M — S (p,q). If M is not simply-connected,
then we have to replace the maps G and G by twisted epluriharmonic maps (cf. [19]
Theorems 5 and 6).

6. Variations of eHodge structures as ett*-bundles

In this section we recall the result of Hertling [3] that variations of Hodge struc-
tures give solutions of metric tt*-bundles and generalize it to para-complex ge-
ometry and symplectic ett*-bundles. Our presentation differs from that of [3],
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since we give this result in the language of real differential geometry. Again, the
para-complex version seems to be new.

Let (E,V, F?) be a (real) variation of eHodge structures of weight w. The
ecomplexified connection of V on E% = E ® C. will be denoted by V¢. Criffiths
transversality and the eholomorphicity of the subbundles F? gives

Ve T(FP) — AM(FPH) 4 A%(FP) (6.1)
and ecomplex conjugation yields

Ve D(FY) — ACHEF ) + AY(FY). (6.2)
Summarizing one obtains with H»*~? = FP N F" "

Ve - F(Hp,w—p) N Al,O(Hp,w—p) +A0’1(Hp’w_p)—|—

-~

D
Al,O(Hp*l,UH*l*p) + onl(Hp+1’w717p) . (63)
wSr L

Using the decomposition induced by the eHodge structure and by the bi-degree
of differential forms, one can find, that the curvature of V¢ vanishes if and only
if (E¢, D, S) defines an ett*-bundle. In addition the ecomplex conjugation k = ~
respects the eHodge decomposition and it is V¢, = 0. Again the decomposition
induced by the eHodge structure and the bi-degree of differential forms imply that
Dk = 0, i.e. D leaves E invariant and that Sk = k9, i.e. S leaves E invariant,
too.

If b is a polarization of the above variation of eHodge structures (E, V, F?), then
Vb = 0 and V°k = 0 yield after decomposing with respect to the eHodge structure
the equations Dg = 0 and ¢(S-,-) = ¢(-, S+) with ¢ = Re h. Concluding we obtain
the proposition:

Proposition 5.  Let (E,V,FP) be a (real) variation of eHodge structures of
weight w with a polarization b, then (E%, D,S,g = Reh) and (E,D,S,g = Reh)
with D and S as defined in equation (6.3) are metric ett*-bundles.

The above consideration holds for {2 = Imh, too. This implies D2 = 0 and
Q(S-,-) =9Q(-,S-). Hence we have proven

Proposition 6.  Let (E,V,FP) be a (real) variation of eHodge structures of
weight w with a polarization b, then (E%, D, S,Q = Imh) and (E, D, S,Q = Imh)
with D and S as defined in equation (6.3) are symplectic ett*-bundles.

7. The period map of a variation of eHodge structures

Like period domains describe eHodge structures, eholomorphic maps into period
domains describe variations of eHodge structures, in the sense of the following
proposition which is in the complex case due to Griffiths (cf. [2] Chapter 4.5). We
only consider the simply connected case:
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Proposition 7. Let (M, J¢) be a simply connected ecomplex manifold and GV
the period domain classifying polarized eHodge structures of given weight and
eHodge numbers, then giving a variation of eHodge structures is equivalent to
giving an eholomorphic map from M to G/V which satisfies the Griffiths transver-
sality condition. Such maps are called period maps.

Let (E,V,FP) be a variation of eHodge structures of odd weight w over the
ecomplex base manifold (M, J¢) endowed with a polarization b where E has rank
r and where f, = dim F,,. Denote by (£, D, S, g) the corresponding ett*-bundle
constructed in proposition 5. We suppose, that M is simply connected.

Like in Section 5 we examine the metric g in a D° = V-parallel frame s of E. The
flat frame is chosen as constructed in Section 4. The metric ¢ defines a smooth
map

G : M — Sym, (R") = {A € Mat(R") | A = A’ and A has signature (p,q)}.

(7.1)

In the complex case (p,q) = (2k, 2[) is the symmetric signature of g. We remark

that for a variation of para-Hodge structures the metric g is forced to have split

signature (p, ¢) = (n,n) with n = £ dimg H.

The map G will be called the fundamental matrixz of the variation of eHodge struc-

tures (£, V, F?) and as above Sym,, ,(R") is identified with the pseudo-Riemannian

symmetric space GL(r,R)/O(p, q).

We recall that for odd weight each fiber of E has the structure of a symplectic
vector space and consequently it holds rkg ' = r = 2n € 2N.

Theorem 1. Let (E,V, FP) be a polarized variation of e Hodge structures of odd
weight w with polarization b over the ecomplex base manifold (M, J). Letr = 2n
be the real rank of E.

Then the fundamental matriz G takes values in the totally geodesic submanifold

i o G C) = Sp(R¥™) /U (K, 1) — GL(r,R)/O(2k,21), for e = —1, (7.2)
i G (C*) = Sp(R*™)/U™(C™) — GL(r,R)/O(n,n), fore=1 (7.3)

and coincides with the map L, i.e. G =1i0oL: M — GL(r,R)/O(p,q).

Proof. Given a point z € M we put V = Et< and V® = E, = R". To any
polarized eHodge structure F? of odd weight w with polarization b the map L
associated a Lagrangian subspace L € Grg’l(V) in the complex and a Lagrangian
subspace L € Grj (V) in the para-complex case (see Section 4). We define a scalar
product g* = Reh|g on L C V. The projection onto the real points

Re : V — VE (7.4)

induces an isomorphism £ = VR, Its inverse we denote by ® = &, : VX — L.

Claim:
i(L) = df g~ =: G*. (7.5)
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We first show the Sp(R")-equivariance of the map

L G~ (7.6)
From the definition of ®; we obtain with A € Sp(R"):
(I)AL :AO(I)L OA‘EQT (77)

and from this the transformation law of G*

GAL — CI)ZLgAL — (A_l)*CI)ZA*gAL — (A—l)*q)ng — (A—l)*GL —A- GL. (78)
Let FP? be the reference flag of V.« with dim F? = f,. We calculate G* in the
basis {f}8™) constructed in equation (4.2)

(G (Refi,Ref!)) = W, after permutation. (7.9)

This yields
D g% =W, (7.10)
The proof is finished, since G(r) = G*® = i(L(z)). O

Corollary 1.  Let (E,V,FP) be a polarized variation of eHodge structures of
odd weight w with polarization b over the ecomplex base manifold (M, J¢). Then
the map L : M — G5 (Cr) = Sp(R")/U(k, 1) is epluriharmonic.

Proof. This follows from the epluriharmonicity of the fundamental matrix G :
M — GL(r,R)/O(p, q), since G =i o L, where i is a totally geodesic immersion
and consequently, by a well-known result about epluriharmonic maps (cf. [18, 19)),
the epluriharmonicity of L is equivalent to that of G. U

The last theorem and the last corollary can be specialized for variations of Hodge
structures (this means e = —1.), which are strongly polarized:

Theorem 2. Let (E,V, FP) be a strongly polarized variation of Hodge structures
of odd weight w with polarization b over the complex base manifold (M, J). Then
the fundamental matriz G takes values in the totally geodesic submanifold

i Gro(C") = Gry*(C") = Sp(R") /U (r) — GL(r,R)/O(r) (7.11)
and coincides with the map L = mo®P : M — G/K, i.e. G =i0oL : M —
GL(r,R)/O(r).

With the same argument as before, we obtain the

Corollary 2. Let (E,V, FP) be a strongly polarized variation of Hodge struc-
tures of odd weight w with polarization b over the complex base manifold (M, J).
Then the map L : M — Gro(C") = Gr°(C") = Sp(R™)/U(r) is pluriharmonic.

This means our results generalize the following result for strongly polarized com-
plex variations of Hodge structures of odd weight:

Theorem 3. (cf. [2] Theorem 14.4.1) Let f : M — G/V be a period mapping
andm: G/V — G/K, as defined in Section 4 the canonical map to the associated
locally symmetric space. Then mo f is pluritharmonic.



L. Schéfer: Variations of (para-)Hodge Structures ... 299

References

1]
2]
3]

Alekseevsky, D. V.; Cortés, V.; Devchand, C.: Special complex manifolds. J.
Geom. Phys. 42 (2002), 85-105. Zbl 1004.53038

Carlson, J.; Miiller-Stach, S.; Peters, C.: Period Mappings and Period Do-
mains. Cambridge University Press 2003. Zbl 1030.14004

Hertling, C.: tt* geometry, Frobenius manifolds, their connections, and the
construction for singularities. J. Reine Angew. Math. 555 (2003), 77-161.
Zbl 1040.53095

Bertram, W.: The Geometry of Jordan and Lie-Structures. Lecture Notes in
Mathematics 1754, Springer-Verlag, Berlin 2000. Zbl 1014.17024

Bryant, R. L.; Griffiths, P. A.: Some observations on the infinitesimal period
relations for reqular threefolds with trivial canonical bundle. Arithmetic and
geometry, Vol. II, Prog. Math. 36 (1983), Birkhduser Boston, 77-102 .

Zbl 0543.14005

Cecotti, S.; Vafa, C.: Topological-antitopological fusion. Nuclear Physics B
367 (1991), 351-461.

Cortés, V.; Mayer, C.; Mohaupt, T.; Saueressig, F.: Special Geometry of
Fuclidean Supersymmetry I: Vectormultiplets. J. High Energy Phys. JHEP03
(2004) 028, hep-th/0312001 2004.

Cortés, V.: Projective special (para)-Kdihler manifolds. Part of work in prepa-
ration with T. Mohaupt.

Cortés, V.; Lawn, M.-A.; Schéfer, L.: Parabolic spheres and special para-
Kdhler manifolds. Int. Journal of Geometric Methods in Modern Physics
3(5,6) (2006), 995-10009.

Cortés, V.; Schafer, L.. Topological-antitopological fusion equations, pluri-
harmonic maps and special Kdhler manifolds. Progress in Mathematics 234
(2005), 59-74 Zbl 1077.53060

Cruceanu, V.; Fortuny, P.; Gadea, P. M.: A survey on paracomplex geometry.
Rocky Mt. J. Math. 26(1) (1996), 83-115. Zbl 0856.53049

Dubrovin, B.: Geometry and integrability of topological-antitopological fusion.
Commun. Math. Phys. 152 (1993), 539-564. Zbl 0771.53042

Eells, J.; Sampson, J. H.: Harmonic mappings of Riemannian manifolds.
Am. J. Math. 86 (1964), 109-160. Zbl 0122.40102

Erdem, S.: Paraholomorphic structures and the connections of vector bundles
over paracomplex manifolds. New Zealand J. Math., Vol. 30(1) (2001), 41-50.

Zbl 1071.53522
Etayo, F.; Santamaria, R.; Trias, U. R.: The geometry of a Bi-Lagrangian
manifold. Differ. Geom. Appl. 24(1) (2006), 33-59. Zbl 1101.53047
Freed, D. S.: Special Kdihler manifolds. Commun. Math. Phys. 203(1) (1999),
31-52. Zbl 0940.53040



http://www.emis.de/MATH-item?1004.53038
http://www.emis.de/MATH-item?1030.14004
http://www.emis.de/MATH-item?1040.53095
http://www.emis.de/MATH-item?1014.17024
http://www.emis.de/MATH-item?0543.14005
http://www.emis.de/MATH-item?1077.53060
http://www.emis.de/MATH-item?0856.53049
http://www.emis.de/MATH-item?0771.53042
http://www.emis.de/MATH-item?0122.40102
http://www.emis.de/MATH-item?1071.53522
http://www.emis.de/MATH-item?1101.53047
http://www.emis.de/MATH-item?0940.53040

300 L. Schéfer: Variations of (para-)Hodge Structures ...

[16] Lawn, M.-A.; Schéfer, L.: Decompositions of para-complex vector-bundles and
para-complex affine immersions. Result. Math. vol. 48(3/4) (2005), 246-274.
Zbl 1116.53020

[17] Libermann, P.: Sur les structures presque paracomplexes. C. R. Acad. Sci.,

Paris 234 (1952), 2517-2519. Zbl 0046.15601
[18] Schiéfer, L.: tt*-bundles and pluriharmonic maps. Ann. Global Anal. Geom.
28(3) (2005), 285-300. Zbl 1082.58011

[19] Schéfer, L.: tt*-bundles in para-complex geometry, special para-Kdihler mani-
folds and para-pluriharmonic maps. Differ. Geom. Appl. 24(1) (2006), 60-89.
Zbl 1093.53046
[20] Schéfer, L.: Harmonic bundles, topological-antitopological fusion and the re-
lated puriharmonic maps. J. Geom. Phys. 56(5) (2006), 830-842.
Zbl 1089.58011
[21] Schéfer, L.: Harmonic bundle solutions of topological-antitopological fusion
i para-complex geometry. To appear in Diff. Geom. and Appl.

[22] Simpson, C. T.: Higgs bundles and local systems. Publ. Math., Inst. Hautes
Etud. Sci. 75 (1992), 5-95. Zbl 0814.32003

Received January 26, 2007


http://www.emis.de/MATH-item?1116.53020
http://www.emis.de/MATH-item?0046.15601
http://www.emis.de/MATH-item?1082.58011
http://www.emis.de/MATH-item?1093.53046
http://www.emis.de/MATH-item?1089.58011
http://www.emis.de/MATH-item?0814.32003

