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1. Introduction

In Euclidean planar geometry, there is a number of interesting theorems referring
to tangent segments and secant segments of circles. E.g., the circle is the only
closed convex curve in the Euclidean plane with the property that its two tangent
segments from any exterior point have equal lengths (see Theorem 2.1). This is
an easy consequence of the fact that only the circle has an axis of symmetry in
any direction, which is possibly due to Hermann Brunn (see [1, (3.5’)]). A similar
result for higher dimensions was recently derived in [4]. It is interesting to ask
whether such results have analogues in normed linear spaces. For dimension two
we will prove a related characterization of the Euclidean plane.

We denote by X an arbitrary normed (or Minkowski) plane with norm ‖·‖ and
origin o, by S(X) and B(X) the unit circle and the unit disc of X, respectively.
Basic references to the geometry of Minkowski planes and spaces are [8] and the
monograph [9]. For x 6= y, a set l is called a line through x and y iff l = {tx+(1−
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t)y : t ∈ R}; the segment between x and y is the set {tx + (1 − t)y : t ∈ [0, 1]}
and denoted by [x, y]; and the set {(1 − t)x + ty : t ≥ 0} is called the ray with
starting point x passing through y and denoted by [x, y〉. A point y is said to be
an exterior point with respect to a closed convex curve C if y is an exterior point
of the convex region bounded by C. Similarly, a point y is said to be an interior
point with respect to a closed convex curve C if y is an interior point of the convex
region bounded by C. A chord [a, b] of a closed convex curve C is called an affine
diameter of C if there exist two parallel supporting lines l1 6= l2 of C such that
a ∈ l1 and b ∈ l2.

Let x, y ∈ X. The point x is said to be isosceles orthogonal to y if ‖x + y‖ =
‖x− y‖, and in this case we write x ⊥I y. On the other hand, x is said to be
Birkhoff orthogonal to y if ‖x + ty‖ ≥ ‖x‖ holds for all t ∈ R, and this situation
is denoted by x ⊥B y. A Minkowski plane is said to be a Radon plane iff the
Birkhoff orthogonality of that plane is symmetric. We refer to [5] and [6] for basic
properties of isosceles orthogonality and Birkhoff orthogonality, respectively, and
to [1] for a detailed study of the relations between them.

We continue by defining tangent segments and secant segments in Minkowski
planes.

Definition 1.1. Let C be a closed convex curve in X, x be an exterior point with
respect to C, l1 be a supporting line of C through x, and l2 be a line that intersects
(but does not support) C. Then the segment [x, y] is called the tangent segment
(from x to C) if

y ∈ l1 ∩ C and ‖x− y‖ = inf{‖x− w‖ : w ∈ l1 ∩ C},

and the segments [x, z], [x, z′] are called the secant segment and external secant
segment (from x to C along l2), respectively, if

z ∈ l2 ∩ C and ‖x− z‖ = sup{‖x− w‖ : w ∈ l2 ∩ C},

z′ ∈ l2 ∩ C and ‖x− z′‖ = inf{‖x− w‖ : w ∈ l2 ∩ C}.

The following lemmas will be necessary for the discussion following them.

Lemma 1.2. (cf. [1] (4.1)) If the implication

x ⊥I y ⇒ x ⊥B y

holds for any x, y ∈ X, then the Minkowski plane X is Euclidean.

For non-collinear rays [o, x〉 and [o, y〉 with unit vectors x and y the ray [o, x + y〉
is called the Busemann angular bisector of the rays [o, x〉 and [o, y〉. And the set
of all points z lying in the convex cone {αx+βy : α, β ≥ 0} and having the same
distance to both lines 〈o, x〉 and 〈o, y〉 is called the Glogovskij angular bisector.

Lemma 1.3. (cf. [3]) A Minkowski plane is a Radon plane iff Busemann’s and
Glogovskij’s definitions of angular bisectors coincide.

cf. [7], [8], and [3] for more information about Radon curves and angular bisectors
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2. Main results

We begin with a characterization of Euclidean circles in the Euclidean plane. We
are sure that this statement was proved already in ancient times, but we could
not locate a proof of it.

Theorem 2.1. The circle is the only closed convex curve in the Euclidean plane
with the property that its two tangent segments from any exterior point have equal
lengths.

Proof. First we show that C has to be strictly convex. Suppose the contrary.
Then there is a nontrivial maximal segment [a, b] ⊂ C, and we can suppose,
without loss of generality, that o is an interior point with respect to C. Therefore
for any t > 1 the point pt = t(1

3
a + 2

3
b) is an exterior point of the convex region

bounded by C, and as t → 1, tangent segments from pt to C cannot have equal
lengths.

Second we show that the curve C has to be smooth. Suppose to the contrary, i.e.,
there is a point p on C such that there are two different supporting lines l1 and l2
supporting C at p. Let l3 be a line supporting C at another point q and intersecting
l1 and l2 at m and n (we can require that m 6= n), respectively. Thus, by the
assumption of the theorem we have ‖m− p‖ = ‖m− q‖ and ‖n− p‖ = ‖n− q‖.
Therefore (m− 1

2
(p+q)) ⊥ (p−q) and (n− 1

2
(p+q)) ⊥ (p−q), which is impossible.

For any direction u, let l1 and l′1 be two parallel supporting lines of C per-
pendicular to u and supporting C at p and p′, respectively. For any chord [a, b]
parallel to l1 of C between p and the affine diameter [a0, b0] parallel to l1, let l2
and l3 be the lines supporting C at a and b, respectively. Then l2 and l3 will
intersect at some point q and meet l1 at e and f , respectively. By the assumption
of the theorem we have the following equalities:

‖q − a‖ = ‖q − b‖ , ‖e− a‖ = ‖e− p‖ , ‖f − b‖ = ‖f − p‖ ,

and therefore
‖e− p‖ = ‖e− a‖ = ‖f − b‖ = ‖f − p‖ .

Thus, the midpoint of [a, b] will lie in the line through p and perpendicular to
l1. Since [a, b] is an arbitrary chord parallel to l1 of C between p and [a0, b0], the
midpoint of [a0, b0] will lie in the line through p and perpendicular to l1, which
implies that the midpoint of any chord of C parallel to l1 will lie in the line through
p and perpendicular to l1. Therefore C has an axis of symmetry in the direction of
u. Since the direction u is arbitrary, C has an axis of symmetry in any direction,
which completes the proof. �

We have shown that among all closed convex curves in Euclidean planes only the
circle has the property that the two tangent segments from any exterior point
have equal lengths. Now we will show that among all Minkowski planes only the
Euclidean plane has the property that the two tangent segments from any exterior
point of the unit (Minkowski) circle have equal (Minkowski) lengths.
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Theorem 2.2. A Minkowski plane X is Euclidean iff for any exterior point x of
S(X) the lengths of the two corresponding tangent segments from x to S(X) are
equal.

Proof. It is obvious that we only have to prove sufficiency. First we show that
by the assumption of equal lengths of the tangent segments the plane is strictly
convex.

Suppose that X is not strictly convex. Then there will be a nontrivial maximal
segment [a, b] on S(X). Let x = t(1

3
a + 2

3
b) for t > 1. Then x is an exterior point

of S(X). As t → 1, tangent segments from x to S(X) cannot have equal lengths.

Second we show that the plane has to be Radon. (For the geometry of Radon
planes we refer to [8] and [7].)

For any x ∈ S(X) let y ∈ S(X) be a point with x ⊥B y. Then [x + y, x]
will be a tangent segment from x + y to S(X). Since X is strictly convex by
the statement above, any unit vector of norm < 2 is the sum of two unit vectors
in a unique way, which will imply, together with the fact that the length of the
segment [x+y, y] is 1, that [x+y, y] is also a tangent segment from x+y to S(X).
Hence y ⊥B x. Since x is arbitrary, the Birkhoff orthogonality is symmetric.

For any x, y ∈ X\{o} with the property that x ⊥I y, the triangle (−x)xy is
an isosceles one. Let o′ be the center of the circle inscribed to the triangle (−x)xy,
and let a ∈ [x, y], b ∈ [−x, y], c ∈ [−x, x] be the points such that o′ − a ⊥B y− x,
o′ − b ⊥B y + x, o′ − c ⊥B x. By strict convexity this means that [y, a], [y, b],
[−x, b], [−x, c], [x, a], [x, c] are tangent segments from x, y,−x to the inscribed
circle, respectively. Thus

‖y − a‖ = ‖y − b‖ , ‖x− a‖ = ‖x− c‖ , ‖−x− b‖ = ‖−x− c‖ .

These equalities together with the fact that

‖y − a‖+ ‖x− a‖ = ‖x− y‖ = ‖x + y‖ = ‖y − b‖+ ‖−x− b‖

imply ‖−x− c‖ = ‖x− c‖, which means that [y, c] is the median (i.e., the segment
joining one vertex and the midpoint of the opposite side of a triangle) of [−x, x].

Now, since Busemann’s and Glogovskij’s definitions of angular bisectors co-
incide in Radon planes (by Lemma 1.3), o′ must lie on the segment [c, y] or,
equivalently, on [o, y], and hence y ⊥B x as well as x ⊥B y.

Now we have proved that the implication x ⊥I y ⇒ x ⊥B y holds for all
x, y ∈ X\{o}. This implication is trivial when either x = o or y = o. Therefore
x ⊥I y ⇒ x ⊥B y holds for all x, y ∈ X. By Lemma 1.2, X is Euclidean and the
proof is complete. �

Corollary 2.3. Let X be a Minkowski plane. If for any exterior point x of S(X)
the squared length of the tangent segment from x to S(X) equals the product of the
lengths of the secant segment and the external secant segment, then X is Euclidean.

The following corollary is an immediate consequence of the well known result that
a d-dimensional Minkowski space (d ≥ 2) is Euclidean iff all its 2-dimensional
subspaces are Euclidean.
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Theorem 2.4. Let X be a d-dimensional Minkowski space (d ≥ 2). The space X
is Euclidean iff for any exterior point x of S(X) and any 2-dimensional subspace
X0 through x and o the lengths of the two corresponding tangent segments from x
to S(X0) are equal.
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