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Abstract. Verardi’s construction of special groups of prime exponent
is generalized, and put into a context that helps to decide isomorphism
problems and to determine the full group of automorphisms (or at least
the corresponding orbit decomposition). The groups in question may
be interpreted as groups of unitriangular matrices over suitable rings.
Finiteness is not assumed.

1. Introduction

We are going to discuss (and generalize) a class of special p-groups that was
introduced by L. Verardi in [34], using finite group rings of odd characteristic.
An attempt to discuss automorphisms of Verardi’s examples was made in [26].
We take the opportunity to correct several errors in [26]: Corollary 2.3, Propo-
sition 2.4(a,b,d) and Theorem 2.5 in that paper are false. See 5.4, 7.6, and 9.12
below. Actually, Verardi’s groups may be interpreted as unipotent subgroups of
algebraic groups over rings, see 6.1 below. However, it turns out that an inter-
pretation as (generalized) Heisenberg groups is better suited for our interest in
automorphisms.

Recall that a non-commutative p-group P is called special if its commutator
subgroup P ′ and its center Z(P ) both coincide with the Frattini subgroup Φ(P )
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(that is, the intersection of all maximal subgroups of P ). Every special p-group
has exponent dividing p2, and is nilpotent of class at most 2. The obvious remark
that a commutative group P with P ′ = Z(P ) is trivial shows that, in assuming
non-commutativity, we concentrate on the interesting case.

Throughout the present paper, let F denote a commutative field. Note that a
not necessarily commutative field K is considered in Section 8 and in Section 9.
Characteristic 2 will almost always be excluded explicitly, because we want to
secure that the nilpotent groups that we construct are not commutative. Instead
of group rings over F, we will consider more general rings whenever this seems
reasonable.

We briefly state our main results, details and proofs will be given below:

Theorem 1.1. Let R be a ring such that 2 is invertible in R, and let VR be the
corresponding Verardi group (see 4.2 for the definition). By Hom(R2, R) we denote
the set of all additive maps from R2 to R.

1. If R is commutative then Aut(VR) is isomorphic to the semidirect product
ΓL(2, R) n Hom(R2, R). See 7.2.

2. If R is a local ring (for instance, the group ring of a finite p-group over a
field of characteristic p) then Aut(VR) is known, see 9.2.

3. Assume char F = p > 0, let G = 〈g〉 be cyclic of order pn, and put
R := F[G]. Then Aut(VR) is isomorphic to a semidirect product ΓL(2, R) n
Hom(Fp2n

,Fpn
). See 9.10.

4. Let K be a (not necessarily commutative) field, let n ≥ 2 be an integer, and
put R := Kn×n. Then Aut(VR) is determined in 8.5, representatives for the
orbits are given in 8.8. The case n = 1 for K not commutative is treated in
11.1.

In most of these cases, the results also allow to determine the orbits under
Aut(VR). In fact, partial information about these orbits often plays a crucial
role in the determination of the automorphism group, see 5.13.

2. Heisenberg groups

The Verardi groups that we are going to study are isomorphic to groups of trian-
gular 3 × 3 matrices over rings, see 6.1 below. However, the matrix description
effectively hides most of the automorphisms. The present section provides the
basis for a description that is better suited to our purposes.

Up to isomorphism, every special p-group of prime exponent p > 2 is obtained
as a special case of the following construction, see 2.5 and 2.7 below.

Definition 2.1. Let A be a commutative ring, let V and Z be modules over A,
and let β : V × V → Z be a bilinear map. Then

(v, x) ◦β (w, y) :=
(
v + w, x+ y + (v, w)β

)
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defines a group multiplication on the set V × Z. We denote this group by
B(V, Z, β) = (V × Z, ◦β).
If β is alternating (that is, (v, v)β =0), we write 〈v, w〉 :=(v, w)β, and GH(V, Z, β) :
= B(V, Z, β). These groups are called (generalized) Heisenberg groups.

Remarks 2.2. If all else fails, we consider abelian groups as modules over the
ring Z.

We will see in 2.4 below that B(V, Z, α) is isomorphic to a Heisenberg group
whenever 2 is invertible in A.

If V and Z are elementary abelian p-groups (i.e., vector spaces of character-
istic p) then the group B(V, Z, α) has exponent p or 4, and its commutator group
is contained in the normal subgroup {0} × Z, which in turn is contained in the
center.

Remarks 2.3. If β is alternating, then the operation ∗β coincides with addition
on each cyclic submodule of V ×Z. Consequently, the group GH(V, Z, β) is divis-
ible if A = F is a field with char F = 0, and charA = e implies that GH(V, Z, β)
has exponent e.

Every alternating bilinear map β is skew-symmetric. Conversely, a skew-
symmetric bilinear map over a ring in which 2 is a unit is alternating. Sometimes,
alternating maps are also called symplectic, but we reserve this terminus for maps
preserving an alternating form.

Putting [(v, x), (w, y)] := (0, 〈v, w〉) = (v, x)−1 ∗β (w, y)−1 ∗β (v, x) ∗β (w, y)
we obtain a Lie bracket on the module V × Z; this defines a Lie algebra called
gh(V, Z, β). If A = R and gh(V, Z, β) has finite dimension then GH(V, Z, 1

2
β) is the

corresponding simply connected group, modeled on V × Z by Baker-Campbell-
Hausdorff multiplication. Note that (v, x) 7→ (v, 1

2
x) is an isomorphism from

GH(V, Z, β) onto GH(V, Z, 1
2
β).

Actually, the Baker-Campbell-Hausdorff series on gh(V, Z, β) makes sense over
any commutative ring such that 2 is invertible: all commutators belong to the
center of gh(V, Z, β), and the series reduces to the polynomial X + Y + 1

2
[X, Y ].

See [18] §9.2, §10 for a discussion of the Baker-Campbell-Hausdorff series in arbi-
trary nilpotent groups. If A has prime characteristic p > 2 then gh(V, Z, β) is the
associated Lie ring for the p-group GH(V, Z, β) in the sense of Zassenhaus [35];
cf. [13] Section 5.6, or [18] Chapter 6.

Heisenberg groups are “standard forms” of the groups B(V, Z, β) constructed
in 2.1.

Theorem 2.4. Let V, Z be modules over a commutative ring A, and let α : V ×
V → Z be any bilinear map. If 2 is invertible in A, then

α̌ : V × V → Z : (v, w) 7→ 〈v, w〉 :=
1

2

(
(v, w)α − (w, v)α

)
is an alternating map, and the following hold:
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1. The map η : B(V, Z, α) → GH(V, Z, α̌) : (v, x) 7→
(
v, x − 1

2
(v, v)α

)
is an

isomorphism of groups. Note also that (v, x) 7→ (v, 2x) is an isomorphism
from GH(V, Z, α̌) onto GH(V, Z, 2α̌).

2. The set of commutators in GH(V, Z, α̌) is C := {
(
0, 〈v, w〉

)
| v, w ∈ V },

and this is also the set of commutators in B(V, Z, α). In fact, in each of the
groups, the commutator of (v, x) and (w, y) equals (0, 〈v, w〉).

3. The center of GH(V, Z, α̌) is {(v, x) ∈ V × Z | ∀w ∈ V : 〈v, w〉 = 0}, and
this is also the center of B(V, Z, α).

4. The Frattini subgroup of GH(V, Z, α̌) coincides with GH(V, Z, α̌)′ = 〈C〉,
and this is also the Frattini subgroup of B(V, Z, α).

5. Now assume that A is a field. Then GH(V, Z, α̌) is isomorphic to T ×
GH(W, 〈C〉, β)×U , where W is a vector space complement for T := {v ∈ V |
∀w ∈ V : 〈v, w〉 = 0} in V , the subspace U is a complement for 〈C〉 in Z,
and β : W ×W → 〈C〉 is the restriction of α̌.

Proof. It is obvious that α̌ is alternating, and that the map η is a bijection. Using
bi-additivity of α, we compute

(
(v, x) ◦α (w, y)

)η
= (v, x)η ∗α̌ (w, y)η. The rest of

assertion 1 is verified easily.
In GH(V, Z, α̌), we have [(v, x), (w, y)] = (v, x)−1∗α̌(w, y)−1∗α̌(v, x)∗α̌(w, y) =(

0, 〈v, w〉
)
. Thus C is the set of commutators in GH(V, Z, α̌), and Cη = C yields

the assertion for B(V, Z, α).
Clearly, the set C is contained in the center of GH(V, Z, α̌). The commutator

(0, 〈v, w〉) is trivial just if v is orthogonal to w with respect to α̌. This gives the
center of GH(V, Z, α̌), and of B(V, Z, α), as well.

Finally, let M be a maximal subgroup of H := GH(V, Z, β). The quotient
MH ′/H ′ is a maximal subgroup in the vector space H/H ′ if, and only if, the
commutator subgroup H ′ = 〈C〉 is contained in M . Thus Φ(H/H ′) = {0} implies
Φ(H) ≤ H ′. If H ′ is not contained in M , we obtain H = MH ′. The fact that H ′

is contained in the center of H gives M ′ = (MH ′)′ = H ′, yielding a contradiction.
The last assertion is checked by routine computations. �

Excluding fields or rings of even characteristic will occur as a standard assumption
in the present paper. A main reason is that groups of exponent 2 are abelian.
Nonabelian special 2-groups (in the sense used in the introduction) are groups of
exponent 4, and have to be treated by methods different from those used here.

The following variant of 2.4 even more motivates our interest in Heisenberg
groups, and shows that it is quite natural to use this Lie-theoretic description.

Theorem 2.5. ([17], cf. [23] 6.3) Let p be an odd prime, and let G be a group
of exponent p such that G′ is contained in the center Z := Z(G). Then G is
isomorphic to a Heisenberg group GH(G/Z,Z, β), where β : G/Z × G/Z → Z
maps (Zg, Zh) to the commutator g−1h−1gh. �

This may be interpreted as a generalization of [7] 3.1. A standard trick of linear
algebra (e.g., see [14] Ch.V, §2) allows to replace any alternating map β : V ×V →
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Z with the linear map β̂ : V ∧ V → Z such that (v ∧w)β̂ = (v, w)β. Our frequent
assumption that {0}×Z is generated by commutators in GH(V, Z, β) just means
that β̂ is surjective. In that case, the inequality dimF Z ≤ dimF(V ∧V ) =

(
dimF V

2

)
is obtained. By 2.5, this generalizes the observation made in [7] 2.4: for any
special p-group G of order pm+s with |G′| = ps, one has s ≤

(
m
2

)
.

Definition 2.6. A Heisenberg group H = GH(V, Z, β) is called reduced if its cen-
ter Z(H) coincides with its commutator subgroup H ′. Thus the last assertion of 2.4
says that every Heisenberg group is the cartesian product of a reduced Heisenberg
group and a vector space.

Corollary 2.7. Let p be an odd prime. A group of exponent p is a special p-group
if, and only if, it is isomorphic to a reduced Heisenberg group. �

3. Automorphisms of Heisenberg groups

For abelian groups V, Z, let Hom(V, Z) denote the abelian group of additive maps
from V to Z. Simple computations suffice to verify:

Lemma 3.1. Let GH(V, Z, β) be a Heisenberg group, let µ ∈ Aut(V ) and τ ∈
Hom(V, Z), and assume that there exists µ′ ∈ Aut(Z) such that 〈vµ, wµ〉 = 〈v, w〉µ

′

holds for all v, w ∈ V . Then

ϕµ,τ,µ′ : GH(V, Z, β) → GH(V, Z, β) : (v, x) 7→ (vµ, xµ′ + vτ )

is an automorphism of GH(V, Z, β), and of gh(V, Z, β) (considered as a Lie algebra
over the prime field), as well. In particular, the set

K := {(v, z) 7→ (v, z + vτ ) | τ ∈ Hom(V, Z)}

is a subgroup of Aut(GH(V, Z, β)). �

In many cases, these are in fact all the automorphisms:

Theorem 3.2. ([23] 4.4, cf. [1] 5.1) Let V and Z be vector spaces of characteristic
different from 2. Assume that β : V × V → Z is an alternating map such that
Z is additively generated by the image (V × V )β. Then the automorphisms of
GH(V, Z, β) are exactly the maps ϕµ,τ,µ′ introduced in 3.1. �

Consequently, the automorphisms of the group GH(V, Z, β) are the same as the
automorphisms of the Lie algebra gh(V, Z, β), considered as an algebra over the
prime field – another reason for the Lie-theoretic point of view!

While quite different bi-additive maps may describe the same isomorphism
type of groups, the alternating map is as unique1 as it can be, and allows simple
solutions for the isomorphism problem (cf. [1] 6.2):

1In fact, it is nothing but the commutator map, see 2.4.2.
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Corollary 3.3. Let S, Y and V, Z be vector spaces over commutative fields E
and F, respectively. Assume that γ : S × S → Y and β : V × V → Z are
bi-additive maps with the additional property that Y and Z are generated by the
image of γ and of β, respectively. Then B(S, Y, γ) and B(V, Z, β) are isomorphic
if, and only if, the alternating maps γ̌ and β̌ are equivalent (that is, there are
additive bijections µ : S → V and µ′ : Y → Z such that (sµ, tµ)β̌ = (s, t)γ̌µ′ holds
for all s, t ∈ S). �

Remark 3.4. Let H := GH(V, Z, β) be a reduced Heisenberg group. Mapping
ψ = ϕµ,τ,µ′ ∈ Aut(H) to µ is a group homomorphism σ from Aut(H) onto a
subgroup Σ of Aut(V ). The kernel of σ is the group K = {(v, z) 7→ (v, z+ vτ )|τ ∈
Hom(V, , )Z)} central automorphisms, which contains the group of inner automor-
phisms of H.

Note also that µ′ is determined by µ = ψσ (and our assumption that H is
reduced), and we obtain a group homomorphism δ : Σ → Aut(Z) mapping µ
to µδ := µ′. The kernel of δ is the “symplectic group” Sp (β) := {µ ∈ Aut(V )|
∀v, w ∈ V : 〈vµ, wµ〉 = 〈v, w〉}.

This discussion shows:

Theorem 3.5. Let GH(V, Z, β) be a reduced Heisenberg group. Then Aut(GH
(V, Z, β)) is isomorphic to a semidirect product ΣnHom(V, Z), where Σ is defined
as in 3.4, and µ ∈ Σ acts on the additive group Hom(V, Z) as multiplication from
the left by µ−1 and, at the same time, multiplication from the right by the image
of µ under δ. �

Together with the observation that Σ/ Sp (β) is a subgroup of Aut(Z), this result
imposes severe restrictions on the size (and structure) of the automorphism group
of a reduced Heisenberg group. For instance, only in rare instances it will hap-
pen that Σ coincides with Aut(V ), contrary to the claims made in [26] 2.3, 2.5.
See 5.3, 7.6, and 9.12 below. It is even possible that Σ consists of scalar multiples
of the identity; see [33].

Frequently, it is easier to understand F-linear maps instead of arbitrary addi-
tive maps. Additive maps between vector spaces over F are linear over the prime
field of F. For dimension arguments, it is usually sufficient to assume that F has
finite dimension over its prime field. This condition is fulfilled for every finite field.
In a topological context, it is remarkable that every non-discrete locally compact
field of characteristic 0 has finite dimension over the closure Q̄ of its prime field,
and every continuous additive map is Q̄-linear.

We introduce a useful invariant to distinguish orbits under the automorphism
group. In [15] and in [30], this invariant is also used to show that injective homo-
morphisms do not exist between certain Heisenberg groups. For the groups VFp[G]

that are introduced in 4.2 below, the non-central elements with maximal values
of this invariant are discussed in Section 3 of [34].
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Lemma 3.6. Let H = GH(V, Z, β) be a generalized Heisenberg group, where V
and Z are modules over a commutative ring A such that 2 is invertible. For each
v ∈ V , let Cv denote the centralizer of (v, 0) in H. Then the following hold.

1. Cv = {w ∈ V | 〈v, w〉 = 0} × Z.

2. The orbit of (v, 0) under Aut(H) contains {v} × {vτ | τ ∈ Hom(V, Z)} ⊆
{v} × Z.

3. If v 6= 0 generates a free direct summand of the A-module V (in particular,
if A is a field), the orbit of (v, 0) contains {v} × Z.

4. If every element of V generates a free direct summand of V , then every orbit
has a representative of the form (v, 0) or (0, x), where v ∈ V and x ∈ Z.

5. If A is a field of finite dimension over its prime field and Z is generated by
the image of β then the cardinal number cv := dimA {w ∈ V | 〈v, w〉 = 0}
is invariant under Aut(H).

Proof. The first assertion is obvious. The set {v} × {vτ | τ ∈ Hom(V, Z)} is
the orbit of (v, 0) under the subgroup K of Aut(H). If v generates a free direct
summand S of V , there exists a homomorphism from V onto A, mapping v to 1,
and we find {vτ | τ ∈ Hom(V, Z)} = {1ϕ | ϕ ∈ Hom(R,Z)} = Z.

Since H ′ is characteristic in H, every automorphism α of H induces an iso-
morphism from Cv/H

′ onto Cvα/H ′. This isomorphism is A-semilinear, and the
last assertion follows. �

The following invariants will also be useful:

Definition 3.7. For v ∈ V , let CCv := {u ∈ V | ∀(w, 0) ∈ Cv : 〈u,w〉 = 0} =⋂
(w,x)∈Cv

Cw, and put Dv := {〈v, w〉 | w ∈ V }.

Let x be any element of Z. Then {0}×Dv consists of all commutators of elements
of GH(V, Z, β) with (v, x), and this set of commutators does not depend on x.

4. Verardi’s construction

In [34], L. Verardi constructs and discusses a class of finite special p-groups, as
follows.

Examples 4.1. Let G be a finite group, let p be an odd prime, and let Fp be
the field with p elements. Using the multiplication in the group algebra Fp[G], we
define a bi-additive map

α : Fp[G]2 → Fp[G] :
(
(a, s), (b, t)

)
7→ −bs ,

and put PG := B(Fp[G]2,Fp[G], α).

Verardi shows that PG is a special group of exponent p; this is also an easy
consequence of 2.4 and 2.3. We generalize Verardi’s construction, replacing Fp[G]
by the group ring F[G] over a larger ground field F, or even by an arbitrary ring R.
For reasons as stated above, we prefer the description as Heisenberg groups.
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Definition 4.2. Let R be a ring. Then the map

β : R2 ×R2 → R :
(
(a, s), (b, t)

)
7→

〈
(a, s), (b, t)

〉
:= at− bs

is alternating. We write VR := GH(R2, R, β), and call this a Verardi group.

Example 4.3. Let G be any group, and assume char F 6= 2. Then 2 is a unit in
F[G], and 2.4.1 yields that PG = B(Fp[G]2,Fp[G], α) is isomorphic to VFp[G].

Theorem 4.4. 1. The set of commutators in VR is C := {(0, 0)} ×R.

2. The center of VR is C.

3. The Frattini subgroup of VR is C.

4. If the characteristic of the ring R is an odd prime p (in particular, if R is
a group ring over a commutative field F with char F = p > 2) then VR has
exponent p, and is a special p-group.

Proof. For any a ∈ R, we put v := (a, 0) and w := (0, 1) and find that
(
(0, 0), a

)
=(

(0, 0), 〈v, w〉
)

is a commutator in VR; cf. 2.4. Thus C = {(0, 0)} ×R.

For
(
(a, s), z

)
in R2 ×R, we compute commutators with

(
(0, 1), 0

)
and

(
(1, 0), 0

)
in VR as

(
(0, 0), a

)
and

(
(0, 0),−s

)
, respectively. This shows that C is the center of

VR. The last assertions repeat general properties of (reduced) Heisenberg groups,
see 2.4 and 2.3. �

If R is a commutative ring, we have

〈
(a, s), (b, t)

〉
= detR

(
a s
b t

)
.

For matrices A,B ∈ R2×2, multiplicativity detR(AB) = detRA detRB of the
determinant implies

∀A ∈ GL(2, R) ∀α ∈ Aut(R) ∀v, w ∈ V : 〈vαA,wαA〉 = 〈v, w〉α detRA ,

and we obtain an embedding of ΓL(2, R) := Aut(R) n GL(2, R) into Σ:

Theorem 4.5. If R is a commutative ring then Aut(VR) contains subgroups Λ ∼=
GL(2, R) and Γ ∼= ΓL(2, R). The group Γ is mapped injectively into Σ. Restricting
the homomorphism δ introduced in 3.4 to Λ, we obtain the determinant map over
the ring R. The intersection of Γ with the group of inner automorphisms is
trivial. �

We shall show in Section 7 that Σ and ΓL(2, R) coincide for every commutative
ring R.
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5. Automorphisms of Verardi groups

Proposition 5.1. If the ring R contains divisors of zero then Aut(VR) has more
than three orbits on VR, and more than two orbits on VR/(VR)′.

Proof. Assume that a, t are nonzero elements of R with at = 0. Then t belongs
to the annihilator Na := {x ∈ R | ax = 0}, and C(a,0) = (R×Na)×R is different
from CC(a,0) because ((1, 0), 0) ∈ C(a,0) is not contained in CC(a,0) ≤ C(0,s). Thus
((1, 0), 0) and ((a, 0), 0) represent different orbits in VR, as well as in the quotient
VR/(VR)′. The neutral element forms a third orbit in VR/(VR)′. �

Corollary 5.2. Assume char F 6= 2. If G is a group with more than one element
then Aut(VF[G]) has more than two orbits on VF[G]/V

′
F[G].

Proof. For any g ∈ Gr{1}, the elements a := 1−g and t :=
∑

g∈G g in F[G]r{0}
satisfy at = 0. �

This observation yields information about the group Σ introduced in 3.4:

Corollary 5.3. If n := |G| > 1 then Σ is a proper subgroup of the group of
additive automorphisms of F[G]2; it is not even transitive on F[G]2 r {(0, 0)}.
In the case where F = Fp, we have that |Σ| is a proper divisor of |GL(2n, p)| =
p2n2−n(p2n − 1) · · · (p− 1) = p2n2−n

∏2n
k=1(p

k − 1). �

Remarks 5.4. Corollary 5.3 shows that the claims made in [26] 2.3, 2.4(d),
and 2.5 are false for all cases except the trivial one. In [26] 2.5, it is claimed
that every automorphism of the subgroup A := (Fp[G] × {0}) × Fp[G] of PG ex-
tends to an automorphism of PG. As Aut(A) acts transitively on the nontrivial
elements of the vector space A, while A contains the characteristic commutator
subgroup of PG, this is a sheer impossibility. The claim in [26] 2.4(b), stating
that Aut(PG) contains a subgroup of order p2|G||Aut(PG)|, appears to be mis-
printed. The claim [26] 2.4(a), stating that the Sylow p-subgroups of Aut(PG)
have order p4|G|2−|G| is false for |G| = 2, see 7.6 and 9.12 below.

Straightforward computations suffice to check the following.

Lemma 5.5. Let R be any ring such that 2 is a unit, and let R× be its group of
units.

1. For each h ∈ R×, mapping
(
(a, s), x

)
to

(
(ah, h−1s), x) is an automorphism

ζh of VR. Mapping h to ζh is an injective group homomorphism ζ from R×

to Aut(VR).

2. For each c ∈ R×, automorphisms λc and ρc of VR are defined by
(
(a, s), x

)λc

:=
(
(ca, s), cx

)
and

(
(a, s), x

)ρc
:=

(
(a, sc), xc

)
. Mapping (c, d) to λc−1ρd is

an injective group homomorphism from (R×)2 to Aut(VR).

3. Mapping (c, h, d) to λc−1ζhρd is a homomorphism from (R×)3 onto a subgroup
∆ of Aut(VR), with kernel {(c, c, c) | c ∈ Z(R×)}.
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4. Every ring automorphism α of R gives an automorphism α̃ of VR, by(
(a, s), x

)α̃
:=

(
(aα, sα), xα

)
. Mapping α to α̃ is an injective homomorphism

from Aut(R) onto the subgroup A := {α̃ | α ∈ Aut(R)} of Aut(VR).

5. If R is commutative then every semilinear bijection of the free module R2

belongs to Σ, and we obtain an embedding of ΓL(2, R) into Σ, cf. 4.5. �

In general, the group GL(2, R) is not contained in Σ, but certain elementary
transvections can be found in Σ, see 5.11.

For any group G, linear extension of g 7→ g−1 yields an anti-automorphism
of F[G]: that is, an additive bijection x 7→ x̄ with xy = ȳx̄.

Lemma 5.6. For every anti-automorphism α of the ring R, we obtain an auto-

morphism α̂ of VR by putting
(
(a, s), x

)α̂
:=

(
(sα, aα),−xα

)
. �

In particular, mapping
(
(a, s), x

)
to

(
(s̄, ā),−x̄

)
is an automorphism of VF[G].

Theorem 5.7. The stabilizer of (1, 0) and (0, 1) in Σ equals the set Aσ =
{α̃σ | α ∈ Aut(R)}. Every element µ ∈ Σ that interchanges (1, 0) with (0, 1) is
induced by an anti-automorphism of R.

Proof. Let µ be an element of the stabilizer, and let δ : Σ → Aut(R,+) be
as in 3.4. As C(1,0)/(VR)′ = R × {0} and C(0,1)/(VR)′ = {0} × R are invariant
under µ, we may define maps αi : R → R by (r, 0)µ = (rα1 , 0) and (0, r)µ =
(0, rα2), respectively. Clearly, these are additive maps. We claim that they are
multiplicative, as well. Indeed, evaluating the functional equation 〈vµ, wµ〉 =

〈v, w〉µ
δ

first at v ∈ {(1, 0), (0, 1)} we find α1 = µδ = α2, and then the general
case v = (a, 0) and w = (0, b) yields that µδ is multiplicative. Thus α := µδ is an
automorphism of R with µ = α̃σ, and the proof of the first assertion is complete.

The second assertion follows analogously, we just note that µ extends to an
automorphism of VR that interchanges C(1,0) = (R × {0}) × R with C(0,1) =
({0} ×R)×R. �

Definition 5.8. For each ring R, let R′ denote the additive subgroup generated
by the set {xy − yx | x, y ∈ R}.

Lemma 5.9. For a, s ∈ R, with a ∈ R× we have:
1. C(a,s) is commutative if, and only if, R′s = {0}.
2. C(s,a) is commutative if, and only if, sR′ = {0}.
3. If R′ contains invertible elements then commutativity of C(a,s) or C(s,a) is

equivalent to s = 0.

Proof. Without loss, we may assume a = 1, cf. 5.5. We have C(s,1) =
{
(
(sx, x), z

)
| x, z ∈ R}, and C(1,s) = {

(
(x, xs), z

)
| x, z ∈ R}. The commutator

subgroups C′
(s,1) and C′

(1,s) are generated by the sets {
(
(0, 0), s(xy−yx)

)
| x, y∈R},

and {
(
(0, 0), (xy − yx)s

)
| x, y ∈ R} of commutators, respectively. �
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Example 5.10. Let K be a (not necessarily commutative) field with center Z(K),
and let n ≥ 2 be an integer. Then the subset {xy − yx | x, y ∈ Z(K)n×n} ⊆
{xy − yx | x, y ∈ Kn×n} additively generates the Z(K)-subspace sl(n,Z(K)) con-
taining all elements of Z(K)n×n with vanishing trace. In particular, sl(n,Z(K))
contains invertible elements.

Lemma 5.11. Let z ∈ R.
1. If R′t = {0} then the transvection τt :

(
(x, y), z

)
7→

(
(x, y + xt), z

)
belongs

to Aut(VR).

2. If sR′ = {0} then the transvection sτ :
(
(x, y), z

)
7→

(
(x+ sy, y), z

)
belongs

to Aut(VR). �

Of course, these elements of Aut(VR) are new only if the ringR is not commutative;
they induce elements of SL(2, R) on R2 if R is commutative (and the annihilator
conditions on s, t are superfluous).

Definition 5.12. The subgroups of Aut(VR) generated by the sets {τt|t ∈ R, R′t
= {0}} and {sτ | s ∈ R, sR′ = {0}} are denoted by TR and RT, respectively. The
group generated by TR and RT will be called T.

Theorem 5.13. Let R be a ring such that 2 is invertible. Then the following
hold:

1. The stabilizer Σ(1,0) equals (A∆ RT)σ.

2. If (0, 1) belongs to the orbit (1, 0)Σ then the ring R admits an anti-automor-
phism ∗, and we find {µ ∈ Σ | (1, 0)µ =(0, 1)}=(A∆ RT〈∗̂〉)σ =(〈∗̂〉A∆TR )σ.

3. If Φ is a subgroup of Aut(VR) such that the orbits (1, 0)Σ and (1, 0)Φσ

coincide, then Σ = Σ(1,0)Φ
σ = (A∆ RTΦ)σ, and Aut(VR) = A∆ RTΦK.

Proof. Let µ ∈ Σ(1,0), and put (s, a) := (0, 1)µ. For any x ∈ R, the set
of commutators [C(1,0),

(
(s, a), x

)
] = {(0, 0)} × Ra equals [C(1,0),

(
(0, 1), 0

)
]µ =

{(0, 0)}×Rµδ
= {(0, 0)}×R, and there exists x ∈ R with xa = 1. Now

(
(ax, 1), 0

)
belongs to C(s,a), and commutativity of that group implies that it is contained
in {(axt, t) | t ∈ R} × R. Because the commutator [

(
(1, 0), 0

)
,C(s,a)] also equals

[
(
(1, 0), 0

)
,C(0,1)] = {(0, 0)} × R, we conclude C(s,a) = {(axt, t) | t ∈ R} × R.

Using commutativity of C(s,a) again, we infer axR′ = {0}. Applying a suitable
transvection, we see that (0, a) also belongs to the orbit of (0, 1) under Σ(1,0).

Now commutativity of C(0,a) yields that r 7→ ra is an injective endomorphism
of (R,+), and we have proved that a is invertible. Now 5.9 applies, yielding
sR′ = {0}. Thus ψ := (−sτ)

σ belongs to ( RT)σ, and µρσ
a−1ψ fixes both (1, 0) and

(0, 1). This means µ ∈ (A RT∆)σ = (A∆ RT)σ, as claimed.
Now assume that there exists ξ ∈ Σ such that (1, 0)ξ = (0, 1), and put

(0, 1)ξ := (a, s). Proceeding as before, we find that a is invertible, and R′s = {0}.
Thus we find an element in Σ that interchanges (1, 0) with (0, 1). According
to 5.7, there exists an anti-automorphism ∗ of R, and every element of Σ that
maps (1, 0) to (0, 1) belongs to the coset Σ(1,0)µ = Σ(1,0)∗̂σ = (A∆ RT〈∗̂〉)σ. The
rest of assertion 2 follows from the observations that ∗̂ normalizes A and ∆, but
interchanges RT with TR .
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A Frattini argument yields Σ = Σ(1,0)Φ
σ, and assertion 1 implies Σ(1,0)Φ

σ =
(A∆ RTΦ)σ. The rest of assertion 3 follows from the fact that K is the kernel of
the natural surjection from Aut(VR) onto Σ. �

Remark 5.14. The first part of the proof of 5.13 may be simplified if the ring R
is inverse symmetric2, that is, if xa = 1 implies ax = 1 in R.

Every commutative ring, every matrix ring An×n over a commutative ring A,
every matrix ring Kn×n over a (not necessarily commutative) field K, every local
ring (see Section 9) and every finite ring is inverse symmetric.

6. Unipotent subgroups of classical groups

Verardi groups play their role in important branches of group theory and geometry.
For the following remarks, let R be a ring in which 2 is a unit (for instance, a
group algebra F[G] over a commutative field with char F 6= 2). Straightforward
calculations show:

Theorem 6.1. The assignment

(
(a, s), x

)
7→

1 a 1
2
(x+ as)

0 1 s
0 0 1

 : VR → UT(3, R) :=


 1 a c

0 1 b
0 0 1

 ∣∣∣∣∣∣ a, b, c∈R


is an isomorphism from VR onto the subgroup UT(3, R) of strict upper triangular
matrices in GL(3, R). �

Note that the group UT(3, R) is the unipotent radical of a Borel subgroup of
GL(3, R).

Corollary 6.2. If F is a finite field of characteristic p > 2 and G is a finite
commutative group such that the order of G is not divisible by p, then F[G] is a
cartesian product of finite fields of characteristic p, and VF[G] is isomorphic to a
Sylow p-subgroup of GL(3,F[G]). �

Remark 6.3. The group ∆ (consisting of the automorphisms λc−1ζhρd, cf. 5.5)
is induced by the group of diagonal matrices in GL(3, R), which is contained in
the normalizer of UT(3, R).

Theorem 6.4. Assume that R is commutative. Then the assignment

η :
(
(a, s), x

)
7→


1 a s x
0 1 0 s
0 0 1 −a
0 0 0 1


gives an isomorphism η from VR onto a subgroup ER of Sp(4, R). �

2Inverse symmetric rings are also called weakly 1-finite, or von Neumann finite. See [6] p. 20
for a generalization.
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The group ER is a proper subgroup of the unipotent radical of a Borel subgroup
of Sp(4, R). However, it has geometric significance, being the elation group for
the (Hjelmslev) symplectic generalized quadrangle over the ring R.

The embedding η constructed in 6.4 may also be regarded as an embedding
into the semidirect product Aut(R) n GSp(4, R). A large part (if not all) of the
automorphism group Aut(VR) is then induced by the normalizer of ER.

7. Verardi groups over commutative rings

Let R be a commutative ring such that 2 is invertible in R, and consider the
group Σ induced on VR/(VR)′ ∼= R2 by Aut(VR), as in 3.4. Recall from 4.5 that
Σ contains the group ΓL(2, R) of all semilinear bijections of R2. Our aim in the
present section is to show that Σ coincides with ΓL(2, R).

Lemma 7.1. The orbit of (1, 0) under Σ coincides with the orbit under SL(2, R)≤
Σ.

Proof. It suffices to show that (1, 0)Σ is contained in the orbit under SL(2, R).
For (a, s) ∈ (1, 0)Σ, we have D(a,s) = R. Therefore, we find b, t ∈ R such that
at − bs = 1. Now (1, 0)µ := (a, s) and (0, 1)µ := (b, t) defines µ ∈ SL(2, R), as
required. �

After 7.1, an application of 5.13 yields:

Theorem 7.2. Let R be a commutative ring such that 2 is invertible. Then Σ =
ΓL(2, R), and Aut(VR) = ΓL(2, R) n Hom(R2, R). �

Remark 7.3. Because VR is isomorphic to UT(3, R) whenever R is a commu-
tative ring with 2 ∈ R×, our result 7.2 is a special case of a general result
in [22], where the automorphisms of UT(n,R) are determined for each commuta-
tive ring R. We include the (simple) proof for the sake of completeness.

Example 7.4. Let G be the trivial group, and assume char F 6= 2. Then VF[G] is
isomorphic to the (classical) Heisenberg group GH(F2,F, det) obtained from the
alternating map

det : F2 × F2 :
(
(a, s), (b, t)

)
7→ det

(
a s
b t

)
.

It is well known (and follows easily from either 4.5 or 7.2) that the automorphism
group Aut(GH(F2,F, det)) = Aut(gh(F2,F, det)) ∼= ΓL(2,F) n Hom(F2,F) acts
with exactly 3 orbits:

{(0, 0)}, {(0, z) | z ∈ F r {0}} , and {(v, z) | v ∈ F2 r {0}, z ∈ F} .

Recall that Hom(F2,F) denotes the set of all additive maps from F2 to F, and not
only the F-linear ones.
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We discuss another application in detail. Let C2 = {1, g} be a group with 2
elements, and assume char F 6= 2. We have F[C2] ∼= F× F in this case.

Proposition 7.5. The automorphism group Aut(VF[C2]) has 5 orbits on VF[C2].
More precisely, it acts with 3 orbits on the commutator subgroup, and 2 orbits
outside.

Proof. After 7.2, it remains to note that the non-trivial orbits of Σ correspond to
the orbits outside the commutator group because of the action of the group K;
cf. 3.4. �

Example 7.6. Let p be an odd prime, and write R := Fp[C2]. We define Σ ≤
Aut(V,+) as in 3.4, and define ι : R → R : a + bg 7→ a − bg. Then Σ =
〈ι〉 n GL(2, R), and Aut(VR) ∼= ΓL(2, R) n Hom(R2, R) = (〈ι〉 n GL(2, R)) n
Hom(R2, R). The group Sp (β) coincides with SL(2, R), and we have

|Σ| = 2(p− 1)4p2(p+ 1)2

and |Aut(VR)| = |Σ| p8 = 2(p− 1)4p10(p+ 1)2 .

In particular, the Sylow p-subgroups of Σ are strictly smaller than those of
GL(2,Fp).

Remark 7.7. The map s + tg 7→ (s + t, s − t) is an isomorphism from F[C2]
onto F × F. According to a general principle (see 12.2 below), this induces an
isomorphism(

(a1 + agg, s1 + sgg), x1 + xgg
)
7→((

(a1 + ag, s1 + sg), (a1 − ag, s1 − sg)
)
, (x1 + xg, x1 − xg)

)
from VF[C2] onto the group VF×F = GH((F2)2,F2, γ), where

γ : (F2)2 × (F2)2 → F2((
(a, s), (a′, s′)

)
,
(
(b, t), (b′, t′)

))
7→

(
det

(
a s
b t

)
, det

(
a′ s′

b′ t′

))
.

Thus there is an isomorphism from VF[C2] onto VF × VF = GH(F2,F, det) ×
GH(F2,F, det), and the result about the number of orbits under Aut(VF[C2]) could
also be taken from [31] 2.16.

8. Matrix rings

Full matrix rings occur as direct factors of certain group rings (see 12.1 below),
but are also of independent interest, of course.

Let K be a (not necessarily commutative) field with char K 6= 2, and let n ≥ 2
be an integer. In this section, we study VR for the matrix ring R := Kn×n. We
interpret R as the ring of endomorphisms of Kn, acting by multiplication from
the right on row vectors: in particular, we have kerx = {v ∈ Kn | vx = 0} and
imx = {vx | v ∈ Kn}. We write rkx := dimK(imx) = n − dimK(kerx) for the
rank of x. The group of units in Kn×n is GL(n,K) := {g ∈ Kn×n | rk g = n}.
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Lemma 8.1. Let a, s ∈ Kn×n, and consider ∆ ≤ Aut(VKn×n) and Σ =
Aut(VKn×n)σ, as in 5.5 and 3.44.

1. The orbit of (a, 0) under Σ contains an element of the form (πk, 0), where

πj :=



1
. . .

1

n−j︷ ︸︸ ︷
︸ ︷︷ ︸

j

0
. . .

0


is the standard projection of rank j, and k = rk a.

2. The orbit of (0, s) under ∆σ contains (0, πrk s).

3. More generally, the orbit of (a, s) contains (πk, t) and (b, πm) for suitable
elements b, t ∈ Kn×n with k = rk a = rk b and m = rk s = rk t.

4. The orbit of
(
(0, 0), x

)
under ∆σ contains

(
(0, 0), πrk x

)
.

5. If the field K possesses an anti-automorphism (in particular, if K is commu-
tative) then Kn×n admits an anti-automorphism ∗. In this case, the elements
(πk, 0) and (0, πk) belong to the same orbit under (〈∗̂〉∆)σ, and every orbit
has a representative of the form (πk, t) with k ≥ rk t.

Proof. Apply λgρh for suitable g, h ∈ GL(n,K), cf. 5.5. The last assertion follows
from 5.6: note that transposition of the matrices and application of an anti-
automorphism of K to the entries yields an anti-automorphism ∗ of the matrix
ring Kn×n. �

Theorem 8.2. Let K be a field, and let n be a positive integer. Then the set

Rn := {
(
(πk, πm + 1− π`), 0

)
| 0 ≤ m ≤ k ≤ ` ≤ n} ∪ {

(
(0, 0), πk

)
| 0 ≤ k ≤ n}

contains a set of representatives for the orbits under ∆ ≤ Aut(VKn×n). If K
admits an anti-automorphism then Kn×n admits an anti-automorphism ∗, and

R>
n := {

(
(πk, πm + 1− π`), 0

)
| 0 ≤ m+ n− ` ≤ k ≤ ` ≤ n} ∪

{
(
(0, 0), πk

)
| 0 ≤ k ≤ n}

contains a set of representatives for the orbits under (〈∗̂〉∆)σ.

Proof. According to 8.1 and 3.6, it suffices to consider the orbits of elements of
the form

(
(πk, s), 0

)
or

(
(0, 0), πk

)
, where s ∈ R and 0 ≤ k ≤ n.

Let K := ker s ∩ im πk, and let C be a vector space complement for K in
ker s. Using suitable c, h ∈ GL(n,K), we achieve cπkh = πk (an obvious condition
on the block structure for c, h), Kk(h

−1s) = ker(1 − πm) for m := dimK, and
Ch = ker(π` − πk) for ` := k+ rk s−m. The latter condition means that Ch is a
complement for Kk(h

−1s) in kerh−1s, and kerh−1s = ker(π` − πm). Thus h−1s is
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a matrix of rank rk s = m + n − ` where the m + n − ` rows below the mth are
zero, and the first m together with the last n − ` rows form a basis for imh−1s.
A suitable element d ∈ GL(n,K) now leads to h−1sd = πm + (1− π`), as claimed.

The refinement in the case where K admits an anti-automorphism follows
from 8.1.5. �

Theorem 8.3. The set R>
n introduced in 8.2 has cardinality n+

∑n
`=dn/2e

(
2`−n+2

2

)
.

In other terms, we have

|R>
n | =

{
1
24

(2n3 + 15n2 + 58n+ 24) if n is even,

1
24

(2n3 + 15n2 + 58n+ 21) if n is odd.

Proof. For fixed n, we will count the triplets (`, k,m) with n ≥ ` ≥ k ≥ m+ (n−
`)≥0. Clearly, this gives the number of elements in R>

n r{
(
(0, 0), πk

)
| 1≤k≤n}.

First of all, we note dn/2e ≤ ` ≤ n. We count the possibilities for each ` sepa-
rately: for any k with n−` ≤ k ≤ ` we may choosem such that 0 ≤ m ≤ k−(n−`).
Thus k yields k − (n − `) + 1 triplets, and we have

∑`
k=n−`(k − (n − `) + 1) =∑2`−n+1

j=1 j =
(
2`−n+2

2

)
possibilities for each `.

In order to prove that |R>
n | can be described by polynomial expressions as

stated, we consider f : N → N : n 7→ |R>
n |. For k ∈ N, one computes f(2k + 2)−

f(2k) = 2 k2 + 7 k + 8 and f(2k + 3) − f(2k + 1) = 2 k2 + 9 k + 12. This means
f(x + 2) − f(x) = p(x) := 1

2
x2 + 7

2
x + 8, for each positive integer x. Searching

for two polynomials qodd and qeven that coincide with f on the sets of odd and
even positive integers, respectively, we consider a general polynomial q of degree
at most 3. Then q(x+ 2)− q(x) is a polynomial of degree at most 2, independent
of the constant term in q. Comparing coefficients in q(x + 2) − q(x) = p(x), one
obtains q(x) = 1

24
(2n3 + 15n2 + 58n + C), where C is a constant. For odd and

even values of x, we determine the value C from the conditions qodd(1) = f(1) = 4
and qeven(2) = f(2) = 9, respectively. �

Lemma 8.4. Let K be a field, let n be a positive integer, and put R := Kn×n.
Then the following are equivalent for v ∈ R2:

1. Cv is commutative.

2. (v, 0) belongs to the orbit of
(
(1, 0), 0

)
or

(
(0, 1), 0

)
under Aut(VR).

3. v belongs to the set (R× × {0}) ∪ ({0} ×R×).

Proof. It is clear that assertion 2 implies assertion 1, and that assertion 3 implies
assertion 2. Thus it remains to prove that Cv is commutative only if v ∈ (R× ×
{0}) ∪ ({0} ×R×).

Write v = (a, s), and assume that Cv = {(b, y) | b, y ∈ R, ay = bs} × R is
commutative. Using 8.2, we may assume that there are integers 0 ≤ m ≤ k ≤ ` ≤
n such that (a, s) = (πk, πm + 1− π`). Then

(
(1− s), 0

)
and

(
(0, 1− a), 0

)
belong

to Cv, and our assumption yields 0 = 〈(1− s, 0), (0, 1− a)〉 = (π`−πm)(1−πk) =
π` − πk. This implies k = `.

Aiming at a contradiction, we assume 0 < ` < n. Then it is possible to pick
c ∈ Km×(n−`), d ∈ K(`−m)×(n−`), and e ∈ K(n−`)×(`−m) such that ce ∈ Km×(`−m)
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and de ∈ K(`−m)×(`−m) are not both zero. We form block matrices of size
(
m +

(`−m) + (n− `)
)
×

(
m+ (`−m) + (n− `)

)
, as follows:

b :=

 0 0 c
0 0 d
0 0 0

 , y :=

 0 0 0
0 0 0
0 e 0

 , then ab =

 1 0 0
0 1 0
0 0 0

 0 0 c
0 0 d
0 0 0

 = b,

bs =

 0 0 c
0 0 d
0 0 0

  1 0 0
0 0 0
0 0 1

 = b , and by :=

 0 ce 0
0 de 0
0 0 0

 .

Computing 〈(a, s), (b, b)〉 = b − b = 0 and 〈(a, s), (0, y)〉 = ay = 0, we check that(
(b, b), 0

)
and

(
(0, y), 0

)
both belong to Cv. Now 〈(b, b), (0, y)〉 = by 6= 0 implies

that Cv is not commutative, contradicting our hypothesis.
It remains to treat the case where ` ∈ {0, n}. For ` = 0, we have a = 0, and

Cv =
(
R× (1− s)R

)
×R is commutative only if 1− s = 0. In the case ` = n, we

have a = 1, and 5.9 yields s = 0. �

Theorem 8.5. Let K be a (not necessarily commutative) field, let n be a pos-
itive integer, and put R := Kn×n. Let ∆ = {λc−1ζhρd | c, h, d ∈ GL(n,K)},
A = {α̃ | α ∈ Aut(R)} and K be the subgroups of Aut(VR) introduced in 5.5 and
3.1, respectively.

1. If K does not admit any anti-automorphisms, then Aut(VR) = A∆K.

2. If K admits an anti-automorphism ∗, then Aut(VR) = 〈∗̂〉A∆K. (See 5.6
for a definition of ∗̂).

Proof. Our result 8.4 allows to reduce every element ϕ ∈ Aut(VR) to a product
of an element of ∆K with an element ϕ′ that either fixes

(
(1, 0), 0

)
, or maps it to(

(0, 1), 0
)
. Now 5.13 gives the assertion. �

Any deeper understanding of the automorphisms of VKn×n requires information
about Aut(Kn×n).

Theorem 8.6. ([2] V.4, p. 183, [2] V.5) Every automorphism of Kn×n is in-
duced (via conjugation) by a semilinear bijection. The ring Kn×n admits an anti-
automorphism if, and only if, the field K admits an anti-automorphism. �

Automorphisms of the ring Kn×n can be understood in a much wider context, in
fact, one has:

Theorem 8.7. [28] Let V and W be right vector spaces over fields K and L, and
let S ⊆ EndK(V ) and T ⊆ EndL(W ) be subsemigroups containing all rank one
operators.

1. If dimK V ≥ 2, then every isomorphism from S onto T is induced by a semi-
linear bijection from V onto W . In particular, every isomorphism preserves
ranks.
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2. The semigroups EndK(V ) and EndL(W ) are anti-isomorphic if, and only if,
the field L is anti-isomorphic to K, and dimK V = dimLW is finite. �

The proofs in [28] use the fact that the projective spaces are encoded in the sub-
semigroups containing all rank one operators. For the special case of commutative
ground fields, the information we need can also be obtained using [10] Theorem 3,
where the semi-linear bijections of Fn×n leaving GL(n,F) invariant are determined.
Dieudonné’s result [10] generalizes an early observation by Frobenius [12], cf. [21].
See [11] for a generalization to products Fn1×n1 × · · · ×Fn`×n` . Automorphisms of
linear groups over suitable commutative rings are discussed in [4].

According to 8.6, each automorphism of the ring Kn×n preserves ranks. Thus
we obtain:

Corollary 8.8. Assume n ≥ 2. If K admits an anti-automorphism (in partic-
ular, if K is commutative) then R>

n forms a set of representatives for the orbits
under Aut(VKn×n). If K does not admit any anti-automorphisms then Rn forms
a set of representatives. �

We discuss some special cases in detail, and give alternative arguments to distin-
guish the orbits. These may be of independent interest.

Example 8.9. Let F be a commutative field with char F 6= 2. Then the set

R>
2 =


(
(1, π1), 0

)
,

(
(1, 0), 0

)
,

(
(1, 1), 0

)
,(

(π1, π1), 0
)
,

(
(π1, 0), 0

)
,

(
(π1, 1− π1), 0

)
,(

(0, 0), 1
)
,

(
(0, 0), π1

)
,

(
(0, 0), 0

)


forms a set of representatives for the orbits in VF2×2 .

Remarks 8.10. From 8.8 we know that R>
2 forms a set of representatives. The

centralizer of the element
(
(πk, πm + 1 − π`), 0

)
will be denoted by Z`km. As

usual in Lie theory, we write sl(2,F) for the subspace of F2×2 consisting of all
matrices with vanishing trace. One knows that sl(2,F) is additively generated by
{ab− ba | a, b ∈ F2×2}. Different elements of R>

2 outside the center of VF2×2 can
be distinguished by a look at the centralizers, as follows.

The centralizer of
(
(1, 0), 0

)
is Z220 := (F2×2 × {0})× F2×2, and abelian. The

centralizer of
(
(1, π1), 0

)
is Z221 := {

(
(b, bπ1), x

)
| b, x ∈ F2×2}, and not abelian:

the set of commutators equals {(0, 0)} × {(ab− ba)π1 | a, b ∈ F2×2}, and Z ′
221 =

{(0, 0)} × (sl(2,F))π1. The centralizer of
(
(1, 1), 0

)
is Z222 := {

(
(b, b), x

)
| b, x ∈

F2×2} and Z ′
222 = {(0, 0)} × sl(2,F).

The centralizer of
(
(π1, 0), 0

)
is Z210 := {

(
(b, t), x

)
| b, t, x ∈ F2×2, tπ1 = 0},

and its commutator Z ′
210 = {(0, 0)} × {t | tπ1 = 0}. For the element

(
(π1, π1), 0

)
,

we find Z211 := {
(
(b, t), x

)
| b, t, x ∈ F2×2, π1t = bπ1} as centralizer, with commu-

tator Z ′
211 = {(0, 0)} × F2×2.

Finally,
(
(π1, 1− π1), 0

)
gives Z110 := {

(
(b, t), x

)
| b, t, x ∈ F2×2, π1t = b(1− π1)},

with commutator Z ′
110 = {(0, 0)} × {

(
(0, 0), x

)
| x ∈ F2×2, (1− π1)xπ1 = 0}.
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In any case, the elements
(
(1, 0), 0

)
and

(
(π1, π1), 0

)
belong to orbits Ω220

and Ω211 of their own. Every automorphism leaves invariant the pairs d`km :=
(dimZ`km, dimZ ′

`km). (If one is only interested in finite groups, and does not
want to use our result 8.8, one might also assume and use the fact that F has
finite dimension over its prime field.) In the present case, these pairs separate
the orbits outside the center: we have d220 = (8, 0), d221 = (8, 2), d222 = (8, 3),
d210 = (6, 2), d211 = (6, 4), and d110 = (6, 3).

Since the element
(
(0, 0), 1

)
is not obtained as the commutator of any pair of

elements in the orbit of
(
(1, π1), 0

)
, it belongs to a separate orbit.

For n > 2, the structure of the group VFn×n is more complicated: the dimensions
of the centralizers and their commutators no longer suffice to distinguish the
elements of R>

n .

Example 8.11. Let F be a commutative field with char F 6= 2. In VF3×3, the ele-
ments

(
(π1, π1), 0

)
and

(
(π1, 1−π2), 0

)
(that is, the elements of R>

3 corresponding
to the triplets (`, k,m) = (3, 1, 1), and (2, 1, 0), respectively) have centralizers of
the same dimension, with commutators of the same dimension. However, if F
has finite dimension over its prime field, then the centralizers are not isomorphic.

Proof. The centralizer of
(
(π1, π1), 0

)
equals Z311 = {

(
(a, s), x

)
| a, s, x ∈ F3×3,

π1s = aπ1}. We use block matrices to write this as

Z311 =

{(((
a B
0 C

)
,

(
a 0
D E

))
, X

) ∣∣∣∣ a ∈ F, B ∈ F1×2, C, E ∈ F2×2,
D ∈ F2×1, X ∈ F3×3

}
,

and find dimZ311 = 22. The set of commutators is

{(0, 0)}×
{(

BX − V D BY
CX −WD CY −WE

) ∣∣∣∣ B, V ∈ F1×2, C,W,E, Y ∈ F2×2,
D,X ∈ F2×1

}
.

It is easy to see that this set additively generates {(0, 0)}×F3×3, and dimZ ′
311 = 9.

The centralizer of
(
(π1, 1 − π2), 0

)
is Z210 = {

(
(a, s), x

)
| a, s, x ∈ F3×3,

π1s = a(1 − π − 2)}, more explicitly, the conditions on a = (aij)1≤i,j≤3 and
s = (sij)1≤i,j≤3 are s11 = s12 = 0 = a23 = a33 and s13 = a13. Thus dimZ210 = 22.
Since

(
(1, 0), 0

)
and

(
(0, 1), 0

)
belong to Z210, the commutator group Z ′

210 equals
{(0, 0)} × F3×3.

In order to show that the groups Z311 and Z210 are not isomorphic, we study
centralizers of elements in these groups. Let

(
(a, s), x

)
∈ Z311, where

a =

(
f B
0 C

)
, s =

(
f 0
D E

)
.

We claim that the subspace J := {〈(a, s), (b, t)〉 | (b, t, 0) ∈ Z311} of F3×3 satisfies
dim J ≥ 2 if (a, s) /∈ F(π1, π1). In fact, from B 6= 0 or V 6= 0 we infer dim J ≥ 4,
and C 6= 0 or D 6= 0 at least imply dim J ≥ 2. This means that each element in
Z311 is either central or has a centralizer of dimension at most 11. However, the
element

(
(π1, 0), 0

)
∈ Z210 has 12-dimensional centralizer in Z210. Thus the groups

Z311 and Z210 are not isomorphic, and the elements
(
(π1, π1), 0

)
and

(
(π1, 1−π2), 0

)
belong to different orbits under Aut(VF3×3). �
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Example 8.12. Table 1 shows, for elements (v, 0) ∈ R>
3 r {(0, πk) | 1 ≤ k ≤ 3},

the conditions that determine Cv := {w ∈ (F3×3)2 | 〈v, w〉 = 0} and the subgroup
C′

v of F3×3 that is additively generated by {〈u,w〉 | u,w ∈ Cv}. An asterisk ∗
indicates that no condition is imposed. The last columns give cv := dim Cv and
dv := dim C′

v. Note that (`, k,m) ∈ {(3, 1, 1), (2, 1, 0)} gives the only cases where
the pair (cv, dv) does not suffice to distinguish the orbits.

The computational details have been done in private, their verification is left
to the reader. For n > 3, even the determination of centralizers and commutators
for elements of R>

n becomes tedious.

(`, k, m) v Cv C′
v cv dv

(3, 3, 3) (1, 1) s = a x11 + x22 + x33 = 0 9 8
(3, 3, 2) (1, π2) s = aπ2 x13 = x23 = x33 = 0 9 6

(3, 3, 1) (1, π1) s = aπ1
x12 = x22 = x32 =
x13 = x23 = x33 = 0 9 3

(3, 3, 0) (1, 0) s = 0 x = 0 9 0
(3, 2, 2) (π2, π2) π2s = aπ2 ∗ 10 9
(3, 2, 1) (π2, π1) π2s = aπ1 ∗ 11 9
(3, 2, 0) (π2, 0) π2s = 0 ∗ 12 9
(3, 1, 1) (π1, π1) π1s = aπ1 ∗ 13 9
(3, 1, 0) (π1, 0) π1s = 0 ∗ 15 9
(3, 0, 0) (0, 0) ∗ ∗ 18 9
(2, 2, 1) (π2, π1 + 1− π2) π2s = a(π1 + 1− π2) x32 = 0 10 8
(2, 2, 0) (π2, 1− π2) π2s = a(1− π2) x31 = 0 = x32 11 7
(2, 1, 0) (π1, 1− π2) π1s = a(1− π2) ∗ 13 9

Table 1. Invariants separating the orbits in the Verardi group over F3×3

9. Local rings

A ring R is called a local ring if the set N of non-invertible elements forms an
ideal (that is, if N is additively closed). Clearly, the set N is then the unique
maximal ideal, and every one-sided ideal is contained in N .

We know from 5.5 and 5.12 that Aut(VR) contains ∆ = {λc−1ζhρd | c, h, d ∈ R×},
the group A ∼= Aut(R) induced by automorphisms of the ring R, and the group
K ∼= Hom(R2, R) of central automorphisms. Our aim in this section is to prove
Aut(VR) = A∆TK, whenever R is a local ring.

Lemma 9.1. Let R be a local ring such that 2 is invertible. Then the orbits
of (1, 0) and (0, 1) under Σ are contained in the union of orbits (1, 0)(TR ∆)σ ∪
(0, 1)( RT∆)σ

, and thus in the set (R× ×N) ∪ (N ×R×).

Proof. For (a, s) ∈ (1, 0)Σ we first compare D(1,0) = R with the subgroup D(a,s)

generated by {at− bs | b, t ∈ R}, see 3.7. As R is a local ring, the set D(a,s)

contains invertible elements only if at least one of the elements a, s is invertible.
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If a is invertible, we use λa ∈ ∆ to obtain that (a, s) ∈ (1, s)∆σ
. We compare

the centralizers C(1,s) = {(b, bs) | b ∈ R}×R and C(1,0) = (R×{0})×R. Regard-
ing commutators in Cv × R for v ∈ {(1, 0), (1, s)}, we find that the additive sub-
group C′

(1,s) generated by {〈u, v〉 | (u, 0), (v, 0) ∈ C(1,s)} = {bcs− cbs | b, c ∈ R}
equals R′s. Comparing with C′

(1,0) = {0}, we find R′s = {0}. Thus the transvec-

tion τs exists, and (a, s) = (1, s)λa
σ

= (1, 0)τs
σλa

σ
belongs to the orbit (1, 0)(TR ∆)σ ⊆

R× ×N .
If s is invertible, we proceed analogously, using ρs ∈ ∆ to derive aR′ = C′

(a,1) =

{0}, and then aτ ∈ RT to obtain (a, s) ∈ (0, 1)( RT∆)σ ⊆ N ×R×.
The arguments for the orbit of (0, 1) run along the same lines. �

Applying 5.13, we obtain:

Theorem 9.2. Let R be a local ring such that 2 is invertible.

1. If R admits an anti-automorphism ∗, then Aut(VR) = 〈∗̂〉A∆TK. (See 5.6
for a definition of ∗̂).

2. If R does not admit any anti-automorphisms, then Aut(VR) = A∆TK. �

Remarks 9.3. For every commutative local ring R, and also for every com-
mutative euclidean ring (in particular, for the rings Z and F[X]), the group
SL(2, R) is generated by the elementary transvections (see [19], [20] for the case
of arbitrary local rings, and [3] 2.8, cf. also [24] pp. 50–56). Thus A∆TK =
ΓL(2, R) n Hom(R2, R) in this case, and the result of 9.2 coincides with that
of 7.2.

For commutative rings in general, the group generated by all transvections
may be strictly smaller than SL(2, R). E.g., this happens for the polynomial
rings in more than one indeterminate over a commutative field (see [5] §5), and
for the ring of algebraic integers in Q(

√
−19), which is a principal ideal domain,

see [5] Theorem 6.1. Thus different proofs for the commutative and the local case
seem necessary.

Let K be a (not necessarily commutative) field with discrete valuation ν : K →
Z ∪ {∞}. We define Bn := {x ∈ K | ν(x) ≥ n}. Then B0 is a subring of K (the
valuation ring), and Bn is an ideal in B0, for each n > 0. Pick n ∈ (Nr{0})∪{∞},
and put R := B0/Bn. Then R is a local ring, with maximal ideal RrR× = B1/Bn.

Lemma 9.4. Every ideal of R is of the form Bk/Bn, for some k ≤ n. Each of
these ideals is a principal ideal, of the form B0j/Bn = Bk/Bn = jB0/Bn with
ν(j) = k.

Proof. Passing to full pre-images of ideals, one sees that it suffices to show the
assertion for the case n = ∞. Then R = B0. Let J be an ideal in B0, put
m := min {ν(x) | x ∈ J}, and pick j ∈ J with ν(j) = m. For each x ∈ J , we
have ν(j−1x) = ν(xj−1) = ν(x)− ν(j) ≥ 0. This shows that both j−1x and xj−1

belong to B0, and we find B0j ≤ J ≤ B0j. This shows B0j = J = jB0. �
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Theorem 9.5. Assume that F admits a discrete valuation ν : F → Z∪{∞}. For
n ∈ (Nr{0})∪{∞}, consider the quotient R := B0/Bn of the valuation ring. Let
X be any element of B1 rB2, and put Y := Bn +X. Then the orbits of Aut(VR)
on VR are represented by the elements of the set

R :=
{(

(Y k, 0), 0
) ∣∣ k < n

}
∪

{(
(0, 0), Y k

) ∣∣ k ≤ n
}
.

In particular, the automorphism group has 2n+ 1 orbits on VR.

Proof. One verifies immediately that the orbits of elements of {(Y k, 0) | k ≤ q}
under the group SL(2, R) ≤ Sp (β) cover R2: note that every element of R2 is of
the form Y k(a, b) where at least one of the elements a, b is invertible. Extending
the row (a, b) to an element of SL(2, R) is easy. Mapping

(
(a, b), z

)
to

(
(ra, b), rz

)
with r ∈ R× gives an automorphism of VF[G], and using 3.6 we see that R contains
a set of representatives for the orbits. Different elements of R do not belong to
the same orbit under A∆TK because automorphisms of R preserve the chain of
ideals, and thus the valuation (see 9.4).

The invariant c(Y k,0) = 2n+k shows that every element
(
(Y k, 0), 0

)
represents

an orbit Ok of its own. Finally, we remark that
(
(0, 0), Y k

)
is obtained as the

commutator of pairs in Ok × O0 but not of pairs in Ok+1 × O0, and we see that
different elements of R∩ ({(0, 0)} ×R) represent different orbits. �

Example 9.6. Let F be any commutative field, and let K := F(X) be the field of
quotients for the polynomial ring F[X]. Then ν(p/q) := deg p−deg q gives a valua-
tion on K such that the valuation ring is B0 = {p/q | p, q ∈ F[X], q 6= 0, deg q≤p},
and the maximal ideal is B1 = B0(X). Note that the valuation ring B0 is larger
than F[X], for instance, it contains X/(X + 1).

Lemma 9.7. Let n be a positive integer, and consider the valuation on F(X)
as in 9.6. Then every element of B0/Bn has a representative in F[X]. In other
words: we have B0/Bn

∼= F[X]/F[X](Xn).

Proof. For p, q ∈ F[X] r {0} with deg p = deg q, we find f ∈ F[X] such that
deg(p− fq) < deg q. Thus p/q− f belongs to B1, and we have proved B0 = B1 +
F[X]. Multiplying with Xm, we obtain Bm = Bm+1 + F[X](Xm) for each positive
integer m. Proceeding by induction on m, we may assume B0 = Bm + F[X], and
infer B0 = Bm+1 + F[X](Xm) + F[X] = Bm+1 + F[X]. �

If char F =: p is positive and G is a cyclic group of order pn, the structure of
Aut(VF[G]) is also easy to understand, because the ring R := F[G] is a local ring
of very special type:

Lemma 9.8. Assume char F = p > 0, and let G be a cyclic group of order q := pn.
Then the group algebra F[G] is isomorphic to R := F[X]/(Xq). Every ideal of R
is a principal ideal of the form Rk := R(Xk) for some k < q.

Proof. Quite obviously, we have F[G] ∼= F[Y ]/(Y q − 1). Since F has charac-
teristic p, we have Y q − 1 = (Y − 1)q. Now Y 7→ X := Y + 1 extends to an
automorphism of F[Y ] = F[X], inducing an isomorphism from F[Y ]/(Y q − 1)
onto R. The rest follows from 9.7 and 9.4. �
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Remark 9.9. Lemma 9.8 is a special (and quite explicit) case of the following:
If G is a finite p-group and char F = p then F[G] is a local ring, where the powers
of the maximal ideal are well understood; cf. [16].

Corollary 9.10. Assume char F = p > 0, let G = 〈g〉 be a cyclic group of or-
der q := pn, and put R := F[G]. Then Aut(VR) is isomorphic to a semidi-
rect product ΓL(2, R) n Hom(R2, R). Note that Hom(R2, R) is isomorphic to
Hom((Fq)2,Fq) = Hom(F2pn

,Fpn
) ∼= Hom(F,F)2p2n

. In particular, if F is a finite

field of order pk, we have Hom(R2, R) ∼= Fp
2k2p2n

. �

Lemma 9.11. Assume char F = p > 0, let G be a cyclic group of order q :=
pn, let R := F[G] be the group ring, and let X be any element of the radical
N = R r R× which does not belong to N2. For every a ∈ R×, there is a unique
algebra automorphism αa of R mapping X to aX. Conversely, every algebra
automorphism of R is of this form.

Proof. We identify R with F[X]/(Xq), as in 9.8, where it already has been noted
that N rN2 = R1 rR2 is an orbit under R×. For a ∈ R×, a linear bijection αa is
determined by the assignment Xk 7→ akXk, and it is easy to see that this is a ring
homomorphism. Since R1 rR2 is a characteristic subset of R, each automorphism
has this form. �

Remark 9.12. Let R=Fp[X]/(Xpn
) with an odd prime p. For n≥1, Lemma 9.11

yields |Aut(R)| = (p− 1)ppn−2, while Aut(R) is trivial for n = 0. We count

|Hom(R2, R)| = p2p2n
and

|GL(2, R)| = (p+ 1)(p− 1)2p4pn−3,

leading to
∣∣Aut(VFp[Z/pnZ])

∣∣ = (p+ 1)(p− 1)3p2p2n+5pn−5 if n≥1,

and
∣∣Aut(VFp[{0}])

∣∣ = (p+ 1)(p− 1)2p3.

If n ≥ 1 then the orders |GL(2pn,Fp)| = p2p2n−pn ∏2pn

k=1(p
k − 1)

and |GL(2pn,Fp) n Hom(R2, R)| = p4p2n−pn ∏2pn

k=1(p
k − 1)

have larger p-parts than |Σ| = |ΓL(2, R)| and
∣∣Aut(VFp[Z/pnZ])

∣∣, respectively, and
the Sylow p-subgroups of Σ are strictly smaller than those of GL(2pn,Fp).

10. Rings of upper triangular matrices

Example 10.1. Let T(n,F) denote the ring of upper triangular n × n matrices
with entries in F. Then NT(n,F) = T(n,F)′ consists of the strict triangular
matrices (i.e., those with zero entries along the diagonal).

Lemma 10.2. The ring T(n,F) admits anti-automorphisms, for instance the
map ∗ given by matrix transposition, and conjugation by the permutation matrix
reversing the order of the standard basis.
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Remark 10.3. For n > 1, the ring T(n,F) is neither commutative, nor a local
ring, nor simple (and thus surely not isomorphic to a full matrix ring).

For the rest of this section, we consider the ring T(2,F). We use the special
elements

P :=

(
1 0
0 0

)
, N :=

(
0 1
0 0

)
.

Note the relations P 2 = P , PN = N , NP = 0, and N2 = 0. The action of
the F-linear anti-automorphism ∗ defined in 10.2 is described by P ∗ = 1 − P ,
(1 − P )∗ = P , and N∗ = N . For the construction of transvections, we note the
equalities NT(2,F)(FN + FP ) = {0} and (FN + F(1− P ))NT(2,F) = {0}.
Lemma 10.4. The set

T2 := {(1, 0), (1, 1− P ), (P, 0), (1− P, P ), (1− P,N),

(1− P, 0), (N,N), (N, 0), (0, 0) }
contains a set of representatives for the orbits under (〈∗̂〉∆T)σ≤Σ=Aut(VT(2,F))

σ.

Proof. Let (a, s) ∈ (T(2,F))2, and let Ω denote the orbit of (a, s) under Σ. As
usual, we write

a :=

(
a11 a12

0 a22

)
, s :=

(
s11 s12

0 s22

)
.

(a) If a is invertible, we apply an element of ∆σ to find (1, s) ∈ Ω. Using a suitable
transvection from ( T(2,F)T)σ and another element of ∆σ, we see that Ω contains
an element of {(1, 0), (1, 1− P )}.
(b) The case where s is invertible may be reduced to case (a), by an application
of ∗̂.
(c) Now assume a11 6= 0 = a22. An element of ∆σ yields (P, s) ∈ Ω, and a
transvection from (TT(2,F) )σ yields that Ω contains an element of {(P, 0), (P, 1 −
P )}. We note that (1−P τ)

σ maps (P, 1− P ) to (1, 1− P ).

(d) In the case a11 = 0 6= a22, we may use ∆σ to find (1−P, s) ∈ Ω. If s22 6= 0, we
may use ∗̂ to reduce this case to case (a) or case (c). If s22 = 0, we use a suitable
element ρx to find that Ω contains one of (1− P, P ), (1− P,N), or (1− P, 0).

(e) There remains the case where a ∈ FN . Up to reduction to a previous case by
an application of ∗̂, we may also assume s ∈ FN . Then Ω contains one of (N,N),
(N, 0), or (0, 0). �

Lemma 10.5. No element of T2 r {(1, 0)} belongs to the orbit (1, 0)Σ. Conse-
quently, the orbits of (1, 0) under Σ and under (〈∗̂〉∆T)σ coincide.

Proof. Computing the centralizer C(1,1−P ) ={(a, a(1−P )) | a∈T(2,F)}×T(2,F),
we find C′

(1,1−P ) = (T(2,F))′(1−P ) 6= {0}, and conclude (1, 1−P ) /∈ (1, 0)Σ. For

every v ∈ T2 r {(1, 0), (1, 1− P )}, it is easy to see that Dv, as defined in 3.7 is a
proper subset of R. Thus none of these elements belongs to the orbit (1, 0)Σ. �

Applying 5.13, we obtain:

Theorem 10.6. Aut(VT(2,F)) = 〈∗̂〉A∆TK. �
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11. Products of fields

Proposition 11.1. Let K be a field which is not commutative, with char K 6= 2.

1. If K admits an anti-automorphism ∗ then {(1, 0), (1, 1), (0, 0)} is a set of
representatives for the orbits under Σ := Aut(VK)

σ on K2, and Aut(VK) =
〈∗̂〉A∆K.

2. If K does not admit any anti-automorphisms then {(1, 0), (0, 1), (1, 1), (0, 0)}
is a set of representatives for the orbits under Σ := Aut(VK)

σ on K2, and
Aut(VK) = A∆K.

Proof. In order to show that (1, 0) and (0, 1) do not belong to the orbit (1, 1)Σ,
we compute C(1,1) = {(a, a) | a ∈ K} × K, and C′

(1,1) = K′ 6= {0} follows. Now

the subgroups (〈∗̂〉∆)σ and ∆σ of Σ suffice to prove the claims about sets of
representatives. �

Example 11.2. Let K and L be two non-commutative fields with char K 6= 2 6=
char L, and put R := K × L. We note that R′ = K′ × L′ contains invertible
elements, whence T is trivial.

We compute C(
(1,0),(0,1)

) =
(
(K× {0})× ({0} × L)

)
×R = CC(

(1,0),(0,1)
), and

D(
(1,0),(0,1)

) = R. Thus the orbits of w :=
(
(1, 0), (0, 1)

)
and of v :=

(
(1, 1), (0, 0)

)
cannot be distinguished by the methods that we have developed so far. However,
the two elements belong to different orbits under our standard group (A∆T)σ =
(A∆)σ.

If L admits an anti-automorphism ∗, we define an automorphism ϕ of VR by
putting

((
(a, x), (b, y)

)
, (c, z)

)ϕ
:=

((
(a, y∗), (b, x∗)

)
, (c,−z∗)

)
. In this case, the

elements v and w belong to the same orbit under Σ. In the general case, the map
ϕ is an isomorphism from VK×L onto VK×M, where M denotes the opposite field
for L.

If neither L nor K admits an anti-automorphism, we cannot yet decide whether
v and w belong to the same orbit under Σ. The invariants dim Cu, cu, dim CCu,
dim C′

u and dim Du coincide for both choices of u ∈ {v, w}.

However, it is possible to distinguish the orbits of e := ((1, 0), (0, 0)) and f =
((0, 1), (0, 0)) under Σ. To this end, we use the reduced form of the Heisenberg
groups that occur as centralizers:

Consider a Heisenberg group H = GH(V, Z, β) over a commutative ring
in which 2 is invertible. The center Z of H contains the commutator sub-
group H ′, and we define an alternating map βr : H/Z × H/Z → H ′ map-
ping (Z(v, x), Z(w, y)) to the (unique) square root (0, (v, w)β) of the commutator
[(v, x), (w, y)] = (0, 2(v, w)β). Now the Heisenberg group Hr = GH(H/Z,H ′, βr)
is reduced (cf. 2.6), and its isomorphism type clearly only depends on the isomor-
phism type of H. In order to distinguish Heisenberg groups H and G, it therefore
suffices to distinguishe the reduced forms Hr and Gr.
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Lemma 11.3. The reduced forms of the centralizers of (e, (0, 0)) and of (f, (0, 0))
are isomorphic to VK and VL, respectively. Therefore, the elements e and f belong
to the same orbit under Σ only if VK and VL are isomorphic; that is, only if the
fields K and L are isomorphic or anti-isomorphic to each other.

Proof. A direct computation gives Ce = {
(
(a, c), (0, u)

)
| a ∈ K, c, u ∈ L}, and,

analogously, Cf = {
(
(a, c), (s, 0)

)
| a, s ∈ K, c ∈ L}. The centralizer H := Ce ×

(K × L) of (e, (0, 0)) is a Heisenberg group with center Z := {
(
(0, c), (0, 0)

)
| c ∈

L}× (K×L) and commutator subgroup H ′ = {(0, 0)}2× (K×{0}), and βr maps(
Z

((
(a, 0), (s, 0)

)
, (0, 0)

)
, Z

((
(b, 0), (t, 0)

)
, (0, 0)

)
to

((
(0, 0), (0, 0)

)
, (at − bs, 0)

)
.

This shows Hr ∼= VK. The centralizer of (f, (0, 0)) is treated analogously. The ex-
istence of an isomorphism between VK and VL implies that K and L are isomorphic
or isomorphic to each other, see 13.2. �

12. Functorial properties

Remark 12.1. ([8] 15.6, 25.8, 25.15, 26.4) Let G be a finite group, and assume
that char F does not divide |G|. Then F[G] is a semisimple ring, and isomorphic
to a direct product of finitely many rings Ri

∼= Kni×ni
i , where each Ki is a finite

(skew-)field extension of F.
See [25] Chapter 7 for a discussion of more general situations where F[G] is

semisimple.

If F[G] is semisimple, repeated application of the following observation reduces
VF[G] to groups that are manageable – at least in principle:

Proposition 12.2. Assume that R and S are rings. Then the groups VR × VS

and VR×S are isomorphic.

Proof. The map
((

(a, s), x
)
,
(
(a′, s′), x′

))
7→

((
(a, a′), (s, s′)

)
, (x, x′)

)
is an isomor-

phism. �

Let G,H be groups, and let E,F be commutative fields. Clearly, every ring ho-
momorphism ϕ : E[G] → F[H] yields a group homomorphism

ϕ̃ : VE[G] → VF[H] :
(
(a, s), x

)
7→

(
(aϕ, sϕ), xϕ

)
.

In particular, isomorphic group rings lead to isomorphic Verardi groups, and every
automorphism of the group ring induces an automorphism of the corresponding
Verardi group.

Remarks 12.3. Non-isomorphic groups may have isomorphic group rings: Dade
[9] gives an example of two non-isomorphic groups G1, G2 (metabelian of order
p3q6 for primes p, q with q ≡ 1 mod p2) such that the group rings F[G1] and F[G2]
are isomorphic, for every commutative field F; see also [25] 14.2.2. In fact, even
the group rings Ẑr[G1] and Ẑr[G2] over the ring Ẑr of r-adic integers are always
isomorphic, see [27] p. 74. Moreover, Roggenkamp [27] VIII constructs pairs of
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nonisomorphic groups G,H of order 3 · 7 · 13 such that for each prime r the group
rings R[G] and R[H] are isomorphic for suitable extensions R of Ẑr, but the group
rings Q7[G] and Q7[H] are not isomorphic.

Proposition 12.4. 1. The isomorphism type of a Verardi group VF[G] does not
determine the isomorphism type of G.

2. The isomorphism type of a Verardi group VR does not determine the ring R,
up to isomorphism or anti-isomorphism, cf. 11.2. �

The only examples that we presently have in 12.4.2 are rings that are decompos-
able as direct products. Thus the first part of 12.4 is still interesting.

Fix a commutative field F. Each group homomorphism ϕ : G → H extends
to an algebra homomorphism F[ϕ] : F[G] → F[H], yielding a homomorphism
VF[ϕ] : VF[G] → VF[H].

Theorem 12.5. We have a faithful functor V from the category of rings in which
2 is a unit to the category of nilpotent groups of class 2.

For fixed F with char F = p > 2, we have a faithful functor VF[·] from the
category of all groups to the category of all special p-groups. �

Note, however, that there are commutative fields such that VF[·] is not injective
on (isomorphism types of) objects; cf. 12.4. The functors V and VF[·] are not full:
non-trivial central automorphisms (i.e., elements of K) never occur as images.

13. Recognition of the ring

Remark 13.1. The proofs in the previous sections use the fact that the union
(1, 0)Σ ∪ (0, 1)Σ of orbits is characterized by the following two properties:

(C) Cv is commutative.

(D) Dv = R.

Clearly, each v ∈ (1, 0)Σ ∪ (0, 1)Σ has both properties. Conversely, we have shown
that these properties imply that v belongs to an orbit under a well-understood
subgroup of Σ, at least in the following cases:

• Over each commutative ring, every element satisfying (D) belongs to
(1, 0)SL(2,R), cf. 7.1.

• Over each full matrix ring, every element that satisfies (C) belongs to the
union of orbits {(1, 0), (0, 1)}∆σ

, see 8.4.

• Over each local ring, every element that satisfies both (C) and (D) belongs
to the union of orbits {(1, 0), (0, 1)}(∆T)σ

, see 9.1.

Thus, in each of these three cases, the union {(1, 0), (0, 1)}Σ of orbits is charac-
terized by properties that are invariant under each isomorphism between Verardi
groups.
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Theorem 13.2. Let N denote the class of all rings such that 2 is invertible and
that {(1, 0), (0, 1)}Σ is characterized by the properties (C) and (D).

For rings R and S with S ∈ R, the groups VR and VS are isomorphic if, and
only if, there exists an isomorphism or an anti-isomorphism from R onto S.

Proof. Let ϕ : VR → VS be an isomorphism, and let (v, x) ∈ S2 × S be the image
of ((1, 0), 0) under ϕ. Then v has the properties (C) and (D), and our assumption
about S implies that we may assume v ∈ {(1, 0), (0, 1)}. Adapting ϕ further by
automorphisms of VS, we may also achieve that ((0, 1), 0) is mapped to (w, y),
where {v, w} = {(1, 0), (0, 1)}. The proof of 5.7 now shows that our isomorphism
is induced by an isomorphism or an anti-isomorphism of rings. �

Let us repeat again that N contains all commutative rings, all local rings, and all
full matrix rings over fields, such that 2 is invertible.

14. Open problems

Let R be a ring such that 2 is a unit in R. We have seen in 5.5 that Aut(VR)
contains the group ∆ = {λc−1ζhρd | c, h, d ∈ R×}, the group A ∼= Aut(R) induced
by automorphisms of the ring R, and the group K ∼= Hom(R2, R) of central
automorphisms. Moreover, if one-sided annihilators of R′ are not trivial, the
group T may be useful (see 5.12).

We have proved Aut(VR) = A∆TK or Aut(VR) = 〈∗̂〉A∆TK (where ∗ is some
anti-automorphism of R) in each of the following cases:

1. If R is a commutative ring such that SL(2, R) is generated by elementary
transvections, see 7.2. (For a general commutative ring, we have ΓL(2, R) =
Σ.)

2. If R is a local ring, see 9.2.

3. If R = Kn×n is a full matrix ring over a field, see 8.5 and 11.1.

4. If R = T(2,F) is the ring of all upper triangular 2 × 2 matrices over a
commutative field F, see 10.6.

The situation for commutative rings (where Σ = ΓL(2, R) may be strictly larger
than (A∆T)σ) and the example 11.2 are indications that a general proof for a
large class of rings (including all group rings of finite groups, say) is not possible.

Problem 14.1. Find conditions that ensure that Aut(VR) = A∆K, or Aut(VR) =
〈∗̂〉A∆K, where ∗ is an anti-automorphism of R.

Problem 14.2. Find conditions that ensure that either Aut(VR) = A∆TK, or
Aut(VR) = 〈∗̂〉A∆TK, where ∗ is an anti-automorphism of R.

Clearly, a necessary condition will be that the ring R is not commutative, since
Φ∆ does not induce all of GL(2, R) on VR/(VR)′, cf. 5.5.
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Problem 14.3. Find conditions on rings R, S such that the existence of an iso-
morphism between the Verardi groups VR and VS implies that R and S are (anti-)
isomorphic.

See 13.2 for examples of such criteria.

Problem 14.4. Find conditions on the Verardi groups such that the existence of
an isomorphism between the Verardi groups VR and VS implies that R and S are
(anti-)isomorphic.

An example of such a criterion is that {(1, 0), (0, 1)}Σ can be characterized by
group theoretic properties, see 13.1. A problematic case appears to be VR, where
R = K× L for fields K,L admitting no anti-automorphism, see 11.2.
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sur tout corps. Math. Z. 119 (1971), 345–348. Zbl 0201.03303−−−−−−−−−−−−
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