\mathbb{F}_1 -schemes and Toric Varieties

Anton Deitmar

Mathematisches Institut Auf der Morgenstelle 10, 72076 Tübingen, Germany e-mail: deitmar@uni-tuebingen.de

Abstract. In this paper it is shown that integral \mathbb{F}_1 -schemes of finite type are essentially the same as toric varieties. A description of the \mathbb{F}_1 -zeta function in terms of toric geometry is given. Etale morphisms and universal coverings are introduced.

MSC 2000: 14A15, 11G25, 14L32, 14M32 Keywords: F1-schemes, toric varieties, field of one element

Introduction

There are by now several attempts to make the theory of the field of one element \mathbb{F}_1 rigorous. In [10] the authors formalize the transition from rings to schemes on a categorial level and apply this machinery to the category of sets to obtain the category of \mathbb{F}_1 -schemes as in [1]. In [3] and [5] the authors extend the definition of rings in order to capture a structure that deserves to be called \mathbb{F}_1 . In [1] the author tried instead to fix the minimum properties any of these theories must share. The current paper extends this line of thought. We use terminology of [1] and [2].

In this paper, a ring will always be commutative with unit and a monoid will always be commutative. An *ideal* \mathfrak{a} of a monoid A is a subset with $A\mathfrak{a} \subset \mathfrak{a}$. A *prime ideal* is an ideal \mathfrak{p} such that $S_{\mathfrak{p}} = A \searrow \mathfrak{p}$ is a submonoid of A. For a prime ideal \mathfrak{p} let $A_{\mathfrak{p}} = S_{\mathfrak{p}}^{-1}A$ be the *localization* at \mathfrak{p} . The *spectrum* of a monoid Ais the set of all prime ideals with the obvious Zariski-topology (see [1]). Similar to the theory of rings, one defines a structure sheaf \mathcal{O}_X on $X = \operatorname{spec}(A)$, and one defines a *scheme over* \mathbb{F}_1 to be a topological space together with a sheaf of monoids, locally isomorphic to spectra of monoids.

0138-4821/93 $2.50 \odot 2008$ Heldermann Verlag

A \mathbb{F}_1 -scheme X is of finite type, if it has a finite covering by affine schemes $U_i = \operatorname{spec}(A_i)$ such that each A_i is a finitely generated monoid. For a ring R, we write X_R for the R-base-change of X, so $X_R = X_{\mathbb{Z}} \otimes_{\mathbb{Z}} R$.

For a monoid A we let $A \otimes \mathbb{Z}$ be the monoidal ring $\mathbb{Z}[A]$. This defines a functor from monoids to rings which is left adjoint to the forgetful functor that sends a ring R to the multiplicative monoid (R, \times) . This construction is compatible with gluing, so one gets a functor $X \mapsto X_{\mathbb{Z}}$ from \mathbb{F}_1 -schemes to \mathbb{Z} -schemes. In [2] we have shown that X is of finite type if and only if $X_{\mathbb{Z}}$ is a \mathbb{Z} -scheme of finite type.

We say that the monoid A is *integral*, if it has the cancellation property, i.e., if ab = ac implies b = c in A. This is equivalent to saying that A injects into its quotient group or A is a submonoid of a group.

By a module of a monoid A we mean a set M together with a map $A \times M \to M$; $(a,m) \mapsto am$ with 1m = m and (ab)m = a(bm). A stationary point of a module is a point $m \in M$ with am = m for every $a \in A$. A pointed module is a pair (M, m_0) consisting of an A-module M and a stationary point $m_0 \in M$.

1. Flatness

Recall the tensor product of two modules M, N of A:

$$M \otimes N = M \otimes_A N = M \times N/\sim,$$

where \sim is the equivalence relation generated by $(am, n) \sim (m, an)$ for every $a \in A, m \in M, n \in N$. The class of (m, n) is written as $m \otimes n$. The tensor product $M \otimes N$ becomes a module via $a(m \otimes n) = (am) \otimes n$. For example, the module $A \otimes M$ is isomorphic to M.

Let now (M, m_0) and (N, n_0) be two pointed modules of A, then $(M \otimes N, m_0 \otimes n_0)$ is a pointed module, called the pointed tensor product.

The category $Mod_0(A)$ of pointed modules and pointed morphisms has a terminal and initial object 0, so it makes sense to speak of kernels and cokernels. It is easy to see that every morphism f in $Mod_0(A)$ possesses both. One defines the *image* of f as im(f) = ker(coker(f)) and the *coimage* as coim(f) = coker(ker(f)).

A morphism is called *strong*, if the natural map from $\operatorname{coim}(f)$ to $\operatorname{im}(f)$ is an isomorphism. Kernels and cokernels are strong. If $A \xrightarrow{f} B \xrightarrow{g} C$ is given with g being strong and gf = 0, then the induced map $\operatorname{coker}(f) \to C$ is strong. Likewise, if f is strong and gf = 0, then the induced map $A \to \ker g$ is strong. A map is strong if and only if it can be written as a cokernel followed by a kernel.

The usual notion of exact sequences applies, and we say that a sequence of morphisms is *strong exact* if it is exact and all morphisms in the sequence are strong.

A module $F \in Mod_0(A)$ is called *flat*, if the functor $X \mapsto F \otimes X$ is strongexact, i.e., if for every strong exact sequence

$$0 \to M \to N \to P \to 0$$

the induced sequence

$$0 \to F \otimes M \to F \otimes N \to F \otimes P \to 0$$

is strong exact as well.

It is easy to see that a pointed module F is flat if and only if for every injection $M \hookrightarrow N$ of pointed modules the map $F \otimes M \to F \otimes N$ is an injection.

Examples. If A is a group, then every module is flat. Let S be a submonoid of A. Then the localization $S^{-1}A$ is a flat A-module. The direct sum $G \oplus F$ of two flat modules is flat. Finally, consider the free monoid in one generator $C_+ = \{1, \tau, \tau^2, \ldots\}$, then an A-module M is flat if and only if $\tau m = \tau m'$ implies m = m' for all $m, m' \in M$. This is equivalent to saying that M is a C_+ -submodule of a module of the quotient group $C_{\infty} = \tau^{\mathbb{Z}}$ of C_+ . The same characterization holds for every integral monoid.

A morphism $\varphi : A \to B$ of monoids is called flat if B is flat as an A-module. A morphism of \mathbb{F}_1 -schemes $f : X \to Y$ is called flat if for every $x \in X$ the morphism of monoids $f^{\#} : \mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$ is flat.

The following is straightforward.

- A morphism of monoids $\varphi : A \to B$ is flat if and only if the induced morphism of \mathbb{F}_1 -schemes spec $B \to \operatorname{spec} A$ is flat.
- The composition of flat morphisms is flat.
- The base change of a flat morphism by an arbitrary morphism is flat.

Remark. It is easy to see that if $\mathbb{Z}[F]$ is flat as $\mathbb{Z}[A]$ -module, then F is flat as A-module. The converse is already false if A is a group. As an example let k be a field and let A be the group of all matrices of the form $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$ where $x \in k$. Let A act on k^2 in the usual way and trivially on k. Consider the exact sequence of $\mathbb{Z}[A]$ -modules,

$$0 \longrightarrow k \xrightarrow{\alpha} k^2 \xrightarrow{\beta} k \longrightarrow 0,$$

where $\alpha(x) = \begin{pmatrix} x \\ 0 \end{pmatrix}$, $\beta\begin{pmatrix} x \\ y \end{pmatrix} = y$. Let $F = \{1\}$ the trivial A-module, then for every $\mathbb{Z}[A]$ -module M one has $M \otimes_{\mathbb{Z}[A]} \mathbb{Z}[F] = H_0(A, M)$. Note that $H_0(A, k) = k$ and that $H_0(\alpha) = 0$, so it is not injective, hence $\mathbb{Z}[F]$ is not flat.

2. Algebraic extensions

Let A be a submonoid of B. An element $b \in B$ is called *algebraic over* A, if there exists $n \in \mathbb{N}$ with $b^n \in A$. The extension B/A is called *algebraic*, if every $b \in B$ is algebraic over A. An algebraic extension B/A is called *strictly algebraic*, if for every $a \in A$ the equation $x^n = a$ has at most n solutions in B.

If B/A is algebraic, then $\mathbb{Z}[B]/\mathbb{Z}[A]$ is an algebraic ring extension, but the converse is wrong in general, as the following example shows: Let $A = \mathbb{F}_1$ and B be the set of two elements, 1 and b with $b^2 = b$.

A monoid A is called *algebraically closed*, if every equation of the form $x^n = a$ with $a \in A$ has a solution in A. Every monoid A can be embedded into an

algebraically closed one, and if A is a group, then there exists a smallest such embedding, called the *algebraic closure* of A. For example, the algebraic closure $\overline{\mathbb{F}}_1$ of \mathbb{F}_1 is the group μ_{∞} of all roots of unity, which is isomorphic to \mathbb{Q}/\mathbb{Z} .

3. Etale morphisms

Recall that a homomorphism $\varphi \colon A \to B$ of monoids is called a *local* homomorphism, if $\varphi^{-1}(B^{\times}) = A^{\times}$ (every φ satisfies " \supset "). For a monoid A let $m_A = A \smallsetminus A^{\times}$ be its maximal ideal. It is easy to see that a homomorphism $\varphi \colon A \to B$ is local if and only if $\varphi(m_A) \subset m_B$.

- A local homomorphism $\varphi \colon A \to B$ is called *unramified* if
- $\varphi(m_A)B = m_B$ and

• φ injects A^{\times} into B^{\times} and $B/\varphi(A)$ is a finite strictly algebraic extension. Note that if φ is unramified, then so are all localizations $\varphi_{\mathfrak{p}} : A_{\varphi^{-1}(\mathfrak{p})} \to B_{\mathfrak{p}}$ for $\mathfrak{p} \in \operatorname{spec} B$.

A morphism $f: X \to Y$ of \mathbb{F}_1 -schemes is called unramified, if for every $x \in X$ the local morphism $f^{\#}: \mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$ is unramified.

A morphism $f: X \to Y$ of \mathbb{F}_1 -schemes is called *locally of finite type*, if every point in Y has an open affine neighborhood $V = \operatorname{spec} A$ such that $f^{-1}(V)$ is a union of open affines $\operatorname{spec} B_i$ with B_i finitely generated as a monoid over A. The morphism is of finite type if for every point in Y the number of B_i can be chosen finite. The morphism is called finite, if every $y \in Y$ has an open affine neighborhood $V = \operatorname{spec} A$ such that $f^{-1}(V)$ is affine, equal to $\operatorname{spec} B$, where B is finitely generated as A-module.

A morphism $f: X \to Y$ of finite type is called *étale*, if f is flat and unramified. It is called an *étale covering*, if it is also finite.

Proposition 3.1. The étale coverings of spec \mathbb{F}_1 are the morphisms of the form spec $A \to \operatorname{spec} \mathbb{F}_1$, where A is a finite cyclic group. The scheme spec $\overline{\mathbb{F}}_1$ has no non-trivial étale coverings.

Proof. Clear.

A connected scheme over \mathbb{F}_1 , which has only the trivial étale covering, is called *simply connected*.

Proposition 3.2. The schemes spec $\overline{\mathbb{F}}_1$, spec $C_+ \times_{\mathbb{F}_1} \overline{\mathbb{F}}_1$ and $\mathbb{P}^1_{\overline{\mathbb{F}}_1}$ are simply connected.

Proof. The first has been dealt with. For the second, let $A = \mu_{\infty} \times C_+$. Then spec $A = \operatorname{spec} C_+ \times_{\mathbb{F}_1} \overline{\mathbb{F}}_1$. Let $f: X \to \operatorname{spec} A$ be an étale covering. As f is finite, X is affine, say $X = \operatorname{spec} B$. Let $\varphi: A \to B$ denote the corresponding morphism of monoids. The space spec A consists of two points, the generic point η_A and the closed point c_A . Likewise, let η_B, c_B denote the generic and closed points of spec B. One has $f(\eta_B) = \eta_A$. We will show that $f(c_B) = c_A$. Assume the contrary. Then

 $\varphi^{-1}(m_B)$ is empty, hence φ maps A to the unit group B^{\times} . The localization at the closed point c_B then maps $\mu_{\infty} \times C_{\infty}$ to B^{\times} and is unramified, hence injective. But as $C_+ \to C_{\infty}$ is not finite, neither can φ be finite, a contradiction. So we conclude $f(c_B) = c_A$, and so the corresponding localization, which is φ itself, is unramified. Let $s = \varphi(\tau)$, where τ is the generator of C_+ . Then $\varphi(m_A)B = m_B$ implies $m_B = sB$, and so $B = B^{\times} \cup sB$ (disjoint union). Also, B^{\times} is an algebraic extension of $A^{\times} \cong \mu_{\infty}$, hence equals $\varphi(A^{\times})$. As B is finitely generated and flat as A-module, there are $b_1, \ldots, b_r \in B$ with

$$sB = B^{\times}s^{\mathbb{N}} \cup B^{\times}s^{\mathbb{N}}b_1 \cup \cdots \cup B^{\times}s^{\mathbb{N}}b_r.$$

If we assume r > 0, then b_1 is algebraic over $\varphi(A) = B^{\times} \cup B^{\times} s^{\mathbb{N}}$, so let N be the smallest number in \mathbb{N} such that $b_1^N \in \varphi(A)$. Then $b_1^N \notin B^{\times} \cong \mu_{\infty}$, because, as the extension is strictly algebraic, then b_1 would be in B^{\times} already. So $b_1^N \in B^{\times} s^{\mathbb{N}}$. As the group B^{\times} is divisible, we can replace b_1 with a B^{\times} multiple to get $b_1^N = s^M$ for some $M \in \mathbb{N}$. Then $b_1 \notin B^{\times} s^{\mathbb{N}} b_1$, as $b_1 = b^* s^k b_1$ leads to $s^M = b_1^N = (b^*)^N s^{kN+M}$ which contradicts the injectivity of φ . But then b_1 must be in one of the other $B^{\times} s^{\mathbb{N}}$ -orbits, which contradicts the disjointness of these orbits. We conclude r = 0, i.e. $B = B^{\times} \cup B^{\times} s^{\mathbb{N}} \cong A$ as claimed. The assertion for $\mathbb{P}^1_{\mathbb{F}_1}$ is an easy consequence.

4. Toric varieties

Recall a *toric variety* is an irreducible variety V over \mathbb{C} together with an algebraic action of the r-dimensional torus GL_1^r , such that V contains an open orbit.

As toric varieties can be constructed via lattices it follows that every toric variety is the lift $X_{\mathbb{C}}$ of an \mathbb{F}_1 -scheme X. For integral schemes of finite type there is a converse direction given in the following theorem, which shows that integral \mathbb{F}_1 -schemes of finite type are essentially the same as toric varieties.

Theorem 4.1. Let X be a connected integral \mathbb{F}_1 -scheme of finite type. Then every irreducible component of $X_{\mathbb{C}}$ is a toric variety. The components of $X_{\mathbb{C}}$ are mutually isomorphic as toric varieties.

Proof. Let $U = \operatorname{spec} A$ be an open affine subset of X. Let η be the generic point of X, then the localization $G = A_{\eta}$ is the quotient group of A. At the same time, G is the stalk $\mathcal{O}_{X,\eta}$, so G does not depend on the choice of U up to canonical isomorphism. Let $\varphi : A \to G$ be the quotient map, which is injective as X is integral. The \mathbb{C} -algebra homomorphism,

$$\mathbb{C}[A] \to \mathbb{C}[G] \otimes \mathbb{C}[A] a \mapsto \varphi(a) \otimes a$$

defines an action of the algebraic group $\mathcal{G} = \operatorname{spec} \mathbb{C}[G]$ on $\operatorname{spec} \mathbb{C}[A]$. Since this is compatible with the restriction maps of the structure sheaf, we get an algebraic action of the group scheme \mathcal{G} on $X_{\mathbb{C}}$. As X is integral, $\mathcal{G} = \operatorname{spec} \mathbb{C}[G] = \operatorname{spec} \mathbb{C}[A_{\eta}]$ also is an open subset $V_{\mathbb{C}}$ of $X_{\mathbb{C}}$, and for $U_{\mathbb{C}} = \operatorname{spec} \mathbb{C}[A]$ the map

$$\mathcal{O}(U_{\mathbb{C}}) = \mathbb{C}[A] \xrightarrow{\varphi} \mathbb{C}[G] = \mathcal{O}(V_{\mathbb{C}})$$

is the restriction map of the structure sheaf \mathcal{O} of $X_{\mathbb{C}}$. The map $\mathbb{C}[A] \to \mathbb{C}[G]$ is injective and $\mathbb{C}[G]$ has zero Jacobson radical, so it follows that $V_{\mathbb{C}}$ is dense in $X_{\mathbb{C}}$, so in particular it meets every irreducible component. The group G is a finitely generated abelian group, so $G \equiv \mathbb{Z}^r \times F$ for a finite abelian group F. Hence $\mathcal{G} \equiv \operatorname{GL}_1^r \times F$ as a group-scheme. As \mathcal{G} meets every component of $X_{\mathbb{C}}$, the latter are permuted by F. Whence the claim.

To formulate the next result, we will briefly recall the standard construction of toric varieties, see [4]. Let N be a *lattice*, i.e., a group isomorphic to \mathbb{Z}^n for some n. A fan Δ in N is a finite collection of proper convex rational polyhedral cones σ in the real vector space $N_{\mathbb{R}} = N \otimes \mathbb{R}$, such that every face of a cone in Δ is in Δ and the intersection of two cones in Δ is a face of each. (Here zero is considered a face of every cone.) We explain the notation further: A convex cone is a convex subset σ of $N_{\mathbb{R}}$ with $\mathbb{R}_{\geq 0}\sigma = \sigma$, it is polyhedral, if it is finitely generated and rational, if the generators lie in the lattice N. Finally, a cone is called proper if it does not contain a non-zero sub vector space of $N_{\mathbb{R}}$.

Let a fan Δ be given. Let $M = \operatorname{Hom}(N, \mathbb{Z})$ be the dual lattice. For a cone $\sigma \in \Delta$ the dual cone $\check{\sigma}$ is the cone in the dual space $M_{\mathbb{R}}$ consisting of all $\alpha \in M_{\mathbb{R}}$ such that $\alpha(\sigma) \geq 0$. This defines a monoid $A_{\sigma} = \check{\sigma} \cap M$. Set $U_{\sigma} = \operatorname{spec}(\mathbb{C}[A_{\sigma}])$. If τ is a face of σ , then $A_{\tau} \supset A_{\sigma}$, and this inclusion gives rise to an open embedding $U_{\tau} \hookrightarrow U_{\sigma}$. Along these embeddings we glue the affine varieties U_{σ} to obtain a variety X_{Δ} over \mathbb{C} , which has a given \mathbb{F}_1 -structure. Then X_{Δ} is a toric variety, the torus being $U_0 \cong \operatorname{GL}_1^n$. Every toric variety is given in this way.

Lemma 4.2. Let B be a submonoid of the monoid A of finite index. Then the map ψ : spec $A \rightarrow$ spec B defined by $\psi(\mathfrak{p}) = \mathfrak{p} \cap B$ is a bijection.

Proof. Let $N \in \mathbb{N}$ be such that $a^N \in B$ for every $a \in A$. To see injectivity, let $\psi(\mathfrak{p}) = \psi(\mathfrak{q})$ and let $a \in \mathfrak{p}$. Then $a^N \in \mathfrak{q}$ and so $a \in \mathfrak{q}$ as \mathfrak{q} is a prime ideal. This shows $\mathfrak{p} \subset \mathfrak{q}$ and by symmetry we get equality. For surjectivity, let $\mathfrak{p}_B \in \operatorname{spec} B$ and let $\mathfrak{p} = \{a \in A : a^N \in \mathfrak{p}_B\}$. Then $\psi(\mathfrak{p}) = \mathfrak{p}_B$.

Proposition 4.3. Suppose that Δ is a fan in a lattice of dimension n. For $j = 0, \ldots, n$ let f_j be the number of cones in Δ of dimension j. Set

$$c_j = \sum_{k=j}^n f_{n-k} (-1)^{k+j} \begin{pmatrix} k \\ j \end{pmatrix}.$$

Let X be the corresponding toric variety, then the \mathbb{F}_1 -zeta function of X equals

$$\zeta_X(s) = s^{c_0}(s-1)^{c_1}\cdots(s-n)^{c_n}.$$

Proof. Let $\sigma \in \Delta$ be a cone of dimension k. Let F be a face of $\check{\sigma}$. Let $\mathfrak{p}_F = A_{\sigma} \smallsetminus F$. Then \mathfrak{p}_F is a non-empty prime ideal in A_{σ} . The map $F \mapsto \mathfrak{p}_F$ is a bijection between the set of all faces of $\check{\sigma}$ and the set of non-empty prime ideals of A_{σ} . The set $S_{\mathfrak{p}} = A \backsim \mathfrak{p}$ equals $M \cap F$. The quotient group $\operatorname{Quot}(S_{\mathfrak{p}})$ is isomorphic to \mathbb{Z}^f , where f is the dimension of F. There is a bijection between the set of faces of σ and the set of faces of $\check{\sigma}$ mapping a face τ to the face F of all $\alpha \in \check{\sigma}$ with $\alpha(\tau) = 0$. The dimension of F then equals $n - \dim(\tau)$. So let f_j^{σ} denote the number of faces of σ of dimension j. Then the zeta polynomial of X_{σ} equals

$$N_{\sigma}(x) = \sum_{k=0}^{n} f_k^{\sigma} (x-1)^{n-k}.$$

Let N_{Δ} be the zeta polynomial of X_{Δ} . We get

$$N_{\Delta}(x) = \sum_{k=0}^{n} f_{k}(x-1)^{n-k}$$

= $\sum_{k=0}^{n} f_{k} \sum_{j=0}^{n-k} {\binom{n-k}{j}} x^{j}(-1)^{n-k-j}$
= $\sum_{k=0}^{n} f_{n-k} \sum_{j=0}^{k} {\binom{k}{j}} x^{j}(-1)^{k-j}$
= $\sum_{j=0}^{n} x^{j} \sum_{k=j}^{n} f_{n-k} {\binom{k}{j}} (-1)^{k-j}.$

This implies the claim.

5. Valuations

On the infinite cyclic monoid $C_+ = \{1, \tau, \tau^2, \ldots\}$ we have a natural linear order given by $\tau^k \leq \tau^l \Leftrightarrow k \leq l$. Let φ, ψ be two monoid morphisms from a monoid A to C_+ . Then define $\varphi \leq \psi \Leftrightarrow \varphi(a) \leq \psi(a) \ \forall a \in A$. A valuation on A is a non-trivial homomorphism $v : A \to C_+$ which is minimal with respect to the order \leq among all non-trivial homomorphisms from A to C_+ . Let V(A) denote the set of valuations on A.

Lemma 5.1. Let

 $1 \longrightarrow A \longrightarrow B \xrightarrow{\varphi} F \longrightarrow 1$

be an exact sequence of monoids, where F is a finite abelian group. Then for every valuation $v \in V(A)$ there exists a unique valuation w on B and $k \in \mathbb{N}$ such that

$$w|_A = v^k.$$

Mapping v to w sets up a bijection from V(A) to V(B).

Proof. Let F' be a subgroup of F and let B' be the preimage of F' under φ . We get two exact sequences

 $1 \longrightarrow A \longrightarrow B' \longrightarrow F' \longrightarrow 1,$

and

$$1 \longrightarrow B' \longrightarrow B \longrightarrow F/F' \longrightarrow 1.$$

Assume we have proven the lemma for each of these two sequences, then it follows for the original one. In this way we reduce the proof to the case when F is a finite cyclic group. We first show existence of w for given v. For this let f_0 be a generator of F and let l be its order. Choose a b_0 in the preimage $\varphi^{-1}(f_0)$. Then $b_0^l \in A$, and $v(b_0^l) = \tau^n$ for some $n \ge 0$. If n = 0, then set k = 1 and define $w : B \to C_+$ by $w(b_0^j a) = v(a)$ for $a \in A$ and $j \ge 0$. If n > 0, then set $k = l/\gcd(l, n)$ and let $w : B \to C_+$ be defined by $w(b_0^j a) = \tau^j v(a)^k$. This shows existence of the extension w.

6. Cohomology

Cohomology is not defined over \mathbb{F}_1 . I am grateful to Ofer Gabber for bringing the following example to my attention. Let X be the topological space consisting of three points η, X_+, x_- . The open sets besides the trivial ones are $U = \{\eta\}, U_+ = \{\eta, x_+\}, U_- = \{\eta, x_-\}$. Let A be a subgroup of the abelian group B and let C = B/A. Let \mathcal{F} be the sheaf of abelian groups on X with $\mathcal{F}(U_{\pm}) = A$ and $\mathcal{F}(U) = B$ and the restriction being the inclusion. Let \mathcal{G} be the constant sheaf B and let \mathcal{H} be the quotient sheaf \mathcal{G}/\mathcal{F} . As \mathcal{G} is flabby, the long cohomology sequence terminates and looks like this:

$$0 \to H^0(\mathcal{F}) \to H^0(\mathcal{G}) \to H^0(\mathcal{H}) \to H^1(\mathcal{F}) \to 0.$$

In concrete terms this is

$$0 \to A \to B \to C \times C \to (C \times C)/\Delta \to 0,$$

where Δ means the diagonal in $C \times C$. Let $f: X \to X$ be the homeomorphism with $f(x_+) = x_-$, $f(x_-) = x_+$, and $f(\eta) = \eta$. There is a natural isomorphism $f_*\mathcal{F} \cong \mathcal{F}$ and for the other sheaves as well. On the global sections of \mathcal{F} and \mathcal{G} this induces the trivial map, whereas on $H^0(\mathcal{H})$ it induces the flip $(a, b) \mapsto (b, a)$, which on $H^1(\mathcal{F})$ amounts to the same as the inversion $a \mapsto -a$. The naturality of these isomorphisms means that if the sheaves and the cohomology groups are defined over \mathbb{F}_1 , then so must be the flip. This, however, is not the case, as for a set S the inversion on the abelian group $\mathbb{Z}[S]$ is not induced by a self-map of S.

Even more convincing is the fact that in this example there are different injective resolutions which produce different cohomology groups.

References

- Deitmar, A.: Schemes over 𝔽₁. In: Geer, G. van der; Moonen, B. J. J.; Schoof, R. (eds.), Number Fields and Function Fields – Two Parallel Worlds. Progress in Mathematics 239 (2005), 87–100. Zbl 1098.14003
- [2] Deitmar, A.: Remarks on zeta functions and K-theory over \mathbb{F}_1 . Proc. Japan Acad., Ser. A, **82**(8) (2006), 141–146. Zbl pre05161657
- [3] Durov, N.: New Approach to Arakelov Geometry. http://arxiv.org/abs/0704.2030
- [4] Fulton, W.: Introduction to toric varieties. The 1989 William H. Roever Lectures in Geometry. Annals of Mathematics Studies 131. Princeton University Press, Princeton, NJ, 1993
 Zbl 0813.14039
- [5] Haran, S.: *Non-additive geometry*. Compos. Math. **143** (2007), 618–688. Zbl pre05166038
- [6] Kurokawa, B.; Ochiai, H.; Wakayama, A.: Absolute Derivations and Zeta Functions. Doc. Math., J. DMV Extra Vol. 2003, 565–584. Zbl 1101.11325
- [7] Kurokawa, N.: Zeta functions over \mathbb{F}_1 . Proc. Japan Acad. Ser. A, Math. Sci. **81**(10) (2005), 180–184.
- [8] Soulé, C.: Les variétés sur le corps à un élément. Mosc. Math. J. 4(1) (2004), 217–244.
 Zbl 1103.14003
- [9] Tits, J.: Sur les analogues algébriques des groupes semi-simples complexes. Centre Belge Rech. math., Colloque d'Algèbre supérieure, Bruxelles du 19 au 22 déc. 1956, (1957), 261–289.
 Zbl 0084.15902
- [10] Toen, B.; Vaquie, M: Under Spec Z. http://arxiv.org/abs/math/0509684

Received July 8, 2007