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Abstract. We study surfaces in TN that are area-stationary with re-
spect to a neutral Kähler metric constructed on TN from a Rieman-
nian metric g on N. We show that holomorphic curves in TN are area-
stationary. However, in general, area-stationary surfaces are not holo-
morphic. We prove this by constructing counter-examples. In the case
where g is rotationally symmetric, we find all area-stationary surfaces
that arise as graphs of sections of the bundle TN→N and that are ro-
tationally symmetric. When (N,g) is the round 2-sphere, TN can be
identified with the space of oriented affine lines in R3, and we exhibit a
two parameter family of area-stationary tori that are neither holomor-
phic nor Lagrangian.
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One-dimensional submanifolds of neutral Kähler four-manifolds have been studied
recently in the context of twistor theory and integrable systems (cf. [2] and ref-
erences therein). For example, quotienting out by the integral curves of non-null
or null Killing vector fields leads to Einstein-Weyl three-manifolds or projective
surfaces, respectively.

In the case of two-dimensional submanifolds in neutral Kähler four-manifolds,
the objects of study in this paper, the null/non-null dichotomy is insufficient. In
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particular, the metric induced on such a submanifold by the neutral metric can be
positive or negative definite, Lorentz or degenerate, with two possible degrees of
degeneracy. Moreover, while the geometry of surfaces in positive definite Kähler
four-manifolds is well developed, particularly in the Kähler-Einstein case [5], for
indefinite metrics many of these results do not hold.

The main purpose of this paper then is two-fold: to investigate the geomet-
ric properties of two-dimensional submanifolds of a class of neutral Kähler four-
manifolds and, by so doing, to illustrate the differences between the neutral and
Hermitian cases.

The particular class of neutral Kähler structures we consider have recently
been studied on TN, the total space of the tangent bundle to a Riemannian two-
manifold (N,g) [3], [4]. This construction is motivated by the neutral Kähler
metric on the space of oriented lines in R3 and on the space of time-like lines in
R2+1. Aside from the signature, these Kähler four-manifolds differ from the more
commonly studied Kähler four-manifolds in a number of crucial ways: they are
non-compact and are Kähler-Einstein only in the case when (N,g) is flat. They
are, however, scalar flat, and the symplectic structure is exact.

In the next section we discuss neutral Kähler metrics and some of their prop-
erties. We also outline the construction of the neutral Kähler structure on TN and
the geometric structures induced on surfaces in TN. In the following section we
derive the equations for area-stationary graphs in TN and show that holomorphic
curves are area-stationary. In Section 3 we look at rotationally symmetric graphs
and determine all of these that area-stationary. In addition, we give a construction
for surfaces on which the induced metric is degenerate at every point.

In the final section, we look at the case of TS2, which we identify with the space
L of oriented affine lines in R3. There we construct area-stationary tori that are
neither holomorphic nor Lagrangian, and investigate their geometric properties.
This two-parameter families of surfaces are analogous to the catenoid in R3, being
the unique rotationally symmetric area-stationary surfaces in L.

1. The neutral Kähler metric on TN

We begin with some general properties of a Kähler surface (M, G, J, Ω). That is,
M is a real 4-manifold endowed with the following structures. First, there is the
metric G, which we do not insist be positive definite – it may also have neutral
signature (+ +−−). In order to deal with both cases simultaneously we assume
that the metric can be diagonalised pointwise to (1, 1, ε, ε), for ε = ±1.

In addition, we have a complex structure J, which is a mapping J : TpM →
TpM at each p ∈ M, which satisfies J2 = −Id and an integrability condition.
Finally, there is a symplectic form Ω, which is a closed, non-degenerate 2-form.
These structures are required to satisfy the compatibility conditions:

G(J·, J·) = G(·, ·) G(·, ·) = Ω(J·, ·).

The following calibration identity highlights the difference between the case where
G is positive definite and where it is neutral.
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Theorem 1. [4] Let p ∈ M and v1, v2 ∈ TpM span a plane. Then

Ω(v1, v2)
2 + ες2(v1, v2) = det G(vi, vj),

where ς2(v1, v2) ≥ 0 with equality iff {v1, v2} spans a complex plane.

In the Hermitian case, ε = 1 and the above equality implies Wirtinger’s inequality:
the symplectic area is bounded above by the metric area.

Given a surface Σ in M, we say that Σ is holomorphic if J preserves the
tangent space of Σ, while it is Lagrangian if the symplectic form pulled back to
Σ vanishes. A further consequence of the above theorem is that, in the positive
definite case, a surface cannot be both holomorphic and Lagrangian. In the neutral
case, however, this is not true: a surface can be both holomorphic and Lagrangian,
the only requirement being that the metric must be maximally degenerate along
such a surface. We call such surfaces totally null surfaces and the full details of
this are included in Proposition 3 below.

We turn now to the construction of a neutral Kähler structure on TN – fur-
ther details can be found in [3], [4]. Given a Riemannian 2-manifold (N,g,j) we
construct a canonical Kähler structure (J,Ω,G) on the tangent bundle TN as fol-
lows. The Levi-Civita connection associated with g splits the tangent bundle
TTN∼=TN⊕TN and the almost complex structure is defined to be J = j ⊕ j.
This turns out to satisfy the appropriate integrability condition and so we have a
complex structure on TN.

To define the symplectic form, consider the metric g as a mapping from TN
to T∗N and pull back the canonical symplectic 2-form Ω∗ on T∗N to a symplectic
2-form Ω on TN. Finally, the metric is defined as above by G(·, ·) = Ω(J·, ·). The
triple (J, Ω, G) determines a Kähler structure on TN.

Proposition 1. [3] Let (TN, J, Ω, G) be the Kähler surface, as above. Then the
metric G has neutral signature (++−−) and is scalar-flat. Moreover, G is Kähler-
Einstein iff g is flat, and G is conformally flat iff g is of constant curvature.

Choose holomorphic coordinates ξ on N so that ds2 = e2udξdξ̄ for u = u(ξ, ξ̄),
and corresponding coordinates (ξ,η) on TN by identifying

(ξ, η) ↔ η
∂

∂ξ
+ η̄

∂

∂ξ̄
∈ TξN.

These coordinates turn out to be holomorphic with respect to the above complex
structure on TN and the symplectic 2-form has the following expression:

Ω = 2Re
(
e2udη ∧ dξ̄ + η∂(e2u)dξ ∧ dξ̄

)
.

Here we have introduced the notation ∂ for differentiation with respect to ξ-
notation that we will use throughout this paper. The symplectic 2-form is globally
exact Ω = dΘ, where Θ = ηe2udξ̄ + η̄e2udξ. Thus, for a closed surface Σ in TN∫

Σ

Ω = 0.
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On the other hand, the Kähler metric G is given in holomorphic coordinates by

G = 2Im
(
e2udη̄dξ − η∂(e2u)dξdξ̄

)
.

We now consider surfaces in TN which arise as the graph of a local section of the
bundle TN→N, that is, a map ξ → (ξ, η = F (ξ, ξ̄)). For such a surface introduce
the following notation for the complex slopes:

σ = −∂F̄ ρ = e−2u∂
(
Fe2u

)
,

and let λ = Im ρ.

Proposition 2. [3] A graph of a local section is holomorphic iff σ = 0 and is
Lagrangian iff λ = 0.

Turning to the metric on a graph, the following makes explicit the identity con-
tained in Theorem 1:

Proposition 3. [4] The metric (and its inverse) induced on the graph of a section
by the Kähler metric is given in coordinates (ξ, ξ̄) by

G = e2u

[
iσ −λ
−λ −iσ̄

]
G−1 =

e−2u

λ2 − σσ̄

[
iσ̄ −λ
−λ −iσ

]
.

In particular, the determinant of the induced metric is |G| = (λ2− σσ̄)e4u. Thus,
the metric is Lorentz iff λ2 < σσ̄, Riemannian iff λ2 > σσ̄ and degenerate if
λ2 = σσ̄. The metric induced on a holomorphic, Lagrangian graph is identically
zero, and we call such a surface totally null.

This has the following corollary:

Corollary 1. The metric induced on a closed surface in TN cannot be positive
(or negative) definite everywhere.

Proof. Since the symplectic form is exact, as noted previously, its integral over
any closed surface is zero. Thus, the symplectic form must vanish somewhere on
the surface. By Theorem 1, at such points the determinant of the induced metric
is either zero or negative. That is, the metric must be either degenerate or Lorentz
at these points. �

2. Area-stationary graphs

The area form of the induced metric is |G| 12 dξ ∧ dξ̄, and the following proposition
deals with stationary values of the area functional:

Proposition 4. Let Σ ↪→ TN be a surface which is given by the graph of a func-
tion ξ → (ξ, η = F (ξ, ξ̄)). Assume that the metric is not degenerate on Σ. Then
Σ is area-stationary iff

i∂

(
λ√

|λ2 − σσ̄|

)
− e−2u∂̄

(
σe2u√
|λ2 − σσ̄|

)
= 0. (2.1)
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Proof. From Proposition 3 the area functional evaluated on a graph Σ is

A(Σ) =

∫
Σ

dvol(G) =

∫
Σ

|G|
1
2 dξdξ̄ =

∫
Σ

|λ2 − σσ̄|
1
2 e2u dξdξ̄.

Varying the graph F we have

δA(F ) = 1
2

∫
Σ

|λ2 − σσ̄|−
1
2 δ(λ2 − σσ̄)e2u dξdξ̄.

Now

δ(λ2 − σσ̄) =2λδλ− σδσ̄ − σ̄δσ

=− iλe−2u
(
∂(δFe2u)− ∂̄(δF̄ e2u)

)
+ σ∂̄(δF ) + σ̄∂(δF̄ ),

and so

δA(F ) =
1

2

∫
Σ

[
−iλe−2u

(
∂(δFe2u)− ∂̄(δF̄ e2u)

)
+ σ∂̄(δF ) + σ̄∂(δF̄ )

] e2u dξdξ̄

|λ2 − σσ̄| 12
.

Integrating by parts we get

δA(F ) =
1

2

∫
Σ

(
ie2u∂

(
λ

|λ2 − σσ̄| 12

)
− ∂̄

(
σe2u

|λ2 − σσ̄| 12
)

))
δF dξdξ̄

+
1

2

∫
Σ

(
−ie2u∂̄

(
λ

|λ2 − σσ̄| 12

)
− ∂

(
σ̄e2u

|λ2 − σσ̄| 12
)

))
δF̄ dξdξ̄.

A graph F is area-stationary if δA(F ) = 0 for all δF , and so the result follows. �

The previous proposition has the following corollary:

Corollary 2. Holomorphic graphs in TN are area-stationary.

Proof. Suppose that the graph of the section is holomorphic. Then σ = 0 and
we see that

i∂

(
λ√

|λ2 − σσ̄|

)
− e−2u∂̄

(
σe2u√
|λ2 − σσ̄|

)
= i∂

(
λ

|λ|

)
= 0,

and so by the previous proposition it is area-stationary. �

3. Rotationally symmetric area-stationary graphs

Let (N,g) be a Riemannian two-manifold.

Definition 1. The metric g is rotationally symmetric if there exists a conformal
coordinate system (ξ, ξ̄) such that g = e2udξdξ̄ for u = u(|ξ|).
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In other words, the metric is invariant under ξ → ξeiC . Such an isometry of
(N,g) lifts to an isometry (ξ, η) → (ξeiC , ηeiC) of the Kähler metric on TN by the
derivative map [4].

Definition 2. Let g be rotationally symmetric. A surface in TN is rotationally
symmetric if it is invariant under the induced isometry of TN. A graph ξ → (ξ, η =
F (ξ, ξ̄)) is rotationally symmetric iff F (ξ, ξ̄) = G(R)eiθ for some complex-valued
function G, where ξ = Reiθ.

The following theorem characterises area-stationary graphs in TN that are rota-
tionally symmetric:

Theorem 2. Let (N,g) be a rotationally symmetric Riemannian two-manifold
and G be the associated neutral Kähler metric on TN. A rotationally symmetric
surface which is given by the graph of a local section ξ → (ξ, η = F (ξ, ξ̄)) is
area-stationary with respect to G iff

F =
[
A1R + B1R

−1e−2u ± i
[
A2R

2 + B2e
−2u −B2

1R
−2e−4u

] 1
2

]
eiθ,

for A1, A2, B1, B2 ∈ R, A2 6= 0, where ξ = Reiθ and g = e2udξdξ̄ for u = u(R).

Proof. Let F = (H ± iΨ
1
2 )eiθ for real functions H = H(R) and Ψ = Ψ(R).

Substituting this in equation (2.1) we get a pair of coupled non-linear 2nd order
ordinary differential equations for H and Ψ, which can be written

Ψ̈ + p1Ψ̇ + q1Ψ = L1 Ψ̈ + p2Ψ̇ + q2Ψ = L2, (3.1)

where a dot represents differentiation with respect to R and

p1 = −1 + R2(ü− 2u̇2)

R(1 + Ru̇)
q1 = −2(u̇−R(ü− 2u̇2))

R(1 + Ru̇)

L1 =
RḢ −H

R2(1 + Ru̇)2

[
R2(1 + Ru̇)Ḧ − (1 + 2Ru̇ + R2ü)(RḢ −H)

]
,

and

p2 = − 2RḦ

RḢ −H
− 3 + 4Ru̇2 −R2(ü− 2u̇2)

R(1 + Ru̇)

q2 = − 4RḦ

RḢ −H
− 2(3u̇ + R(6u̇2 − ü)− 2R2(ü− 2u̇2)u̇)

R(1 + Ru̇)

L2 = −2(RḢ −H)2

R2
.

To solve these equations proceed as follows: first solve the homogenous version of
the first equation in (3.1) for Ψ and then use variation of parameters to solve the
inhomogeneous equation for Ψ = Ψ(R, u̇, ü, H, Ḣ, Ḧ). Then substitute this in the
second equation of (3.1) and solve for H = H(R).

We now carry this out in detail. Start by noting that Ψ = R2 is a solution
of the homogenous version of the first equation of (3.1). Now the other linearly
independent solution of the homogenous equation can be found by recourse to the
following lemma:
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Lemma 1. [1] Let Ψ = Ψ1 be a solution of the 2nd order linear homogenous
ordinary differential equation Ψ̈ + p(R)Ψ̇ + q(R)Ψ = 0. Then the other linearly
independent solution is

Ψ2 = Ψ1

∫
Ψ−2

1 e−P dR where P (R) =

∫
p(R)dR.

In our case, Ψ1 = R2 and

p(R) = p1 = −1 + R2(ü− 2u̇2)

R(1 + Ru̇)
= − d

dR
ln
[
R(1 + Ru̇)e−2u

]
,

so that the second solution is

Ψ2 = R2

∫
R−3(1 + Ru̇)e−2udR = −1

2
e−2u.

Thus the homogenous solution to first equation of (3.1) is

Ψ = A2R
2 + B2e

−2u,

for real constants A2 and B2.
To solve the full equation we now use variation of parameters:

Ψ = R2(A2 − I1) + e−2u(B2 + I2),

where

I1 =

∫
L1

2R(1 + Ru̇)
dR I2 =

∫
RL1

2(1 + Ru̇)e−2u
dR.

The first of these can be completely integrated

I1 = −

[
RḢ −H

2R(1 + Ru̇)

]2

,

while the second can be integrated by parts to

I2 = −

[
RḢ −H

2(1 + Ru̇)

]2

e2u +

∫
(RḢ −H)2

2R(1 + Ru̇)
e2udR.

Thus the solution of the first equation of (3.1) is

Ψ = A2R
2 + B2e

−2u + e−2u

∫
(RḢ −H)2

2R(1 + Ru̇)
e2udR. (3.2)

Substituting this in the second equation of (3.1) yields the following:

A2(1 + Ru̇)
[
R2(1 + Ru̇)Ḧ + [1 + 2Ru̇−R2(ü− 2u̇2)]

[
RḢ −H

]]
= 0.
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If A2 = 0 we find that the surface is degenerate, (cf. Proposition 5 below). Also,
since 1 + Ru̇ is not identically zero, we must solve

R2(1 + Ru̇)Ḧ + [1 + 2Ru̇−R2(ü− 2u̇2)]
[
RḢ −H

]
= 0.

This has one solution given by H1 = R and we apply Lemma 1 to find the second
solution:

H2 = R

∫
R−2e−P dR,

where

P =

∫
1 + 2Ru̇−R2(ü− 2u̇2)

R(1 + Ru̇)
dR = − ln

(
R−1(1 + Ru̇)e−2u

)
.

Thus

H2 = R

∫
R−3(1 + Ru̇)e−2udR = −1

2
R−1e−2u,

and the complete solution is

H = A1R + B1R
−1e−2u.

Substituting this back in equation (3.2) we find that

Ψ = A2R
2 + B2e

−2u −B2
1R

−2e−4u,

which completes the theorem. �

The following deals with the case A2 = 0:

Proposition 5. Let (N,g) be a rotationally symmetric Riemannian two-manifold
and G be the associated neutral Kähler metric on TN. Then the induced metric is
degenerate on the graph ξ → (ξ, η = F (ξ, ξ̄)) with:

F =

H(R)± i

[
B2e

−2u + e−2u

∫
(RḢ −H)2

2R(1 + Ru̇)
e2udR

] 1
2

 eiθ,

for any real differentiable function H.

Proof. The slopes λ and σ can be readily computed for this surface and it is
then found that λ2 = σσ̄. �

Remark. In presence of any Killing vector field on (N,g) we expect that a cor-
responding invariant area-stationary graph-type surface in TN exists and is given
by a similar construction.
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4. The space of oriented affine lines in R3

The four-manifold TS2 can be identified with the space L of oriented affine lines
in R3, and the neutral Kähler metric G, as constructed above with g equal to the
round metric on S2, is invariant under the action induced on L by the Euclidean
isometry group acting on R3 [3].

A surface Σ in L is a two-parameter family of oriented lines (or line congru-
ence) in R3, which is the graph of a section of the bundle L → S2 iff it can be
parameterised by the direction ξ of the oriented lines. Moreover, a surface in L is
Lagrangian iff the associated line congruence is orthogonal to a surface in R3.

For the round metric e2u = 4(1 + ξξ̄)−2 and the above construction of area-
stationary line congruences in L simplifies to:

Theorem 3. A rotationally symmetric surface in L which is given by the graph
of a local section ξ → (ξ, η = F (ξ, ξ̄)) is area-stationary with respect to G iff

F =
[
A1R + B1R

−1(1 + R2)2 ± i
[
A2R

2 + B2(1 + R2)2 −B2
1R

−2(1 + R2)4
] 1

2

]
eiθ,

for A1, A2, B1, B2 ∈ R, A2 6= 0, where ξ = Reiθ and g = e2udξdξ̄ for u = u(R).

To find closed area-stationary surfaces, we must have B1 = 0, since otherwise the
surface is asymptotic to the fibre of the bundle L → S2 at R = 0. In addition, by
a translation we can set A1 = 0 and the surface is determined by

F = ±i
[
B2 + C2R

2 + B2R
4
] 1

2 eiθ,

for C2 ∈ R such that −2B2 ≤ C2, and B2 ≥ 0.
This can be extended through R = 0 and R →∞ and yields a two parameter

family of area-stationary tori for C2 6= 2B2. Under the projection map L → S2

these tori double cover the sphere, except at the north and south pole, where the
inverse image of each of these points is a circle.

The induced metric is positive definite on the upper part and negative definite
on the lower part of these tori, or vice versa, depending on the sign of C2 − 2B2.
The inner and outer meridian circles (given by R = 1) are totally null: the surface
is both Lagrangian and holomorphic at these points.

Finally for C2 = 2B2

F = ±i
√

B2

(
1 + R2

)
eiθ,

is a torus on which the induced metric is degenerate.
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