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1. Introduction

The notion of curvature, which is one of the most fundamental concepts in dif-
ferential geometry, retrieves its combinatorial or geometric meaning in synthetic
differential geometry. It was Kock [5] who studied it up to the second Bianchi
identity synthetically for the first time. In particular, he has revealed the com-
binatorial nature of the second Bianchi identity by deducing it from an abstract
one.

Kock [5] trotted out first neighborhood relations, which are indeed to be seen
in formal manifolds, but which are no longer expected to be seen in microlinear
spaces in general. Since we believe that microlinear spaces should play the same
role in synthetic differential geometry as smooth manifolds have done in classical
differential geometry, we have elevated his ideas to a microlinear context in [11].

Recently we got accustomed to groupoids, which encouraged us to attack the
same problem once again. Within the framework of groupoids, we find it pleasant
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to think multiplicatively rather than additively (cf. Nishimura [14]), which helps
grasp the nature of the second Bianchi identity firmly. Now we are to the point.
What we have to do in order to illicit the classical second Bianchi identity from
the combinatorial one is only to note some commutativity on the infinitesimal
level, though groupoids are, by and large, highly noncommutative. Our present
experience is merely an example of the familiar wisdom in mathematics that a
good generalization reveals the nature.

2. Preliminaries

2.1. Synthetic differential geometry

Our standard reference on synthetic differential geometry is Chapters 1–5 of
Lavendhomme [7]. We will work internally within a good topos, in which the
intended set R of real numbers is endowed with a cornucopia of nilpotent in-
finitesimals pursuant to the general Kock-Lawvere axiom. To see how to build
such a good topos, the reader is referred to Kock [2] or Moerdijk and Reyes [9].
Any space mentioned in this paper will be assumed to be microlinear. We denote
by D the set {d ∈ R | d2 = 0}, as is usual in synthetic differential geometry.

Given a group G, we denote by AG the tangent space of G at its identity,
i.e., the totality of mappings t : D → G such that t0 is the identity of G. We will
often write td rather than t(d) for any d ∈ D. As we will see shortly, AG is more
than an R-module.

Proposition 1. For any t ∈ AG and any (d1, d2) ∈ D(2), we have

td1+d2 = td1td2 = td2td1

so that td1 and td2 commute.

Proof. By the same token as in Proposition 3 of §3.2 of Lavendhomme [7].

As an easy corollary of this proposition, we can see that

t−d = (td)
−1

since we have (d,−d) ∈ D(2).

Proposition 2. For any t1, t2 ∈ AG, we have

(t1 + t2)d = (t2)d(t1)d = (t1)d(t2)d

for any d ∈ D, so that (t1)d and (t2)d commute.

Proof. By the same token as in Proposition 6 of §3.2 of Lavendhomme [7].

As an easy consequence of this proposition, we can see, by way of example, that
(t1)d1d2 and (t2)d1d3 commute for any d1, d2, d3 ∈ D, since we have

(t1)d1d2(t2)d1d3 = (d2t1)d1(d3t2)d1 = (d3t2)d1(d2t1)d1 = (t2)d1d3(t1)d1d2 .
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Proposition 3. For any t1, t2 ∈ AG, there exists a unique s ∈ AG such that

sd1d2 = (t2)−d2(t1)−d1(t2)d2(t1)d1

for any d1, d2 ∈ D.

Proof. By the same token as in pp. 71–72 of Lavendhomme [7].

We will write [t1, t2] for the above s.

Theorem 4. The R-module AG endowed with the above Lie bracket [·, ·] is a Lie
algebra over R.

Proof. By the same token as in our previous paper [13].

Remark 5. The idea that group-theoretic commutators lead to Lie algebras has
long been known in standard differential geometry, and the reader is referred
to p. 57 of [16] for its first synthetic treatment. However we should stress that
general Jacobi structures discovered by Nishimura [10] are more fundamental than
Lie algebras in synthetic differential geometry. The latter can easily be derived
from the former in case that groups are available, but the former can be available
without the latter in sight, for which the reader is referred to Nishimura [15].

2.2. Groupoids

Groupoids are, roughly speaking, categories whose morphisms are always invert-
ible. Our standard reference on groupoids is MacKenzie [8]. Given a groupoid G
over a base M with its object inclusion map id : M → G and its source and target
projections α, β : G → M , we denote by B(G) the totality of bisections of G, i.e.,
the totality of mappings σ : M → G such that α◦σ is the identity mapping on M
and β ◦ σ is a bijection of M onto M . It is well known that B(G) is a group with
respect to the operation ∗, where for any σ, ρ ∈ B(G), σ ∗ ρ ∈ B(G) is defined to
be

(σ ∗ ρ)(x) = σ((β ◦ ρ)(x))ρ(x)

for any x ∈ M . It can easily be shown that the space B(G) is microlinear,
provided that both M and G are microlinear, for which the reader is referred to
Proposition 6 of Nishimura [13].

Given x ∈ M , we denote by An
xG the totality of mappings γ : Dn → G with

γ(0, . . . , 0) = idx and (α◦γ)(d1, . . . , dn) = x for any (d1, . . . , dn) ∈ Dn. We denote
by AnG the set-theoretic union of An

xG’s for all x ∈ M . In particular, we usually
writeAxG andAG in place ofA1

xG andA1G respectively. It is easy to see thatAG
is naturally a vector bundle over M . A morphism ϕ : H → G of groupoids over M
naturally gives rise to a morphism ϕ∗ : AH → AG of vector bundles over M . As
in §3.2.1 of Lavendhomme [7], where three distinct but equivalent viewpoints of
vector fields are presented, the totality Γ(AG) of sections of the vector bundle AG
can canonically be identified with the totality of tangent vectors to B(G) at id,
for which the reader is referred to Nishimura [13]. We will enjoy this identification
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freely, and we dare to write Γ(AG) for the totality of tangent vectors to B(G) at
id. Given X, Y ∈ Γ(AG), we define a microsquare Y ∗X to B(G) at id to be

(Y ∗X)(d1, d2) = Yd2 ∗Xd1

for any (d1, d2) ∈ D2.
Given γ ∈ An+1G and e ∈ D, we define γi

e ∈ AnG (1 ≤ i ≤ n + 1) to be

γi
e(d1, . . . , dn) = γ(d1, . . . , di−1, e, di, . . . , dn)γ(0, . . . , 0, e

i
, 0, . . . , 0)−1

for any (d1, . . . , dn) ∈ Dn. For our later use in the last section of this paper, we
introduce a variant of this notation. Given γ ∈ An+2G and e1, e2 ∈ D, we define
γi,j

e1,e2
∈ AnG (1 ≤ i < j ≤ n + 2) to be

γi,j
e1,e2

(d1, . . . , dn) =

γ(d1, . . . , di−1, e1, di, . . . , dj−2, e2, dj−1, . . . , dn)γ(0, . . . , 0, e1
i
, 0, . . . , 0, e2

j
, 0, . . . , 0)−1

Given γ ∈ A2G, we define τ 1
γ ∈ A2G to be

τ 1
γ (d1, d2) = γ(d1, 0)

for any (d1, d2) ∈ D2. Similarly, given γ ∈ A2G, we define τ 2
γ ∈ A2G to be

τ 2
γ (d1, d2) = γ(0, d2)

for any (d1, d2) ∈ D2. Given γ ∈ A2G, we define Σγ ∈ A2G to be

(Σγ)(d1, d2) = γ(d2, d1)

for any (d1, d2) ∈ D2.
Any γ ∈ A2G can canonically be identified with the mapping e ∈ D 7→ γ1

e ∈
AG, so that we can identify A2G and (AG)D. As is expected, this identification
enables us to define γ2 −

1
γ1 ∈ A2G for γ1, γ2 ∈ A2G, provided that γ1(0, ·) =

γ2(0, ·). Similarly, we can define γ2 −
2

γ1 ∈ A2G for γ1, γ2 ∈ A2G, provided that

γ1(·, 0) = γ2(·, 0). Given γ1, γ2 ∈ A2G, their strong difference γ2

·
− γ1 ∈ AG is

defined, provided that γ1 |D(2)= γ2 |D(2). Lavendhomme’s [7] treatment of strong

difference
·
− in §3.4 carries over mutatis mutandis to our present context. We

note in passing the following simple proposition on strong difference
·
−, which is

not to be seen in our standard reference [7] on synthetic differential geometry.

Proposition 6. For any γ1, γ2, γ3 ∈ A2G with γ1 |D(2)= γ2 |D(2)= γ3 |D(2), we
have

(γ2

·
− γ1) + (γ3

·
− γ2) + (γ1

·
− γ3) = 0.
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2.3. Differential forms

Given a groupoid G and a vector bundle E over the same space M , the space
Cn(G, E) of differential n-forms with values in E consists of all mappings ω from
AnG to E whose restriction to An

xG for each x ∈ M takes values in Ex satisfying
the following n-homogeneous and alternating properties:

1. We have
ω(a ·

i
γ) = aω(γ) (1 ≤ i ≤ n)

for any a ∈ R and any γ ∈ An
xG, where a ·

i
γ ∈ An

xG is defined to be

(a ·
i
γ)(d1, . . . , dn) = γ(d1, . . . , di−1, adi, di+1, . . . , dn)

for any (d1, . . . , dn) ∈ Dn.

2. We have
ω(γ ◦Dθ) = sign(θ)ω(γ)

for any permutation θ of {1, . . . , n}, where Dθ : Dn → Dn permutes the n
coordinates by θ.

3. Connections

Let π : H → G be a morphism of groupoids over M . Let L be the kernel of π
with its canonical injection ι : L → H. It is clear that L is a group bundle over
M . These entities shall be fixed throughout the rest of the paper. Thus we have
an exact sequence of groupoids as follows:

0 → L
ι→ H

π→ G.

A connection ∇ with respect to π is a morphism ∇ : AG → AH of vector bundles
over M such that the composition π∗ ◦ ∇ is the identity mapping of AG. A
connection ∇ with respect to π shall be fixed throughout the rest of the paper.
If G happens to be M ×M (the pair groupoid of M) with π being the projection
h ∈ H 7→ (α(h), β(h)) ∈ M × M , our present notion of connection degenerates
into the classical one of infinitesimal connection.

Given γ ∈ An+1G, we define γi ∈ AG (1 ≤ i ≤ n + 1) to be

γi(d) = γ(0, . . . , 0, d
i
, 0, . . . , 0)

for any d ∈ D. As in our previous paper [14], we have:

Theorem 7. Given ω ∈ Cn(G,AL), there exists a unique d∇ω ∈ Cn+1(G,AL)
such that

((d∇ω)(γ))d1···dn+1

=
n+1∏
i=1

{(ω(γi
0))d1···d̂i···dn+1

((∇γi)di
)−1(ω(γi

di
))−d1···d̂i···dn+1

(∇γi)di
}(−1)i

for any γ ∈ An+1G and any (d1, . . . , dn+1) ∈ Dn+1.
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Remark 8. The above formula, if it is rewritten additively, is essentially the
standard familiar formula for coboundary of cubical cochains with values in a
group bundle as follows:

((d∇ω)(γ))d1···dn+1

=
n+1∑
i=1

(−1)i{(ω(γi
0))d1···d̂i···dn+1

+ ((∇γi)di
)−1(ω(γi

di
))−d1···d̂i···dn+1

(∇γi)di
}.

We note that the n + 1 main factors commute, and within each main factor the
two subfactors commute. The former fact can be observed as in [14], and the
latter fact can be observed by dint of Proposition 2.

4. A lift of the connection ∇ to microsquares

Let us define a mapping A2G → A2H, which shall be denoted by the same symbol
∇ hopefully without any possible confusion, to be

∇γ(d1, d2) = (∇γ1
d1

)d2(∇γ2
0)d1

for any γ ∈ A2G.
It is easy to see that

Proposition 9. For any γ ∈ A2G and any a ∈ R, we have

∇(a ·
1
γ) = a ·

1
∇γ

∇(a ·
2
γ) = a ·

2
∇γ.

Corollary 10. For any γ1, γ2 ∈ A2G, we have

∇(γ2 −
1

γ1) = ∇γ2 −
1
∇γ1 provided that γ1(0, ·) = γ2(0, ·);

∇(γ2 −
2

γ1) = ∇γ2 −
2
∇γ1 provided that γ1(·, 0) = γ2(·, 0).

Proof. This follows from the above proposition by Proposition 10 of §1.2 of
Lavendhomme [7].

Proposition 11. For any t ∈ A1G, we define εt ∈ A2G to be

εt(d1, d2) = t(d1d2).

Then we have
(∇εt)(d1, d2) = (∇t)(d1d2)

for any d1, d2 ∈ D.

Proof. It suffices to note that

(∇εt)(d1, d2) = (∇(d1t))(d2) = (d1∇t)(d2) = (∇t)(d1d2).



H. Nishimura: Curvature in Synthetic Differential Geometry of Groupoids 375

Theorem 12. For any γ1, γ2 ∈ A2G with γ1 |D(2)= γ2 |D(2), we have

∇(γ2

·
− γ1) = ∇γ2

·
−∇γ1.

Proof. Let d1, d2 ∈ D. We have

(∇(γ2

·
− γ1))(d1d2) = (∇ε

γ2

·
−γ1

)(d1, d2)

[by Proposition 11],

= (∇((γ2 −
1

γ1)−
2

τ 2
γ1

))(d1, d2)

[by Proposition 7 of §3.4 of Lavendhomme [7]],

= ((∇γ2 −
1
∇γ1)−

2
∇τ 2

γ1
)(d1, d2)

[by Corollary 10],

= ((∇γ2 −
1
∇γ1)−

2
τ 2
∇γ1

)(d1, d2)

= ε
∇γ2

·
−∇γ1

(d1, d2)

[by Proposition 7 of §3.4 of Lavendhomme [7]],

= (∇γ2

·
−∇γ1)(d1d2)

[By Proposition 11].

Since d1, d2 ∈ D were arbitrary, the desired conclusion follows at once.

5. The curvature form

Proposition 13. For any γ ∈ A2G, there exists a unique t ∈ A1L such that

ι(td1d2) = ((∇γ2
0)d1)

−1((∇γ1
d1

)d2)
−1(∇γ2

d2
)d1(∇γ1

0)d2

for any d1, d2 ∈ D.

Proof. Let η ∈ A2H to be

η(d1, d2) = ((∇γ2
0)d1)

−1((∇γ1
d1

)d2)
−1(∇γ2

d2
)d1(∇γ1

0)d2

for any d1, d2 ∈ D. Then it is easy to see that

η(d, 0) = η(0, d) = idα(η(0,0)).
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Therefore there exists unique t′ ∈ A1H such that

t′d1d2
= η(d1, d2).

Furthermore we have

π(η(d1, d2)) = π(((∇γ2
0)d1)

−1)π(((∇γ1
d1

)d2)
−1)π((∇γ2

d2
)d1)π((∇γ1

0)d2)

= ((γ2
0)d1)

−1((γ1
d1

)d2)
−1(γ2

d2
)d1(γ

1
0)d2

= γ(d1, 0)−1(γ(d1, d2)γ(d1, 0)−1)−1γ(d1, d2)γ(0, d2)
−1γ(0, d2)

= idα(η(0,0)).

Therefore there exists a unique t ∈ A1L with ι(t) = t′. This completes the proof.

We write Ω(γ) for the above t. Now we have

Proposition 14. The mapping Ω : A2G → A1L consists in C2(G,AL).

Proof. We have to show that

Ω(a ·
1
γ) = aΩ(γ) (1)

Ω(a ·
2
γ) = aΩ(γ) (2)

Ω(Σγ) = −Ω(γ) (3)

for any γ ∈ A2G and any a ∈ R. Now we deal with (1), leaving a similar treatment
of (2) to the reader. Let d1, d2 ∈ D. We have

ι(Ω(a ·
1
γ))d1d2 = ((∇(a ·

1
γ)2

0)d1)
−1((∇(a ·

1
γ)1

d1
)d2)

−1(∇(a ·
1
γ)2

d2
)d1(∇(a ·

1
γ)1

0)d2

= ((∇γ2
0)ad1)

−1((∇γ1
ad1

)d2)
−1(∇γ2

d2
)ad1(∇γ1

0)d2

= ι(Ω(γ))ad1d2

= ι(aΩ(γ))d1d2 .

Now we deal with (3). We have

ι(Ω(Σγ))ι(Ω(γ))d1d2 = {((∇γ1
0)d2)

−1((∇γ2
d2

)d1)
−1(∇γ1

d1
)d2(∇γ2

0)d1}
{((∇γ2

0)d1)
−1((∇γ1

d1
)d2)

−1(∇γ2
d2

)d1(∇γ1
0)d2}

= idα(γ(0,0)).

This completes the proof.

We call Ω the curvature form of ∇.

Proposition 15. For any γ ∈ A2G, we have

Ω(γ) = Σ∇Σγ
·
−∇γ.
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Proof. As in the proof of Proposition 8 of §3.4 of Lavendhomme [7], let us consider
a function l : D2 ∨D → H given by

l(d1, d2, e) = (∇γ1
d1

)d2(∇γ2
0)d1Ω(γ)e

for any (d1, d2, e) ∈ D2 ∨D. Then it is easy to see that l(d1, d2, 0) = (∇γ)(d1, d2)
and l(d1, d2, d1d2) = (Σ∇Σγ)(d1, d2). Therefore we have

(Σ∇Σγ
·
−∇γ)e = l(0, 0, e) = Ω(γ)e.

This completes the proof.

Now we deal with tensorial aspects of Ω. It is easy to see that

Proposition 16. Let X, Y ∈ Γ(AG). Then we have

∇(Y ∗X) = ∇Y ∗ ∇X.

Now we have the following familiar form for Ω.

Theorem 17. Let X, Y ∈ Γ(AG). Then we have

Ω(Y ∗X) = ∇[X, Y ]− [∇X,∇Y ].

Proof. It suffices to note that

Ω(Y ∗X) = Σ∇Σ(Y ∗X)
·
−∇(Y ∗X)

[by Proposition 15],

= ∇Σ(Y ∗X)
·
− Σ∇(Y ∗X)

[by Proposition 6 of §3.4 of Lavendhomme [7]],

= ∇(Σ(Y ∗X)
·
−X ∗ Y )− (Σ∇(Y ∗X)

·
−∇(X ∗ Y ))

[by Proposition 6],

= ∇(Y ∗X
·
− Σ(X ∗ Y ))− (∇(Y ∗X)

·
− Σ∇(X ∗ Y ))

[by Proposition 6 of §3.4 of Lavendhomme [7]],

= ∇(Y ∗X
·
− Σ(X ∗ Y ))− (∇Y ∗ ∇X

·
− Σ(∇X ∗ ∇Y ))

[by Proposition 16],

= ∇[X,Y ]− [∇X,∇Y ]

[by Proposition 8 of §3.4 of Lavendhomme [7]].
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6. The Bianchi identity

Let us begin with the following abstract Bianchi identity, which traces back to
Kock [5], though our version is cubical, while Kock’s one is simplicial. Our cubical
Bianchi identity originated in [11].

Theorem 18. Let the following figure be an arbitrary cube in a groupoid H.

For each pair (X, Y ) of adjacent vertices X, Y of the cube, PY X : X → Y and
PXY : Y → X denote the mutually inverse morphisms of the edge. For any four
vertices W, Z, Y,X of the cube rounding one of the six facial squares of the cube,
RWZY X denotes PXW PWZPZY PY X . Then we have

POAPADPDGRDBFGRFCEGREADGPGDPDAPAORAECORCFBORBDAO = idO. (4)

Proof. Write over the desired identity exclusively in terms of PY X ’s, and write off
all consective PXY PY X ’s.

Notation 19. We will use the notation of the above theorem throughout the rest
of this section.

Now we recall the Brown-Higgins cubical formula, for which the reader is referred
to [1]. When we found out the formula (4) in [11] at the end of the previous
century, we were not conscious of Brown and Higgins’ work at all. It is the referee
who has kindly turned our attention to their paper for comparison.

Theorem 20. We have

(POARDGEAPAO)RAECO(POCREGFCPCO)RCFBO(POBRFGDBPBO)RBDAO

= idO. (5)

Proof. Write over the desired identity exclusively in terms of PY X ’s, and write off
all consecutive PXY PY X ’s.
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Remark 21. We compare the two combinatorial formulas established in the
above two theorems. In (4) the three round tours beginning with G in conju-
gation together with the three round tours beginning with O appear with the first
three and the last three grouped separately. In (5) the three round tours begin-
ning with vertices adjacent to O but not encountering O in conjugation together
with the three round tours beginning with O appear alternatingly. We are not
sure whether (5) is derivable combinatorially from (4). Originally we based our
proof of the second Bianchi identity on (4), but following the referee’s suggestions,
we give its proof based on (5) here, because it is shorter.

Now we would like to establish the second Bianchi identity in familiar form. To
this end, we need two lemmas.

Lemma 22. Let x ∈ M . If s, t ∈ AxL are such that

1. sd = f−1s′df (∀d ∈ D) for some f : x → y in H and some s′ ∈ AyL, and

2. td = f−1t′df (∀d ∈ D) for some f : x → z in H and some t′ ∈ AzL,

then sd and td commute for any d ∈ D.

Proof. This follows simply from Proposition 2.

We now express Theorem 7 in case of n = 2 geometrically.

Lemma 23. Let γ ∈ A3G. Let d1, d2, d3 ∈ D. Using the cube in Theorem 18, we
let the eight vertices O, A, B, C,D,E, F, G of the cube represent

β(γ(0, 0, 0)), β(γ(d1, 0, 0)), β(γ(0, d2, 0)), β(γ(0, 0, d3)),

β(γ(d1, d2, 0)), β(γ(d1, 0, d3)), β(γ(0, d2, d3)), β(γ(d1, d2, d3))

in order, while we let the twelve edges of the cube represent

PAO = (∇γ2,3
0,0)d1 , PBO = (∇γ1,3

0,0)d2 , PCO = (∇γ1,2
0,0)d3 , PDA = (∇γ1,3

d1,0)d2 ,

PEA = (∇γ1,2
d1,0)d3 , PDB = (∇γ2,3

d2,0)d1 , PFB = (∇γ1,2
0,d2

)d3 , PEC = (∇γ2,3
0,d3

)d1 ,

PFC = (∇γ1,3
0,d3

)d2 , PGD = (∇γ1,2
d1,d2

)d3 , PGE = (∇γ1,3
d1,d3

)d2 , PGF = (∇γ2,3
d2,d3

)d1 . (6)

Then we have

(d∇Ω(γ))d1d2d3

= (POARDGEAPAO)RCFBO(POBRFGDBPBO)RAECO(POCREGFCPCO)RBDAO.
(7)

Remark 24. The reader should note that (∇γ2,3
0,0)d1 in (6) and (∇γ1)d1 in Theo-

rem 7 are the same, and so on.

Proof. It suffices to note the following:

RBDAO = Ω(γ3
0)−d1d2 (8)
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RCFBO = Ω(γ1
0)−d2d3 (9)

RAECO = Ω(γ2
0)d1d3 (10)

POARDGEAPAO = ((∇γ2,3
0,0)d1)

−1Ω(γ1
d1

)d2d3(∇γ2,3
0,0)d1 (11)

POBRFGDBPBO = ((∇γ1,3
0,0)d2)

−1Ω(γ2
d2

)−d1d3(∇γ1,3
0,0)d2 (12)

POCREGFCPCO = ((∇γ1,2
0,0)d3)

−1Ω(γ3
d3

)d1d2(∇γ1,2
0,0)d3 . (13)

Now we are ready to establish the second Bianchi identity in familiar form.

Theorem 25. We have
d∇Ω = 0.

Proof. We use the same notation as in Lemma 23. As you can see, the left-hand
side of (5) and the right-hand side of (7) differ only in the order of their six factors
(8)–(13). However we have

idO

= (POARDGEAPAO)RAECO(POCREGFCPCO)RCFBO(POBRFGDBPBO)RBDAO

[by Theorem 20],

= (POARDGEAPAO)RAECORCFBO(POCREGFCPCO)(POBRFGDBPBO)RBDAO

[by Lemma 22],

= (POARDGEAPAO)RCFBORAECO(POCREGFCPCO)(POBRFGDBPBO)RBDAO

[by Proposition 2],

= (POARDGEAPAO)RCFBO(POBRFGDBPBO)RAECO(POCREGFCPCO)RBDAO

[by Lemma 22].

This completes the proof.

Remark 26. In the course of the above proof we have realized that the six cur-
vatures (8)–(13) commute by dint of Proposition 2 and Lemma 22.
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