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Abstract. A Sylvester-Gallai (SG) configuration is a set S of n points
such that the line through any two points of S contains a third point in
S. L. M. Kelly (1986) positively settled an open question of Serre (1966)
asking whether an SG configuration in a complex projective space must
be planar. N. Elkies, L. M. Pretorius, and K. J. Swanepoel (2006)
have recently reproved this result using elementary means, and have
proved that SG configurations in a quaternionic projective space must
be contained in a three-dimensional flat. We point out that these results
hold in a setting that is much more general than C or H, and that, for
each individual value of n, there must be truly elementary proofs of these
results. Kelly’s result must hold in projective spaces over arbitrary fields
of characteristic 0 and the new result of Elkies, Pretorius and Swanepoel
must hold in all quaternionic skew-fields over a formally real center.
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In [4] the authors prove, by ingenious means that are significantly more elementary
than those used in the original proof in [7], that Sylvester-Gallai (SG) configura-
tions in projective spaces over C must be planar. They also prove a new result,
namely that SG configurations in H must be contained in a three-dimensional flat.

The purpose of this note is to point out that these results (as well as the
original Sylvester-Gallai theorem over R) can be generalized to a purely algebraic
setting, and thus be made genuinely elementary, in the strictly logical sense of
being results regarding the validity of a first-order sentence in a first-order theory.
However, in the original SG-theorem and in Kelly’s version, this does not represent
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anything new, for, by a standard technique belonging to the algebraic geometry
folklore, results over R and C can be transferred to real closed and to algebraically
closed fields (the transfer principles are sometimes referred to as the Seidenberg-
Tarski and the Lefschetz principle, having been first rigorously established by
Tarski). In the case of the SG version over H, we employ the same strategy with
help from the less well-known designants of Heyting.

To show that the theories inside which the SG-theorems will hold are indeed
elementary by being first-order theories, we shall first present the axiom system
of Lenz [8] for dimension-free (unspecified dimension ≥ 3) projective spaces.

Lenz’s axiom system is expressed in the two-sorted language L∈, with variables
for points and lines to be denoted by upper- and lowercase letters, and a binary
relation ∈ between points and lines, with A ∈ l to be read as ‘A is incident
with l’. We shall use the following convenient abbreviations: (A1, . . . , An ∈ l) for
A1 ∈ l ∧ · · · ∧ An ∈ l, A ∈ l1, . . . , ln for A ∈ l1 ∧ · · · ∧ A ∈ ln , and 6= (A1 . . . An)
for

∧
i6=j Ai 6= Aj. Its axioms are:

L1 (∀AB)(∃l)(∀l′)A 6= B → (A,B ∈ l) ∧ [(A,B ∈ l′ → l′ = l)]

L2 (∀ABCDElmnp)(∃P ) 6= (ABCD) ∧ (A,B,E ∈ l) ∧ (C,D,E ∈ m)
∧(A,C ∈ n) ∧ (B,D ∈ p) → (P ∈ n, p)

L3 (∀l)(∃ABC) 6= (ABC) ∧ (A,B,C ∈ l)

L4 (∃lm)(∀P )¬(P ∈ l,m)

Here L1 states that there is a unique line incident with two distinct points, L2 is
Veblen’s axiom, L3 states that there are three points on every lines, and L4 that
there are two skew lines. We shall refer to the theory axiomatized by this axiom
system as L.

Given that all models of L are at least 3-dimensional, the theorem of Desargues
holds in L. Let P denote the axiom of Pappus (see e.g. [10]). It was shown
in [8] that models of L can be coordinatized by means of skew fields, which
are commutative precisely when P holds. All algebraic statements can thus be
translated in the language of L. Let p be a prime and ϕp be the L∈-statement
corresponding to the algebraic statement that p 6= 0. Let πk(A1, . . . , An) stand
for the L∈-statement that A1, . . . , An lie in a k-dimensional flat. Let τ denote the
L∈-statement corresponding to the algebraic statement that, for all x, y, z, x(yz−
zy)2 = (yz − zy)2x (this statement plays an important role in characterizing the
quaternions), and let ψm,n1,...,nm and %m stand for the L∈-statements corresponding
to

(∀a1,1 . . . a1,n1 . . . am,1 . . . am,nm)
m∑

i=1

ni∏
j=1

a2
i,j + 1 6= 0

and

(∀x1 . . . xm)(∃y) (
m∨

i=1

xiy 6= yxi) ∨
m∑

i=1

x2
i + 1 6= 0.
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Let SGk
n stand for the statement

(∀A1 . . . An) {
∧

1≤i<j≤n

[(∃lij)
∨

h 6∈{i,j}

(Ai, Aj, Ah ∈ lij)]} → πk(A1, . . . , An).

The statement ψm,n1,...nm states that the sum of products of squares is never −1,
which, according to [11], is equivalent to the orderability of the skew field, %m

states that the centre of the skew field is formally real, and SGk
n that any set

S = {A1, . . . An} of n points, with the property that for any two of them, say Ai

and Aj, there is a third point, Ah, in S, which is collinear with Ai and Aj, must
lie in a k-dimensional flat.

With the above notations we have the following

Theorem.

(i) For every positive integer n, there are positive integers m(n) and k(1, n), . . . ,
k(m(n), n), such that SG1

n holds in L ∪ {ψm(n),k(1,n),...,k(m(n),n)}.
(ii) For every positive integer n, there is a prime number p(n) such that SG2

n

holds in L ∪ {P,
∧

p≤p(n),p prime ϕp}.
(iii) For every positive integer n, there is a positive integer m(n) such that SG3

n

holds in L ∪ {τ, %m(n)}.

Proof. (i) Notice that, according to [2], [3], SG holds for all ordered geometries,
thus, in particular, it must hold for projective spaces over orderable skew-fields.
The theorem now follows from the compactness theorem for first-order logic: Since
SG1

n is true in projective spaces over skew fields satisfying all the ψm,n1,...,nm , for
all choices of the numbers m, n1, . . . , nm (as those skew fields are orderable by
[11]), there must be a finite subset of those ψ’s from which it follows as well.

(ii) Let A1, . . . , An be n points in a projective space over a commutative field K
of characteristic 0. Since they span a subspace of dimension at most n − 1, we
may assume that they lie in Pn−1(K). Suppose they span a subspace of dimension
d > 2. This means that there is a set S of d+1 among them that are projectively
independent, which amounts to saying that a certain (d+1)× (d+1) determinant
is 6= 0. Let K be the algebraic closure of K. The set S remains projectively
independent in Pn−1(K) as well, as the relevant determinant stays the same (this
can also be seen by applying Hilbert’s Nullstellensatz). Thus SG2

n is false for this
particular choice of A1, . . . , An in Pn−1(K), and thus, by the “Lefschetz principle”
it must be false in Pn−1(C) as well, contradicting Kelly’s theorem. The theorem
now follows by compactness.

(iii) Projective spaces of dimension ≥ 3 which satisfy τ must have either the
quaternionic skew-field (over an arbitrary field as center) or a field as their co-
ordinate skew-field F (see [10, 14, p. 175]). If it satisfies the statements %m for
all positive integers m as well, then F must have a formally real center, i.e. F
must be the quaternion algebra Q(K) over a formally real field K or F must be
a formally real field. If F is a formally real field, by (i), there is nothing left to
prove. Suppose F is the quaternion algebra Q(K) over a formally real field K,
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and let A1, . . . , An be n ≥ 5 points in Pn−1(F ). Suppose there is a set S of 5
points among them which span a four-dimensional flat, i.e. which are projectively
independent. We may think of them as lying in P4(F ). We want to translate
this projective independence into an algebraic language. The linear algebra cor-
responding to skew fields has been first successfully dealt with by A. Heyting [6]
(for alternative definitions of determinants for the skew-field case see [5]). There
he introduced ‘designants’, a generalization of determinants to the skew field case,
which coincide with determinants if the field multiplication is commutative. For
our purposes, all we need to know about them is that they are algebraic functions
of their entries, and that the necessary and sufficient condition for the projective
independence of n points A1, . . . , An, where Ai has coordinates (xi

1, x
i
2, . . . , x

i
n), is

for one of the designants — obtained by varying the order in which j goes through
the numbers 1, 2, . . . , n — whose rows consist of the entries x1

j , x
2
j , . . . , x

n
j , to be

6= 0. Thus, in our case, this amounts to saying that a certain 5×5 designant is
6= 0. Let Kc denote the real closure of K. The set S remains projectively in-
dependent in Pn−1(Q(Kc)) as well, as the relevant designant remains unchanged,
given that the coordinates of the points in S are the same. Thus SG3

n is false
for this particular choice of A1, . . . , An in Pn−1(Q(Kc)). By the Tarski-Seidenberg
transfer principle it must be false in Pn−1(Q(R)) as well, contradicting the theo-
rem of Elkies, Pretorius and Swanepoel. Compactness now provides the desired
version of our theorem. �

There is no reason to believe that a common proof schema exists for all values
of n, and that a proof of these theorems can be actually written down in this
elementary setting. It may be that the proofs for each individual value of n are
different and not special cases of one ‘idea’.

Other elementary forms of the original variant have been provided in [1] (see
also [9]).
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