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Abstract. The paper deals with a semi-algebraic set A in R¢ con-
structed by the inequalities p;(x) > 0, p;(z) > 0, and p;(z) = 0 for
a given list of polynomials pq,...,p,, and presents several statements
that fit into the following template. Assume that in a neighborhood
of a boundary point the semi-algebraic set A can be described by an
irreducible polynomial f. Then f is a factor of a certain multiplicity
of some of the polynomials py, ..., p.,. Special attention is paid to the
case when A is a polytope.
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1. Introduction

In what follows x := (z1,...,74) is a variable vector in R? (d € N). As usual,
R[z] := R[xy,...,x4) denotes the ring of polynomials in variables z1, ...,z and
coefficients in R. A subset A of R? is said to be semi-algebraic if

A={z eR?: ®((signpi(z) € E),..., (signpn(z) € Ey))}, (1.1)
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where @ is a boolean formula, py,...,p, € Rlz], and Ej,..., E,, are non-empty
subsets of {0,1}; see also [1], [8], and [6]. We call (1.1) a representation of
A by polynomials pq,...,p,. We distinguish the following particular types of
semi-algebraic sets:

(P1y -y Pm)s0 = {xERd:pl(x) >0,...,pm(x) 20}, (1.2)
(p1,--,ps)s0 = {:c ceRY:pi(x) >0,...,pm(z) > 0} , (1.3)
Zp1,.-ypm) = {x€R:pi(z)=0,...,pn(z) =0}. (1.4)

Sets representable by (1.2), (1.3), and (1.4), respectively, are called elementary
closed semi-algebraic, elementary open semi-algebraic, and algebraic, respectively.

A subset P of R? is said to be a polytope if P is the convex hull of a non-
empty and finite set of points; see [14]. It is known that a set P in R? is a
polytope if and only if P is non-empty, bounded, and can be represented by
P = (p1,...,Pm)>0, Where p1,....pm € R[z] (m € N) are of degree one (the
so-called H-representation). Thus, polytopes are just special elementary closed
semi-algebraic sets. The study of polynomial representations of polygons and
polytopes was initiated in [7] and [12]; see also the survey [13]. In [12] it was
noticed that, if a d-dimensional polytope P is represented by

P: (q17”'7Qm)ZO (].5)

with ¢1,...,¢, € R[z], then m > d. In [9] it was conjectured that every d-
dimensional polytope in R? can be represented by (1.5) with m = d. This conjec-
ture has recently been confirmed by L. Brocker [10]; see also [4], [3], and [5] for
further related results. We refer to [1, Chapter 5| and [8, §6.5 and §10.4] for re-
sults on minimal representations of general elementary semi-algebraic sets. In this
paper we derive necessary conditions on representations of polytopes consisting
of d polynomials.

Theorem 1.1. Let P be a d-dimensional polytope in R? with m facets such that

P = (ph s 7pm>20 = (QL s 7Qd)207

where p1, ..., Pm, @1,---,q4 € Rlx] and p1,...,pm are of degree one. Then every
pi, 1 €{1,...,m}, is a factor of precisely one polynomial q; with j € {1,...,d}.
Furthermore, for i and j as above, the factor p; of q; is of odd multiplicity. O

Theorem 1.1 improves Proposition 2.1(i) from [12]. In [7] it was shown that every
convex polygon P in R? can be represented by two polynomials. We are able to
determine the precise structure of such minimal representations.

Theorem 1.2. Let P be a convex polygon in R? with m > 7 edges and let

P = (]91, e 7Pm)20 = (Ch, Q2)207

where p1, ..., Pm, @1, @2 € Rlx] and p1, ..., pm are of degree one. Then there exist
ki,....km € N and g1, g2 € Rlz] such that {q1, 2} = {p" - -~ - pFm g1, 92} and

the following conditions are fulfilled:
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1. kq,..., Lk, are odd ;
2. g1, 92 are not divisible by p; for everyi € {1,...,m};
3. g2(y) = 0 for every vertex y of P. O

It is not hard to see that the set (g1, ¢2)>0 in Theorem 1.2 does not depend on
the concrete choice of odd numbers ky,...,k,. More precisely, for ¢;, g2 as in
Theorem 1.2 we have P = (p1 - -+ - Pm g1, G2)>0- In [7] the polynomials ¢, ¢o
representing P were defined in such a way that g = land ky = --- =k,, = 1
see Figure 1 for an illustration of this result and Theorem 1.2. We also remark
that the assumption m > 7 cannot be relaxed in general, since Theorem 1.2
would not hold if P is a centrally symmetric hexagon. In fact, assume that P is
a centrally symmetric hexagon and pq, ..., pg are polynomials of degree one such
that Z(p1) N P,..., Z(ps) N P are consecutive edges of P. Then P = (q1,¢2)>0
for ¢ := p1p3ps and qo := po pspe; see Figure 2. It will be seen from the proof
of Theorem 1.2 that the assumption m > 7 can be relaxed to m > 5 for the case
when P does not have parallel edges.

oS-

Figure 1. Illustration to Theorem 1.2 and the result on representation of convex
polygons by two polynomials

A Y-

Figure 2. Centrally symmetric hexagon P represented by P = (q1,¢2)>o for ¢1 =
p1p3ps and g2 = pa2 Paps

Theorems 1.1 and 1.2 are obtained as corollaries of the more general Theorem 2.2
given in Section 2. Theorem 2.2 and Corollaries 2.3-2.5 from Section 2 are results
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analogous to Theorems 1.1 and 1.2 for more general classes of semi-algebraic sets.
Even though the mentioned general results are somewhat technical, they can be
of independent interest (see also Section 2.2 providing related examples).

2. The proofs

The origin in R? is denoted by o. Given ¢ € R? and p > 0 by B%(c, p) we denote
the open Euclidean ball with center ¢ and radius p. The abbreviations int and
bd stands for the interior and boundary, respectively. By dim we denote the
dimension.

We refer to [2] and [11] for standard notions and results from commutative
algebra and algebraic geometry. The notion of dimension of a semi-algebraic
set can be defined in several equivalent ways; for details see [8, §2.8]. Given a
polynomial p € R[z|, by Vp we denote the gradient of p. The statement of the
following lemma is known (see [8, Theorem 4.5.1]).

Lemma 2.1. Let f be a polynomial irreducible over R[z|. Then dim Z(f) =d—1
if and only if for some y € RY one has f(y) =0 and Vf(y) # o. Furthermore, if
dimZ(f) =d—1 and p € Rz], then the following conditions are equivalent:

() dim(Z(f) N Z(p)) = d— 1.
(i) Z(f) € Z(p).
(iii) f is a factor of p. O

In the proofs below we shall deal with polynomials py,...,p,. Throughout the

proofs fi,..., f, will denote the polynomials irreducible over R[z] which are in-
volved in the prime factorization of the product py - --- - p,, (see [11, p. 149]),
ie.

pl.....pm: fl.....f”i"
for some s1,...,s, € N and for every i,5 € {1,...,n} with i # j the polynomials

fi and f; do not coincide up to a constant multiple.

Theorem 2.2. Let A be a semi-algebraic set in R given by (1.1) and let f be a
polynomial irreducible over Rlz|. Then the following statements hold true.

I. One has bd A C U~ Z(pi).
1. If
dim(bdANZ(f)) =d -1, (2.1)
then f is a factor of p; for somei € {1,...,m}.
III. If there exist a € Z(f) and € > 0 such that

dim(Z(f) N B%a,c)) = d—1, (2.2)
(f)so N B%a,e) = AN B%a,c), (2.3)

then (2.1) is fulfilled and, moreover, f is an odd-multiplicity factor of p; for
some i € {1,...,m}.
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IV. If there exist a € Z(f) and € > 0 such that

dim(Z(f) N B%a,c)) = d—1,
(f)soN B%a,e) = AN B%a,c),

then (2.1) is fulfilled and, moreover, f is an odd-multiplicity factor of p; for
some i € {1,...,m}. O

Proof. For x € R? we define
U(z) := @((signpi(z) € Er),..., (signpn(z) € En)).

Part I: Let zo & U}, Z(p:), that is p;(zo) # 0 for every i = 1,...,m. Then there
exists an € > 0 such that the sign of every p;(z), i € {1,..., m}, remains constant
on B(xg,¢). It follows that ¥(x) is constant for x € B(xy,¢). Consequently,
either B4(xg,e) C A or B%(xg,e) N A = (). Hence xy is either an interior or an
exterior point of A, and we get the conclusion of Part I.

Part II: By Part I we have bd A C |J;_, Z(f;). Consequently

d—1 & dim(bd AN Z(f)) < dim ((Lmj Z(pi)) ﬂZ(f))

= max dim(Z(p;) N Z(f)) <d - L.
Hence dim Z(f) = d—1 and for some ¢ € {1,...,m} one has dim(Z(p;) N Z(f)) =
d — 1. Then Lemma 2.1 yields the assertion of Part II.
Part III: Let a € Z(f) and € > 0 satisfy (2.2) and (2.3). From (2.2) it follows
that dim Z(f) = d — 1. By Lemma 2.1, there exists o’ € Z(f) N B%(a, ) such that
Vf(a') # o. We choose €' > 0 such that B(da’,¢') C B%(a,c) and V f(z) # o for
every x € B4(d',¢'). Let us show that

Z(f)N BYd, &) C bd A. (2.4)

Consider an arbitrary point z € Z(f) N B(d’,¢’). In view of (2.3) we have
x € A. On the other hand, since f(z) = 0 and Vf(z) # o, there exists a sequence
(mk)zj of points from B%(a’,&’) such that f(z*) < 0 for every k € N and 2% — z,
as k — +o00. Since 2% € (f)>o and z* € B%(a,¢), in view of (2.3) it follows that
¥ & A for every k € N. Hence, x is a point of A and is a limit of a sequence of
points lying outside A. The latter implies (2.4). Since f(a’) = 0 and V f(x) # o
for every x € Z(f)NB4(d',€') it follows that Z(f)NB%(a’,&’) has dimension d — 1.
Consequently, we have

d—1=dim(Z(f) N B, ")) 2 dim(Z(f) nbd AN BYd', "))

< dim(Z(f) Nbd A) < dim(Z(f)) = d — 1.

Hence dim(Z(f) Nbd A) = d — 1. By Part I, it follows that f coincides, up to a
constant multiple, with f; for some i € {1,...,n}. Without loss of generality we
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assume that f = f;. By Lemma 2.1, we can choose a” € Z(f) N B%a’',&’) such
that f;(a”) # 0 for i € {2,...,n}. This means the sign of the polynomials f;, i =
{2,...,n}, remains constant on B%(a”,&"). We prove the statement of Part III
by contradiction. Assume that whenever f is factor of p;, i € {1,...,m}, this
factor is of even multiplicity. Since V f(a") # o, we can choose zg, yo € B4(a", ")
such that f(zg) > 0 and f(yo) < 0. Since the signs of fs, ..., f, do not change
on Bé(a",e") and since f; = f appears with an even multiplicity only, we obtain
sign p;(zo) = signp;(yo) for every j = 1,...,m. Hence ¥(zg) = ¥(yy). But by
(2.3), 79 € A and yy € A, which implies that ¥(zg) # ¥(yo), a contradiction.

The proof of Part IV is omitted, since it is analogous to the proof of Part III. [

Let us give an informal interpretation of Theorem 2.2. Let f be an irreducible
polynomial such that Z(f) is a (d — 1)-dimensional algebraic surface. Consider a
semi-algebraic set A given by (1.1). If the boundary of A coincides locally with
a part of Z(f), then f is a factor of some p;. If A coincides locally with a part
of (f)>o0, then f is an odd-multiplicity factor of some p;. Furthermore, if in a
neighborhood of a boundary point the set A coincides locally with a part of Z(f),
then f is a factor of at least two different polynomials p; or an even-multiplicity
factor of at least one polynomial p;.

We remark that (2.2) cannot be replaced by the weaker condition dim Z(f) =
d—1 and Z(f) N B%a,e) # 0, since the algebraic set Z(f) corresponding to
an irreducible polynomial f can have “parts” of dimensions strictly smaller than
dim Z(f). In fact, for d = 2 the irreducible polynomial f(z) := 2% + 23 — z}
generates the cubic curve Z(f) with isolated point at the origin. For d = 3, for the
irreducible polynomial f(z) = 22 x; — 3 the set Z(f) is the well-known Whitney
umbrella, which is a two-dimensional algebraic surface with the one-dimensional
“handle” Z(xq,x3).

Corollary 2.3. Let A be a semi-algebraic set given by

A= {x e R (D((pl(m) >0),..., (pm(z) > 0))}7

where ® is a boolean formula and p1, ..., py, € R[z]\{0}, and let f be a polynomial
irreducible over R[x]. Then the following statements hold true.

. If there exist b € Z(f) and € > 0 such that

dim(Z(f) N B%b,¢)) = d—1, (2.5)
Z(f)NBYb,e) = AnBYb,e), (2.6

then (2.1) is fulfilled, and furthermore f is a factor of p; and p; for some
i, j €{1,...,m} withi # j or f is an even-multiplicity factor of p; for some
ie{l,...,m}.

1. If there exist a, b € R? and & > 0 such that equalities (2.2), (2.3), (2.5), and
(2.6) are fulfilled, then f is a factor of p; and an odd-multiplicity factor of
p; for some i, j € {1,...,m} withi # j.
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Proof. Part I: Let b € Z(f) and € > 0 satisfy (2.5) and (2.6). From (2.5) it follows
that dim Z(f) = d — 1. By Lemma 2.1, there exists ' € Z(f) N B%(b,e) such
that Vf(V') # 0. Choose ¢ > 0 such that BI(V,&') C B4(b,e) and Vf(z) # o
for every x € BY(V/,¢'). Using arguments analogous to those from the proof
of Theorem 2.2(IIT) we show the inclusion Z(f) N B4(V,&’) € bd A and (2.1).
Hence, by Theorem 2.2(II), f coincides, up to a constant multiple, with f; for
some ¢ € {1,...,n}. Without loss of generality we assume that f = f;. If fis a
factor of p; and p; for some ¢, j € {1,...,m} with i # j, we are done. We consider
the opposite case, that is, for some i € {1,...,m} the polynomial f is a factor of
precisely one polynomial p; with i € {1,...,m}, say p;. We show by contradiction
that in this case the factor f of p; has even multiplicity. Assume the contrary,
i.e., the factor f of p; has odd multiplicity. Analogously to the arguments from
the proof of Theorem 2.2, we choose V" € Z(f) and £” > 0 such that B(b" ") C
BV, ¢') and fi(x) # 0 for every i € {2,...,n} and every x € BV, £"). By
the choice of b and &” we have sign p;(x) = sign p;(b”) for all i € {2,...,m} and
x € B4b" e"). Since Vf(b") # o, there exist points zg, yo € BI(b’,&”) such
that f(xo) f(yo) < 0. Then p;(zo) p1(yo) < 0. Consequently, either p;(zg) > 0 or
p1(yo) > 0. Without loss of generality we assume that p;(zg) > 0. It follows that
(pi(z9) > 0) = (pi(b") > 0) for i =1,...,m. Hence zy € A. But since f(xq) # 0,
in view of (2.6), we get z9 € A, a contradiction.

Part II: By Theorem 2.2 (IIT) f is a factor of odd multiplicity of some p; with
i €{1,...,m}. Furthermore, for some j € {1,...,m} with i # j the polynomial
f is a factor of p;, since otherwise we would get a contradiction to Part I. O

Corollary 2.4. Let p1,...,pm € Rlz]\ {0} and A := (p1,...,pm)>0. Let [ be
a polynomial irreducible over R[x]. Assume that there exist b € Z(f) and € > 0
such that equalities (2.5) and (2.6) are fulfilled and additionally

dim(int AN Z(f)) = d — 1. (2.7)

Then f is a factor of p; for some i € {1,...,m} and, for every i € {1,...,m}
such that p; is divisible by f, the factor f of p; has even multiplicity.

Proof. By Corollary 2.3 (1), f is a factor of some p;, say p;. Without loss of
generality we assume that f; = f. Let us show that the factor f of p; is of
even multiplicity. Assume the contrary. In view of Lemma 2.1, we can choose
a € int AN Z(f) such that Vf(a') # o. We fix ¢ > 0 such that Vf(z) # o
for every x € B4(d/,¢'). By Lemma 2.1 we can choose a” € B%(da’,¢') such that
fi(a") # 0 for every i € {2,...,n}. Fix &” > 0 such that for every i € {2,...,n}
the sign of f; remains constant on B¢(a”,e"). Since Vf(a”) # o, there exist z
and yo in B(a”,&") with f(x0) f(y0) < 0. Hence p;(xo) p1(yo) < 0, and we get
that either zy or yg does not belong to A, a contradiction. O]

Corollary 2.5. Let p1,...,pm € Rlz] \ {0} and A := (p1,...,pm)>0. Let [ be
a polynomial irreducible over R[z]. Assume that there exist b € Z(f) and € > 0
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such that

dim(bd AN Z(f) N B%b,e)) = d—1, (2.8)
Bi(b,e)\ Z(f) = AnBYb,e). (2.9)

Then f is a factor of p; for some i € {1,...,m} and, for every i € {1,...,m}
such that p; is divisible by f, the factor f of p; has even multiplicity.

Proof. Equality (2.8) implies (2.1), and hence, by Theorem 2.2 (II), f is a factor
of p; for some i € {1,...,m}. The rest of the proof is analogous to the proof of
Corollary 2.4. O

Now we are able to prove Theorems 1.1 and 1.2 from the introduction.

Proof of Theorem 1.1. Let us prove the first part of the assertion. Assume the
contrary, say p; is a factor of both ¢; and ¢go. Then within the (d — 1)-dimensional
affine space Z(p;) the facet P N Z(py) of P is represented by d — 2 polynomials
qs, - - -, qq in the following way

PnZp)={z€Z(p):q3(x) >0,...,qi(x) > 0}.

This yields a contradiction to the fact that a k-dimensional convex polytope can-
not be represented (in the above form) by less than k polynomials; see [12,
Corollary 2.2]. The second part of the assertion follows directly from Theo-
rem 2.2 (III). O

Proof of Theorem 1.2. For j € {1,2} denote by I; the set of indices i € {1,...,m}
for which p; is a factor of g;. By Corollary 2.4 it follows that [, Uly = {1,...,m}.
Furthermore, I; N I = (), by Theorem 1.1. Let us show that either I; or I, is
empty. Assume the contrary. We show that then there exist ¢ € I; and 5 € I5 such
that the edges Z(p;) N P and Z(p;) N P of P are not adjacent and not parallel.
Since m > 7, after possibly exchanging the roles of ¢; and ¢y, we may assume that
the cardinality of I is at least four. Let us take an arbitrary ¢ € I;. Then there
exist at least two sides of the form Z(p;) N P, j € I, which are not adjacent to
Z(p;) N P. One of these sides is not parallel to Z(p;) N P. The intersection point
y of Z(p;) and Z(p;) lies outside P and fulfills the equalities ¢;(y) = ¢2(y) =0, a
contradiction to the inclusion (g1, ¢2)>0 € P. Hence I; or Iy is empty. Without
loss of generality we assume that I, = ().

For ¢« € {1,...,m} let k; be the multiplicity of the factor p; of p;. Then
qQ = p]fl - «-+ . pkm g, for some polynomial g;, and statements 1 and 2 follow
directly from Theorem 2.2 (IIT).

It remains to verify condition 2 (which involves go = ¢3). This condition can be
deduced from Proposition 2.1 (ii) in [12], but below we also give a short proof. We
argue by contradiction. Let y be a vertex of P with go(v) > 0. Up to reordering
the sequence py,...,p, we may assume that p;(v) = 0. Clearly, any point ¢’
lying in Z(p;) \ P and sufficiently close to y fulfills the conditions ¢;(y") = 0 and
¢2(y') > 0. Hence ' € P, a contradiction to the inclusion (g1, ¢2)>0 C P. ]
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3. Examples to Theorem 2.2 and its corollaries

Each of the examples below is supplied with a figure referring to the case d = 2.
Let

A={zeR : zg>0and ((z; — 1) +a3+-- +25<1
or xf+a:§+---+x3 < 1)},
see Figure 3. By Theorem 2.2, if A is given by (1.1), then the polynomials x4,

(ry — 1)+ 23+ +22—1, (&1 + 1)> + 23+ --- + 22 — 1 are factors of odd
multiplicity of some of the polynomials pq, ..., pm.

Figure 3. Illustration to Theorem 2.2

The set
—{reRY: (1—a? = —22) (g +2)° >0}, (3.1)
={zeR": 1—2}— - —a)) (24 +2) >0, zg+2 >0}, (3.2)

depicted in Figure 4 is the disjoint unit of a closed unit ball centered at o and
a hyperplane given by the equation z4 + 2 = 0. By Corollary 2.3 (I), if A is
given by (1.1), then x4 + 2 is a factor of at least two polynomials p; or a factor
of even multiplicity of at least one polynomial py,...,p,. From (3.1) and (3.2)
we see that both of these possibilities are indeed realizable. Figure 5 depicts the
semi-algebraic set

={reR:2y>0, (1—a]—-—x))aq>0},
={zeR:2y>0, (1—af—-—aj)ai>0}. (3.3)
By Corollary 2.3 (IT), if A is given by (1.1) with £y = ... = E,, = {0,1}, the

polynomial z, is a factor of at least two polynomials p; and an odd-multiplicity
factor of at least one polynomial p;. By (3.3) we see that the above conclusion
cannot be strengthened. In fact, (3.3) provides a representation A = (p1,p2)>0
such that x4 is an odd-multiplicity factor of precisely one polynomial p;.

4“A :

A Bi(a,e) B4(b, )

Figure 4. Tllustration to Corollary 2.3(I) Figure 5. Illustration to Corollary 2.3(II)
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Figure 6 presents the semi-algebraic set
A={zeR": (1—af—-- —z)a; >0},

which serves as an illustration of Corollary 2.4. By Corollary 2.4, if A = (py,...,
DPm)>o0 for pi,....pm € Rlx], some of these polynomials are divisible by z4, and
furthermore, if p; is divisible by x4, the multiplicity of the factor x4 of p; is even.
Figure 7 depicts the semi-algebraic set

A={zeR*: (1—af - —a})zi >0}

illustrating Corollary 2.5. By Corollary 2.5, if A = (p1,...,Pm)so for some poly-
nomials py, ..., pn € Rlz], then z,4 is a factor of at least one p; and f cannot be a
factor of p; of odd multiplicity. We notice that Corollary 2.5 is in a certain sense
an analogue of Corollary 2.4 for elementary open semi-algebraic sets (since the
conclusions of both corollaries are the same).

Figure 6. Tlustration to Corollary 2.4 Figure 7. Tllustration to Corollary 2.5

Finally, we present examples of semi-algebraic sets for which we can verify that
they are not elementary semi-algebraic (see also similar examples given in [1,
p. 24]). We define the closed semi-algebraic set

A:{ZCERd : xd:oor($1_3)2+:E§—|—---+x3§1
or (z7+a3+ - +a5<1landzg>0)},

see Figure 8. We can show that A is not elementary closed. In fact, let us assume
the contrary, that is A = (p1,...,pm)>0 for some polynomials py, ..., p, € R[z].
Then, by Theorem 2.2 (III) applied for a = 0 and 0 < ¢ < 1, we get that z, is
a factor of odd multiplicity of p; for some ¢ € {1,...,m}. Since (2.7) is fulfilled
for f = x4, we can apply Corollary 2.4 obtaining that x4 is a factor of even
multiplicity of p;, a contradiction. Now we introduce the open semi-algebraic set

A={zeR : 2i+aj+ - +aj<landzy >0
or (z1 —3)*+ a3+ -+ x5 <1and z4 # 0},
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see Figure 9. By Theorem 2.2 (IV) and Corollary 2.5 (applied for f(z) = z4) A is
not elementary open.

2 (0 qan
Bi(a,¢) B%(a,€) '
Figure 8. A closed semi-algebraic set Figure 9. An open semi-algebraic set
which is not elementary closed which is not elementary open
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