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I-measures in Minkowski Planes
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Abstract. Let µ be an angular measure in a 2-dimensional normed
linear space (i.e., in a Minkowski plane). We consider certain measures
µ, called I-measures, and show that their existence is sufficient for the
plane to be Euclidean.
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1. Introduction

In [2], Brass considers angular measures in normed planes. He shows that in
any Minkowski plane, except for the rectangular one, there exists an angular
measure having the following property: Each equilateral triangle is equiangular.
We want to investigate how this statement should be modified for considering
angular measures that satisfy a stronger condition, namely: In each isosceles
triangle, the two angles corresponding to the equal sides are equal.

We will see that this condition is strong enough to guarantee that the plane
under consideration is Euclidean.

1.1. Background

Let E2 be the Euclidean plane with origin o, and B ⊂ E2 be a convex body (i.e.,
a compact, convex set) centred at o. Then B defines a norm on E2 by

||x||B := inf{λ ∈ R+ : x ∈ λ ·B}.
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The plane E2 equipped with the norm || · ||B is called the Minkowski plane with
unit ball B and denoted by M2(B). Obviously, we have B = {x : ||x||B ≤ 1},
and the set C := {x : ||x||B = 1} is called the unit circle of M2(B).

We say that x, y ∈ M2(B) are James orthogonal or isosceles orthogonal, denoted
by x#y, if

||x + y|| = ||x− y||,

and x, y are Birkhoff orthogonal, abbreviated by x a y, if

||x|| ≤ ||x + t · y|| ∀t ∈ R.

If both x a y and y a x hold, we write x ⊥ y.
By ûv we denote the small arc from u to v, i.e., an interval on C with endpoints

u and v lying in a half circle. (ab) is the line through the points a 6= b, [ab] the
respective (Euclidean) segment.

Following Brass [2], we introduce the notion of angular measure in Minkowski
planes.

Definition 1. Let µ be a measure on the unit circle C. µ is called an angular
measure if it has the following properties:

1) µ(C) = 360◦.

2) µ(S) = µ(−S) for all subsets S of C.

3) µ({p}) = 0 for an arbitrary point p ∈ C.

4) µ is translation invariant.

For u, v ∈ C we define the angle between u and v by

^(u, v) := µ(ûv).

Furthermore, for points a, b, c ∈ M2(B), a 6= b, b 6= c, we define the angle

^(abc) := ^(ã, c̃),

where ã = a−b
||a−b|| and c̃ = c−b

||c−b|| .
The word “angle” may describe the corresponding geometrical figure as well,

meaning that this figure ^(abc) is formed by two rays starting in b (the vertex of
the angle) and passing through a and c, respectively.

1.2. Basic properties

The following properties hold for any angular measure.

Observation 1. For u ∈ C, ^(u,−u) = 180◦.

Observation 2. The sum of the interior angles of a triangle equals 180◦.

Both statements follow directly from the definition of an angular measure. They
can be proved in the same way as in the Euclidean case; see [5].
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Lemma 1. The following statements are equivalent:

i) ^(−uvu) = 90◦ ∀u, v ∈ C, u 6= v.

ii) ^(x, y) = 90◦ ∀x, y with x#y.

Proof. Assume that i) holds, and let x#y. For u = x− y, v = x + y we have

||u|| = || − u|| = ||v||,

and thus ^(x, y) = ^(−uvu) = 90◦.
Let now u, v ∈ C, u 6= v. Since ||(u− v) + (u + v)|| = ||(u− v)− (u + v)||, we

have (u− v)#(u + v), and thus ^(u− v, u + v) = ^(−uvu) = 90◦.

Remark 1. Property i) holds in the Euclidean plane and has been stated by
Thales, see [4].

2. I-measures

In what follows, we look at special angular measures satisfying certain properties.

Proposition 1. Let µ be an angular measure in a Minkowski plane. The follow-
ing conditions are equivalent:

i) For any isosceles triangle 4abc the corresponding angles are equal, i.e.,

||a− c|| = ||b− c|| ⇒ ^(cab) = ^(cba).

ii) Let a, b, c ∈ C be pairwise distinct. If c /∈ âb, then

^(aob) = 2 · ^(acb),

else
360◦ − ^(aob) = 2 · ^(acb).

iii) Let a, b ∈ C be distinct and c := −a. Then

^(aob) = 2 · ^(acb).

Proof. i) ⇒ ii): This direction can be proved in the same way as in the Euclidean
case; see [3], p. 46.

ii) ⇒ iii): This conclusion is obviously true.

iii) ⇒i): Due to basic angle properties we have

^(aob) = 180◦ − ^(boc) = ^(obc) + ^(ocb).

Since ^(aob) = 2 · ^(acb), it follows that ^(ocb) = ^(obc) for any a, b ∈ C.

Definition 2. Let µ be an angular measure in a Minkowski plane. If µ satisfies
one of the conditions in Proposition 1, then µ is said to be an I-measure.
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Theorem 1. Let M2(B) be a Minkowski plane with unit circle C, and µ be an
I-measure on C. Then M2(B) is Euclidean.

Thus I-measures only exist in the Euclidean plane. We will prove this result in
several steps.

In what follows, M2(B) is always a Minkowski plane with unit circle C, and
µ denotes an I-measure on C.

For u, v ∈ C we call ^(u, v) a non-trivial zero angle if it is an angle of measure
0◦, but u 6= v.

Theorem 2. There exist no non-trivial zero angles, i.e.,

^(u, v) > 0◦ ∀u, v ∈ C, u 6= v.

Proof. Suppose ^(aob) = 0◦ for some a, b ∈ C, a 6= b. Without loss of generality,
^(a′ob′) > 0◦ for all angles ^(a′ob′) strictly containing ^(aob) (since if ^(anobn)
is a sequence of angles of measure 0◦ that is increasing with respect to ⊆, and
an → a, bn → b, then ^(aob) = sup ^(aob) = 0◦).

Now we translate ^(aob) so that the vertex moves to the boundary of C and
such that the translated angle ^(a′o′b′) contains ^(aob); see Figure 1.

Then ^(a′ob′) = 2 · ∠(aob) = 0◦, but ^(a′ob′) strictly contains ^(aob), a
contradiction.

a
a′

b
b′

o

o′

Figure 1. Notation in the proof of Theorem 2

The following statement is a direct consequence of Proposition 1.

Lemma 2. Thales’ theorem holds, i.e., for all u, v ∈ C, u 6= v, we have

^(−uvu) = 90◦.

Lemma 3. Let t be a line supporting B at the point p. For an arbitrary point
q ∈ t, q 6= p, we have that ^(opq) = 90◦. In other words: If x, y ∈ M2(B) are
Birkhoff orthogonal, then ^(x, y) = 90◦.
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Proof. The statement follows from the previous lemma, taking into consideration
the continuity of the measure. Let p ∈ C be an arbitrary point on the unit circle,
and let {sk} ⊂ C, k = 0, 1, . . ., be a sequence of points with limk→∞ sk = p. Thus
^(−pskp) → ^(opq). By the previous lemma we have that ^(−pskp) = 90◦ for
all k, which completes the proof.

This lemma suffices to show that Theorem 1 is true.

Proof of Theorem 1. Let x ∈ M2(B) be arbitrary, and y ∈ M2(B) be such that
x#y. Then Lemma 1 and Lemma 2 yield that ^(x, y) = 90◦.

Now let z ∈ M2(B) be such that ||z|| = ||y|| and x a z. Then, by Lemma 3,
we have that ^(x, z) = 90◦. Since there exist no non-trivial zero angles, it follows
that y = z or y = −z, and thus we have

x#y ⇒ x a y ∀x, y ∈ M2(B).

This relation is a well-known characterization of the Euclidean plane; see [8], p. 87,
or [1], p. 33.
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