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Abstract. In a locally finite tiling of Rn by convex polytopes, each
point x ∈ Rn is either a vertex of at least two tiles, or no vertex at all.
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1. Introduction

In [3], the following problem was stated in the context of finite local complexity
of self-similar substitution tilings, see Section 3 for details. Throughout the text,
‘vertex’ always means the vertex of a convex polytope in the usual geometric sense,
see for instance [12]. It means neither a combinatorial vertex of a tile, nor the
vertex of a tiling in the sense of [6] (that is, an isolated point of the intersection
of finitely many tiles of a tiling).

Question 1. In a locally finite tiling T of Rn, where all tiles are convex polytopes,
is there a point x which is the vertex of exactly one tile?

We will call such a point a lonely vertex.

For tilings in dimension n = 1 and n = 2, it is easy to see that the answer is
negative. In the sequel we show that the answer is negative for all dimensions n.
In the remainder of this section we will fix the notation and discuss the necessity of
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the requirement ‘locally finite’. In Section 2 we obtain the main results, namely,
Theorem 2.1, Theorem 2.4, and the answer to Question 1 in Theorem 2.5. In
Section 3 we apply these results to prove a condition for local finite complexity
of self-similar substitution tilings with integer factor. Section 4 contains some
further remarks.

Let Rn denote the n-dimensional Euclidean space. The n-dimensional unit
sphere is denoted by Sn. For two points x, y ∈ Rn, the line segment with endpoints
x and y is denoted by xy. A (convex) polyhedron is the intersection of finitely many
closed halfspaces. A (convex) polytope is a bounded polyhedron. In the following,
only convex polytopes are considered. Thus we drop the word ‘convex’ in the
sequel, the term ‘polytope’ always means convex polytope. A spherical polytope
is the intersection of a sphere with centre x with the intersection of finitely many
halfspaces Hi, where x ∈

⋂
i Hi.

Let X be either a Euclidean or a spherical n-space. A collection of n-polytopes
T = {Ti}i≥0 which is a covering of X — that is, the union of all polytopes Ti equals
X — as well as a packing of X — that is, the interiors of the polytopes are pairwise
disjoint — is called a (polytopal) tiling. A tiling T is called locally finite if each
bounded set U ∈ X intersects only finitely many tiles of T .

If we do not require the tiling to be locally finite, lonely vertices are possible.
For instance, consider a tiling in R2 which contains the following tiles (see Fig-
ure 1): A rectangle R with vertices (1, 0), (−1, 0), (−1,−1), (1,−1), a square
S with vertices (0, 0), (0, 1), (−1, 1), (−1, 0), and rectangles Tk with vertices
( 1

2k , 0), ( 1
2k , 1), ( 1

2k+1 , 1) ( 1
2k+1 , 0), where k ≥ 0. Such a tiling is obviously not

locally finite: each sphere with centre (0, 0) intersects infinitely many tiles. The
tile S has (0, 0) as a vertex, and (0, 0) is vertex of no other tile. That means, such
a tiling contains a lonely vertex at (0, 0). The requirement of local finiteness is
therefore necessary.

S T0 T T1 2

R
(0,0)

Figure 1. A lonely vertex at (0, 0) in a tiling which is not locally finite

2. The main result

We say that a hyperplane H in Rn supports a polytope P ⊂ Rn, if P ∩H 6= ∅, but
int(P ) ∩H = ∅, where int(P ) denotes the interior of P . We define the indicator
IP : Sn → R for the convex n-dimensional spherical polytope P as the function
that equals 1 in all interior points of P and 0 else. In what follows we say that
two functions are equal if they are equal in all points except in a set of Lebesgue
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measure zero. We call a convex n-dimensional spherical polytope a B-type polytope
if it contains a pair of antipodal points on the sphere, and an A-type polytope else.

Theorem 2.1. The indicator of any A-type polytope cannot be equal to the linear
combination of indicators of a finite number of B-type polytopes.

Proof. We will prove this theorem by induction on the dimension n of the embed-
ding space Rn ⊃ Sn−1. Base of induction: n = 1. This case is obvious because
the unit sphere in R1, namely, S0 = {−1, 1}, is the only B-type polytope in S0.

The step of induction is much more demanding. Let Theorem 2.1 be true for
all dimensions less than n. We assume that it is false for n. So there is one A-type
polytope P and k B-type polytopes Q1, . . . , Qk such that

IP −
k∑
1

αiIQi
= 0

for some αi ∈ R. Consider any (n − 1)-dimensional hyperplane containing the
centre x of the sphere, for instance {x1 = 0}. Now, let T be an (n−1)-dimensional
spherical polytope, and let T0 = T ∩{x1 = 0}. T0 is a spherical polytope of smaller
dimension. Let us consider the indicators IT and IT0 . This is done more convenient

in the embedding space Rn. Thus, let T̃ be the cone spanned by T in Rn, that is:
T̃ =

⋃
λ∈R+ λT . Analogously, let T̃0 be the cone spanned by T0 in Rn ∩ {x1 = 0}:

T̃0 =
⋃

λ∈R+ λT0.
For f : Rn → R we define f+

0 , f−0 : Rn ∩ {x1 = 0} → R:

f+
0 (x2, . . . , xn) = lim

m→∞
f(

1

2m
, x2, . . . , xn)

f−0 (x2, . . . , xn) = lim
m→∞

f(− 1

2m
, x2, . . . , xn),

if these limits exist.

Lemma 2.2. For f̃ = IT̃ , the function f̃+
0 exists in all points of Rn ∩ {x1 = 0}.

Moreover, f̃+
0 = IT̃0

holds if not all the interior points of T are lying in negative

halfspace, and f̃+
0 = 0 else.

Proof. There are three cases: the interior of T intersects {x1 = 0}, or T is
supported by this hyperplane and lies in the positive halfspace, or T is supported
by this hyperplane and lies in the negative halfspace. All these cases are rather
obvious. �

The analogous lemma is true for f̃−0 . Let f (f+
0 , f−0 ) denote the restriction of f̃

(f̃+
0 , f̃+

0 ) to Sn−1. Then the lemma holds for f , f+
0 , f−0 , too.

Let us consider now of = IP −
∑k

1 αiIQi
. Without loss of generality, let

one of the (n − 1)-dimensional faces of P be contained in {x1 = 0}, and let P
lie in the positive halfspace. Then f+

0 exists, and f+
0 = IP0 −

∑k
1 αiIQ+

i
, where
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Q+
i = Qi ∩ {x1 = 0} if not all the interior points of Qi are lying in negative

halfspace, and Q+
i = ∅ else. Likewise, f−0 = −

∑k
1 αiIQ−i

, where Q−
i are defined

analogously. Obviously f+
0 = 0 and f−0 = 0 holds, because they are limits of

sequences which are equal to 0. We define g = f+
0 − f−0 . It follows that g = 0

and g = IP0 −
∑k

1 αi(IQ+
i
− IQ−i

). If the interior of Qi intersects {x1 = 0}, then

Q+
i = Q−

i , and the corresponding brackets in the sum are equal to 0. (At this
point convexity is required.) If Qi is supported by this hyperplane, then one of
the members in the corresponding term in brackets is equal to 0. So

0 = IP0 −
k∑
1

βiISi
,

where Si = ∅ if the interior of Qi intersects the hyperplane, Si = Q+
i and βi = αi if

Qi is supported by the hyperplane and lies in the positive semispace, Si = Q−
i and

βi = −αi if it is supported by the hyperplane and lies in the negative semispace.

Lemma 2.3. If a B-type polytope Q is supported by a hyperplane H through the
centre x of a sphere, then the polytope Q ∩H is also a B-type polytope.

Proof. Any B-type polytope contains a pair of antipodal points on the n-sphere,
say, points k, `. If k`∩H = {x}, then H intersects the interior of the polytope Q.
This is impossible, since H supports Q. Therefore k` ⊂ H. Hence the polytope
Q∩H contains a pair of antipodal points on the sphere and is therefore a B-type
polytope. �

So all Si are B-type polytopes, and P0 is an A-type polytope. We have a contradic-
tion with the proposition of the induction. This completes the proof of Theorem
2.1. �

Theorem 2.4. Any sphere S in Rn cannot be partitioned in B-type polytopes and
exactly one A-type polytope.

Proof. We assume there is such a decomposition. P is an A-type polytope and
Q1, . . . , Qk are B-type polytopes. Let M1 and M2 are two hemispheres such that
M1 ∪M2 = S. Then

IP +
k∑
1

IQi
− IM1 − IM2 = 0.

This contradicts Theorem 2.1. �

Theorem 2.5. Let T be a locally finite tiling by convex polytopes in Rn. There
is no point x ∈ Rn such that x is a vertex of exactly one polytope of T .

Proof. We choose a sphere S with centre x such that all faces of the polytopes of
T intersecting S contain x. We can find such a sphere since T is locally finite. If
x is a vertex of a tile T in T , then its intersection with S is an A-type polytope.
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If x ∈ T is not a vertex, then the intersection T ∩S is a B-type polytope. Because
of Theorem 2.4 there cannot be exactly one A-type polytope. So x cannot be a
vertex of exactly one polytope of the tiling T . �

Remark. The last result generalizes immediately to spherical and hyperbolic
tilings: Even though no two of Euclidean space Rn, hyperbolic space Hn and
spherical space Sn are conformal to each other, they are locally conformal: There
is a map fx : X → X′ (where X, X′ ∈ {Rn, Hn, Sn}), such that, for a given point
x ∈ X, lines through x are mapped to lines through fx(x), and their orientations
and the angles between such lines are preserved. This is all we need to generalize
the result.

Corollary 2.6. Each k-face of some tile in a locally finite T tiling of Rn by
convex polytopes is covered by finitely many k-faces of some other tiles.

Proof. We use induction on k. The case k = 0 is Theorem 2.5: Any vertex is
covered by a vertex of some other tile.

Let the statement be true for k − 1. Let F be a k-face of some tile T ∈ T .
Let x be a point in the relative interior of F . As above, let S be a sphere with
centre x such that

(A) All faces of polytopes in T intersecting S contain x.

Since F is a k-face, F ′ = F ∩ S is a (k − 1)-face of T ∩ S (in the spherical tiling
T ∩S). By the proposition of induction, F ′ is covered by (k−1)-faces Fi. Because
of (A), the convex hull conv(x, F ′) of x and F ′ in Rn is covered by conv(x, Fi),
which are subsets of k-faces in T . This is true for any x in the relative interior
of F , thus everywhere. Because of local finiteness, F is covered by finitely many
k-faces. �

The following theorem is used in the next section.

Theorem 2.7. Given a tiling T by convex polytopes, let G = (V, E) be the fol-
lowing undirected graph: V is the set of all vertices of tiles in T . Vertices are
identified if they are equal as elements of Rn. E is the set of edges in G, where
(x, y) ∈ E iff the line segment xy is an entire edge of some tile in T . Then, all
connected components of G are infinite.

Proof. Obviously, any two vertices of some tile T are connected by a finite path
of edges of T , so they are in the same connected component of G. Therefore, the
vertex set of each tile belongs either entirely to a connected component of G or
not.

Assume there is a finite connected component C in G. Let F be the set of
all tiles belonging to C. Being finite, the union supp(F) (which is a polytope,
though not necessarily convex) has some extreme point x.

This point x corresponds to an A-type polytope as above. By Theorem 2.4, there
is at least one further A-type polytope, belonging to a tile T /∈ F . Because T
contributes an A-type polytope, x is a vertex of T . This contradicts T /∈ F ,
proving the claim. �



76 D. Frettlöh, A. Glazyrin: The Lonely Vertex Problem

3. Application to substitution tilings

The discovery of nonperiodic structures with long range order (for instance, Pen-
rose tilings and quasicrystals) had a large impact to many fields in mathematics,
see for instance [8]. Tile-substitutions are a simple and powerful tool to generate
interesting nonperiodic structures with long range order, namely: substitution
tilings. The basic idea is to give a finite set of prototiles T1, . . . , Tm, together with
a rule how to enlarge each prototile by a common inflation factor λ and then
dissect it into — or more general, replace it by — copies of the original prototiles.
Figure 2 shows some examples of substitution rules. Note, that a substitution σ
maps tiles to finite sets of tiles, finite sets of tiles to (larger) finite sets of tiles, and
tilings to tilings. By iterating the substitution rule, increasingly larger portions
of space are filled, yielding a tiling of the entire space in the limit. For a more
precise definition of substitution tilings, see for instance [4]. For a collection of
substitution tilings, and a glossary of related terminology, see [5].

Figure 2. Three examples of tile-substitutions: The Penrose substitution rule for
triangular tiles (left), the substitution rule for binary tilings (centre), the semi-
detached house substitution rule (right)

A tile-substitution rule with a proper dissection, that is, where

λTi =
⋃

T∈σ(Ti)

T (1 ≤ i ≤ m) (1)

(where the union is non-overlapping) is called self-similar tile-substitution. If
instead of (1) only a weaker form of (1) holds (see Figure 2 (centre)), then one
may still speak of a substitution tiling, but not of a self-similar substitution tiling.

The following definition turned out to be useful in the theory of nonperiodic
tilings. It rules out certain pathological cases and is consistent with other concepts
within this theory, for instance the tiling space, or the hull of a tiling [10], [7].

Definition 3.1. Let σ be a tile-substitution with prototiles T1, . . . , Tm. The sets
σk(Ti) are called (k-th order) supertiles.

A tiling T is called substitution tiling (with tile-substitution σ) if for each finite
subset F ⊂ T there are i, k such that F is congruent to a subset of some supertile
σk(Ti).

The family of all substitution tilings with tile-substitution σ is denoted by Xσ.
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Many results in the theory of substitution tilings require the tilings under consid-
eration to be of finite local complexity, compare for instance [10], [11], [9].

Definition 3.2. A tiling T has finite local complexity (FLC) if for each r > 0
there are only finitely many different constellations of diameter less than r in T ,
up to translation.

Usually, if a certain substitution tiling has FLC, this is easy to see. For instance,
each vertex-to-vertex tiling with finitely many prototiles has FLC. More general,
the following condition is frequently used [3].

Lemma 3.3. A tiling is FLC iff there are only finitely many different constella-
tions of two intersecting tiles, up to translation.

On the other hand, if a tiling does not have FLC, this can be hard to prove, see [1],
[2]. The following theorem covers a broad class of substitution tilings where the
inflation factor λ is an integer. An example of such a tile-substitution is shown in
Figure 2 (right), where the inflation factor is 2. A weaker version of this theorem
was proved in [3], and it was realized that a negative answer to Question 1 would
yield a stronger result. Thus Question 1 was stated in [3] as an open problem.

Theorem 3.4. Let T be a self-similar substitution tiling with integer inflation
factor whose prototiles are polytopes. Without loss of generality, let 0 be a vertex
of each prototile. If the Z-span of all vertices of the prototiles is a discrete lattice,
then T is of finite local complexity.

It is remarkable that a requirement on the shape of the prototiles, without any
word about the tile-substitution itself, suffices to guarantee FLC. Note, that we
do not require the tiles to be convex at this point. It suffices that they are unions
of finitely many convex polytopes.

Proof. We begin by showing that all vertices contained in some supertile S =
σk(Ti) = {T, T ′, T ′′, . . .} belong to the same connected component of the graph G,
with G as in Theorem 2.7. First we consider vertices on the edge of the support of
a supertile. A (super-)edge of the supertile S consists of entire edges of some tiles.
Thus, all vertices in a single (super-)edge of S belong to the same component C
of G. Consequently, all vertices in the union of the edges of the supertile S belong
to C.

Now, consider a k-face F of S, where k ≥ 2. Let all vertices on the boundary
of F (of dimension k−1) be in the same component C of G. If there is a vertex x
in F with x /∈ C, it belongs to a finite component of G in F which is disjoint with
the boundary of F . Thus, F can be extended to a k-dimensional polytopal tiling
with the finite component C in the corresponding graph G. But this contradicts
Theorem 2.7. Consequently, all vertices in F belong to C. Inductively — by finite
induction on k — all vertices contained in the supertile S belong to C.

Now, let Γ be the lattice spanned by the vertices of the prototiles. Since the
inflation factor is an integer, the vertices of each supertile S are elements of Γ. All
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tile-vertices contained in S belong to the same connected component of G, thus
— by definition of G — they are connected by a finite path of entire tile edges xy
with some vertex of S. By the condition in the theorem, x − y ∈ Γ for all such
edges xy. Therefore, all vertices in the supertile are contained in Γ. Consequently,
all vertices of T are elements of Γ.

In particular, if two tiles in T have nonempty intersection, there is only a finite
number of possible positions of the vertices of these tiles, by the discreteness of
Γ. By Lemma 3.3, T has FLC. �

4. Remarks

We have established the impossibility of a lonely vertex in a locally finite poly-
topal tiling in Euclidean, spherical and hyperbolic space of any dimension. Some
consequences are discussed in this paper. Naturally, further questions arise. For
instance, what can be said about lonely vertices in locally finite tilings with non-
convex tiles?

Another natural question is: What can be said about exactly two vertices?
Since a lonely vertex is impossible, there may be restrictions for constellations
around a point which is a vertex of exactly two tiles T, T ′. Indeed, one obtains
the following result. Roughly spoken, it means that edges of T and T ′ either are
coincident or opposite. In particular, the number of edges of T containing x equals
the number of edges of T ′ containing x. For clarity, we state the result in terms
of A-type and B-type polytopes.

Theorem 4.1. Let a locally finite tiling of the unit sphere Sn by polytopes contain
exactly two A-type polytopes P, P ′. Let x be a vertex of P . Then either x or −x
is a vertex of P ′.

Proof. The cases n = 0 and n = 1 are obvious. So, let n > 1.
We proceed by considering possible shapes of B-type polytopes. Any B-

type polytope is cut out of the unit sphere Sn, embedded in Rn+1, by half-
spaces H+

1 , . . . , H+
m, where x ∈

⋂
i H

+
i . Each such halfspace H+

i can be repre-
sented by a vector ci which is normal to the bounding hyperplane Hi = ∂H+

i :
H+

i = {y : ciy ≥ 0}. We can assume the set of hyperplanes to be minimal with
respect to B. That is, the normal vectors of these hyperplanes are linearly in-
dependent (otherwise there would be a superfluous defining inequality ciy ≥ 0;
that means, a superfluous halfspace). Therefore, the intersection M :=

⋂
i Hi

is an (n + 1 −m)-dimensional linear subspace. Since the considered polytope is
B-type, it contains a pair of antipodal points on the sphere. Thus M has to be at
least of dimension one. It follows m ≤ n, and the intersection Sn ∩M (which is
the boundary of the considered B-type polytope), is an (n−m)-dimensional unit
sphere. In particular, a B-type polytope has a vertex x if and only if it is defined
by exactly n halfspaces. Then, −x is also a vertex of this B-type polytope.

By Theorem 2.5, the vertex x of P is a vertex of some further polytope. Either
A-type (then P ′), or B-type, say, P ′′. In the latter case, by the reasoning above,
−x is a vertex of P ′′, too.
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If −x would be surrounded entirely by B-type polytopes, x also would, which
is impossible. Thus, −x is a vertex of some A-type polytope. The only possibility
is that −x is a vertex of P ′. �
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