
Beiträge zur Algebra und Geometrie
Contributions to Algebra and Geometry
Volume 50 (2009), No. 1, 259-269.

Cubic Ruled Surfaces with Constant
Distribution Parameter in E4

Otto Röschel
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Abstract. A first order invariant of ruled surfaces of E3 is the so-
called distribution parameter d in a generator. It is defined as the limit
of the quotient of the distance and the angle of the generator and its
neighbour. Ruled surfaces with constant parameter of distribution are
of special interest and have been studied by many authors. H. Brauner
could prove that the only nontrivial cubic ruled surface with constant
distribution parameter in E3 is a special type of a Cayley-surface.
This paper is devoted to the investigation of these problems for higher
dimensions. We will in fact determine all cubic ruled surfaces of En

with constant distribution parameter. Surprisingly, there is one class of
such surfaces way beyond the 3-dimensional Cayley-surface case.
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1. Ruled surfaces in En and the distribution parameter

A C1-immersion X(t, u) : (t, u) ∈ G ⊂ <2 −→ En (n ≥ 3) given by

X(t, u) := L(t) + uE(t) t ∈ T, u ∈ < (1)

with the C1-curve L : t ∈ T ⊂ < −→ En and the C1-set of direction vec-
tors E : t ∈ T ⊂ < −→ <n defines a two-dimensional ruled C1-surface in
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En.1 L(t) is called basic curve of X. The corresponding generators are given
by t = const. The tangential behavior of the surface along a generator t = t0
is determined by E(t0) and the derivative vectors Ė(t0) and L̇(t0). The tangent
planes at the points of a generator belong to a subspace of En with dimension
f(t) := Dim[E(t), Ė(t), L̇(t)] ≤ 3. Generators with f(t0) = 3 are called regu-
lar. The tangent planes at the points of a regular generator are contained in a
3-dimensional tangent space of X at the generator spanned by the generator and
[E(t), Ė(t), L̇(t)].2

We are able to measure the distance dist(t0, t) and the angle φ(t0, t) for a fixed
generator t = t0 and the generator given by t. As in the case of a ruled surface
imbedded into the 3-dimensional Euclidean space E3 we define the distribution
parameter 3 d(t0) (for short “DP”) of the ruled surface X(t, u) in the generator
t = t0 as the limit

d(t0) := lim
t−→t0

dist(t0, t)

φ(t, t0)
. (2)

This yields

d(t) =
E2(t) Vol(E(t), Ė(t), L̇(t))

Ė2(t)E2(t)− (E(t)Ė(t))2
. (3)

The determinant used in E3 is replaced by Vol(A,B,C) here. It denotes the
volume of the parallelepiped defined by the 3 vectors A,B,C. Its square is defined
via Gram’s determinant

Vol2(A,B,C) = Det

 A2 AB AC
AB BB BC
AC BC C2

 . (4)

This paper is devoted to ruled surfaces of constant distribution parameter d(t) =
const ∈ < − {0} ∀t ∈ T . Cases with d(t) ≡ 0 ∀t ∈ T characterize developable
surfaces which are excluded here.4

We consider the set of two-dimensional algebraic varieties of En with a one-
parametric set of straight line generators. An element X with the additional
property that any arbitrary (n−1)-dimensional subspace H of En either contains
the whole 2-dimensional ruled surface X or intersects X in a cubic curve (in
algebraic sense) is called cubic ruled surface in En (n ≥ 4).5

Any irreducible non-degenerate two-dimensional variety of degree k of En is con-
tained in a subspace of dimension ≤ k + 1.6 For our case of two-dimensional

1These ruled surfaces are special cases of generalized ruled surfaces with k-dimensional gen-
erators treated by several authors (e.g. H. Frank and O. Giering [7] or H. Hagen [8]).

2For projective properties of ruled surfaces in the 4-dimensional space see R. Weitzenböck
and W. Bos [17].

3An overview on line manifolds of E3 has been given by G. Weiss [15]–[16]. For generalized
ruled surfaces there are more such distribution parameters (see H. Frank, O. Giering [7]).

4We do not admit d(t) ≡ ∞.
5The cubic ruled surfaces of the 3-dimensional Euclidean space E3 are well-known. This is

why we restrict the following considerations to the case n ≥ 4.
6For a proof see the textbook by J. Harris [9], p. 231.
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cubic ruled surfaces we have: Any non-degenerate cubic ruled surface X is con-
tained in a 4-dimensional Euclidean space. Therefore we can confine the following
considerations to n = 4.

2. Cubic ruled surfaces in the real projective space of dimension 4

We embed E4 into a real projective space P4 of dimension 4 (if needed with its
complex extension). In P4 there are two different types of cubic ruled surfaces:
The so-called 3-dimensional cases contained in a 3-dimensional subspace and a
second type called twisted – its span being 4-dimensional. For results on ruled
surfaces with constant DP immersed into a 3-dimensional Euclidean space E3 we
refer to results by H. Brauner [1]–[5]. J. Krames [11] demonstrated that a special
cubic Cayley-surface has constant parameter of distribution. H. Brauner [2] was
able to prove that these surfaces are the only nontrivial cubic ruled surfaces of
E3 with constant distribution parameter. Generalizations to cubic ruled surfaces
with complex generators have been worked out by S. Mick [12].

The aim of this paper is to investigate the genuinely 4-dimensional cases which
addresses the so-called twisted cubic ruled surfaces of E4 with constant distribu-
tion parameter. They span the 4-dimensional space, but are not contained in
a 3-dimensional subspace. Such surfaces can be generated by a rational (1, 1)-
correspondence between a straight line s (called the directing line) and a conic
section c. There the line s and the plane of the conic section c have to be skew.
The straight line s is the only line intersecting all generators of X.

In order to prove this way of generating twisted third order ruled surfaces X we
start with two different non-singular generators e1, e2 of X. The 3-dimensional
space [e1, e2] intersects the cubic surface X in these two generators and a straight
line s. s in turn will intersect e1 and e2. Any two general 3-dimensional spaces
H1, H2 through e1 intersect X in the generator e1 plus a conic section c and k in
planes γ and κ, respectively. H1 ∩H2 is a plane containing e1 and a point P ∈ k
which will also lie on c. The 3-dimensional spaces K(t) of the pencil through the
plane κ intersect the surface X in k plus some straight line generator e(t) cutting
points C(t) out of the conic c. K(t) intersects the plane γ in lines of a pencil
with vertex P projectively linked to the points S(t) of intersection of K(t) and,
otherwise, points S(t) on the straight line s. As P ∈ c this projectivity determines
a (1, 1)-correspondence between the points S(t) ⊂ s and C(t) ⊂ c.

We have: The generators [S(t), C(t)] of X establish a (1, 1)-correspondence
between the points of s and c.

In E4 we use Cartesian coordinates (x1, x2, x3, x4) with corresponding homogenous
coordinates (y0 : y1 : y2 : y3 : y4)

t = (1 : x1 : x2 : x3 : x4)
t as counterparts in P4.

The rational (1, 1)-correspondence always can be achieved by the same parameter
values on s and c (see K. Rittenschober, B. Jüttler [13], pp. 27 and [10]). In
homogenous coordinates a standard parametrization reads

s(t) · · · (1 : t : 0 : 0 : 0)t

c(t) · · · (0 : 0 : 1 : t : t2)t, t ∈ < ∪ {∞}. (5)
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The resulting twisted cubic ruled surface X (algebraically) intersects any 3-dimen-
sional subspace of P4 in a cubic curve. If the 3-dimensional subspace contains a
generator of X but not the directing line s the cubic splits into the generator and
a conic section (which meets the generator).7 It is remarkable that a twisted cubic
ruled surface in P4 does not contain any singular generator.

Remarks.
• The twisted cubic surface X is contained in a cone Γ of degree 2 which is

defined by the straight line vertex s and the conic section c. For the surface
determined by (5) the equation of this cone is given by

Γ · · · y2
3 = y4y2. (6)

The tangent spaces of this quadratic cone Γ are the tangent spaces of the
ruled surface X in its generators.

• P4 contains the ideal space or space at infinity Ω · · · y0 = 0 of E4.
8 The

affine type of X depends on the ideal curve Xu = Ω ∩ X. It can happen
that either s or c (but not both!) are parts of Xu.

• The Euclidean structure of E4 is determined by the polarity of the ideal
elements with respect to the absolute quadric M ⊂ Ω given by

M · · · y0 = 0, y2
1 + y2

2 + y2
3 + y2

4 = 0. (7)

In order to get an affine classification we will classify the twisted cubic ruled
surfaces according to their ideal curve Xu. This algebraic curve can be a twisted
cubic or it can split into parts: According to the possible shape of Xu we have 3
different types:

Case A: Xu is a twisted cubic.

Case B: Xu splits into a conic section and a real generator line (which intersects
the conic section in one point, but is not part of the plane of the conic
section).

Case C: Xu contains the directing line s and two generator lines (in algebraic
sense). All generators are parallel to a plane, the surface therefore is
a conoidal ruled surface.

To simplify our further investigations we will give standard Euclidean representa-
tions of the surfaces of these types:

In the cases A and B we can use the real straight directing line s parametrized
by L(t) := t L∗ with constant real vector L∗. A rational linear parameter trans-
formation yields

X(t, u) = [E∗0 + tE∗1 + t2E∗2 + εt3L∗] + utL∗ (t, u) ∈ <2 (8)

with 4 linearly independent vectors {E∗0,E∗1,E∗2,L∗}. The case A is characterized
by ε 6= 0 while we have ε = 0 for case B. The generators determine a two-
dimensional cubic (case A) or quadratic direction cone (case B). In case B there

7All has to be seen in algebraic sense. The conic must not be real and can degenerate.
8The elements at infinity will be addressed as ideal elements here.
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is a real generator line of the surface in the ideal space Ω. In our parametrization
it belongs to t = ∞. In case A the parameter t = ∞ points to the common point
on Xu and the directing line s, but determines a non ideal generator.

In case C we apply a displacement of E4 transforming the directing line s and the
conic section c into

s · · · (0 : 1 : t : 0 : 0)t

c · · · (1 : l1 : l2 : l3 : l4)
t, t ∈ < ∪ {∞} (9)

where c is given by quadratic rational functions li(t). We gain a conoidal twisted
cubic ruled surface with generators parallel to the 2-dimensional plane [x1, x2]. A
Euclidean parametrization is given by

X(t, u) = E(t) + uL(t) =


1
t
0
0

 + u


l1(t)
l2(t)
l3(t)
l4(t)

 . (10)

Now we are ready to characterize twisted ruled cubic surfaces of E4 with constant
distribution parameter. Our investigations relate to the cases A, B and C.

3. Twisted cubic ruled surfaces of cases A and B with constant DP

We start with the parametric representation (8) and discuss the factors of the
formula (3):

E2(t) is a polynomial in t, which is of degrees ≤ 6 and ≤ 4 for case A and B,
respectively. The denominator E2Ė2 − (EĖ)2 will be a polynomial in t, as well.
In the ases A and B we have no pole for Vol(E(t), Ė(t), L̇(t)). In order to gain
constant DP we have as a first necessary condition:9

(N1) Vol(E(t), Ė(t), L̇(t)) has to be a polynomial in t.

Moreover, the zeros of the numerator and the denominator polynomials of (3)
have to coincide. This prompts two further necessary conditions for twisted cubic
ruled surfaces of type A or B in order to have constant DP:

(N2) For any isotropic generator t = t∗ with E2(t∗) = 0 we have Ė2(t∗) = 0, too.
The geometric interpretation reads as: Any isotropic generator has an isotropic
asymptotic plane. Or, considering the ideal curve Xu: Any intersection of the
absolute M and Xu counts at least twice in algebraic sense.

(N3) For any generator t = t∗ with Vol(E(t∗), Ė(t∗), L̇(t∗)) = 0 (generator with
isotropic tangent space) the denominator will also have a zero. Generators with
isotropic tangent space must have an isotropic asymptotic plane.

As we are dealing with surfaces with real generators, these zeros cannot be real
and have to be pairs of conjugate complex numbers. According to condition (N2)
any zero of the polynomial E2 has to count twice. In the cases A and B this gives

9These considerations are similar to those by H. Brauner [2] for E3.
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two conjugate complex zeros t1, t̄1 of the polynomial E2. t1 and t̄1 have to be 3-
fold10 and 2-fold zeros in the case A and B, respectively. A linear transformation
in the parametric domain yields t1 = i, t̄1 = −i, i denoting the complex unit with
i2 = −1.

Thus (N2) delivers
E2(t) = (1 + t2)k(E∗0)

2 (11)

with k = 2, 3 for the cases A and B, respectively. This implies the following series
of conditions for case A:

(E∗0)
2 = ε2(L∗)2 E∗0E

∗
1 = 0 εE∗2L

∗ = 0
(E∗1)

2 + 2E∗0E
∗
2 = 3(εL∗)2 εE∗0L

∗ + E∗1E
∗
2 = 0 (E∗2)

2 + 2εE∗1L
∗ = 3(εL∗)2.

(12)
For case B we have

(E∗0)
2 = (E∗2)

2 2E∗0E
∗
2 + (E∗1)

2 = 2(E∗0)
2

E∗0E
∗
1 = 0 E∗1E

∗
2 = 0.

(13)

Using conditions (12) we compute the distribution parameter for case A as

d(t) =
Vol(E(t), Ė(t),L∗)

(E∗1)
2 + 4tE∗1E

∗
2 + t2(E∗2)

2
(14)

and for case B

d(t) =
Vol(E(t), Ė(t),L∗)

(E∗1)
2

. (15)

In both cases we have to discuss the zeros of Vol(E(t), Ė(t),L∗): As stated before
they belong to generators of X with isotropic tangent space. The ideal curve Eu

of the generators is given by the homogenous coordinates (0,E(t)t). Using the
ideal point (0, (L∗)t) 11 as the vertex of an ideal cone with the basic curve Eu

we gain a 2-dimensional ideal cone Φ of degree 2 in Ω. In algebraic sense this
real quadratic cone Φ in general will have 4 tangent planes touching the absolute
quadric M. They are the ideal planes of the isotropic tangent spaces to some
generators of X. So we can state: The twisted cubic ruled surfaces of case A and
B in algebraic sense have 4 generators with isotropic tangent space. They belong
to zeros of Vol(E(t), Ė(t),L∗). Therefore Vol(E(t), Ė(t),L∗) cannot be constant
and according to (15) there is no twisted cubic ruled surface of the case B with
constant DP.

Case A will be our next try: As the denominator of (14) is a quadratic polyno-
mial in t, the 4 possible zeros of Vol(E(t), Ė(t),L∗) have to coincide in pairs of
conjugate complex numbers t1,2 with t2 = t̄1. The cone Φ will be tangent to the

10In the case A (in algebraic sense) we have 6 intersections of Xu and M which are complex
and belong to pairs of conjugate complex numbers. The condition (N2) implies that each of
the corresponding zeros has to count (at least) twice. Thus the only possibility in case A is the
existence of 2 conjugate complex roots, each counting 3 times.

11In case A we have the ideal curve Xu = Eu and (0, (L∗)t) is a point on it. In case B
(0, (L∗)t) does not belong to Eu.
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absolute quadric M in 2 conjugate complex points. The corresponding generators
of Φ are given by [(0, (E(t1,2)

t), (0, (L∗)t)] and are tangent to the absolute quadric
M. According to condition (N3) the tangent [(0, (E(t1,2)

t), (0, Ė(t1,2)
t)] of Eu at

t1,2 has to be tangent to M. As Eu is a non-degenerate twisted cubic curve in
case A the points (0,E(t1,2)

t) must be points on the absolute M. The vertex
of the quadratic cone Φ has to be lying within the two tangent planes to M at
(0,E(t1,2)

t). The corresponding generators have to be isotropic generators – the
only two on X are given by t = ±i and have the direction vectors

E(±i) = (E∗0 − E∗2)± i(E∗1 − E∗3). (16)

The vertex of the cone Φ is determined by the direction L∗ with

0 = L∗E(±i) ⇔

0 = L∗(E∗0 − E∗2) and 0 = L∗(E∗1 − E∗3).
(17)

With these assumptions t = ±i are zeros of Vol(E(t), Ė(t), L̇(t)). According to
(N3) these zeros t = ±i must be zeros of (E∗1)

2 + 4tE∗1E2 ∗ +t2(E∗2)
2, too. This

yields the additional conditions

(E∗1)
2 = (E∗2)

2 and E∗1E
∗
2 = 0. (18)

(12), (17) and (18) are conditions for the 4 linearly independent real vectors
{E∗0,E∗1,E∗2,L∗}, which are summarized in

(E∗0)
2 = (E∗1)

2 = (E∗2)
2 = (εL∗)2

L∗ E∗0 = E∗0E
∗
1 = E∗1E

∗
2 = E∗2L

∗ = 0
εE∗1L

∗ = E∗0E
∗
2 = (E∗0)

2.
(19)

As we have

cos(E∗0,E
∗
2) =

E∗0 E∗2
‖E∗0‖‖E∗2‖

= 1 (20)

E∗0 and E∗2 have to be linearly dependent. As a consequence (19) cannot be met by
real and linearly independent vectors {E∗0,E∗1,E∗2,L∗}. Thus there are no twisted
cubic ruled surfaces of case A with constant DP. We sum up in

Theorem 1. There are no twisted cubic ruled surfaces with constant distribution
parameter in the cases A and B.

4. Twisted cubic ruled surfaces of case C of E4 with constant DP

We have to regard to the standard parametric representation (10) of these surfaces
with respect to the DP (3). We compute

Vol2(E(t), Ė(t), L̇(t)) = l̇23(t) + l̇24(t) and

d2(t) = (1 + t2)2(l̇23(t) + l̇24(t)).

(21)
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The distribution parameter is constant d(t) := D 6= 0 ∀t ∈ < iff

l̇23(t) + l̇24(t) =
D2

(1 + t2)2
∀t ∈ <. (22)

Remark. The situation is different from the one in the cases A and B: The zeros
t = ±i of E2(t) have to be compensated by the poles of the volume function and
therefore of L̇(t). We have no direct counterparts to the necessary conditions
(N1), (N2) and (N3) here.

(22) is a condition for the orthogonal projection L”(t) · · · (0, 0, l3(t), l4(t))t of the
conic section L(t) onto the [x3, x4]-plane. It characterizes L”(t) as rational curve
with planar rational offsets (in the [x3, x4]-plane). Therefore L”(t) has to be a
so-called Pythagorean hodograph curve12 of degree ≤ 2. Thus, L”(t) has to be a
circle, a straight line or has to degenerate into a single point.

In the last two cases the original conic L(t) is part of a plane or a 3-dimensional
space parallel to the [x1, x2]-plane. The corresponding cubic surfaces are contained
in 3-dimensional subspaces – a case excluded here.13

If L”(t) is a circle with radius R > 0, it can be transformed into the standard
form

l3(t)
2 + l4(t)

2 = R2. (23)

The resulting ruled surface is contained in a hypercylinder of revolution Γ with
the equation

Γ · · ·x2
3 + x2

4 = R2. (24)

This yields

Lemma 1. The twisted cubic ruled surfaces with constant distribution parameter
have to be part of a hypercylinder of revolution Γ with 2-dimensional generators
totally orthogonal to the plane of the basic circle.

Now we are looking for a parametrisation of L”(t) in line with conditions (22) and
(23). A short computation yields standard representations of the form

l3(t) = R(1− t2)/(1 + t2)
l4(t) = 2Rt/(1 + t2).

(25)

Of course, we can apply any displacement in the plane [x3, x4] which keeps the
origin invariant. All corresponding ruled surfaces (independent from l1(t) and
l2(t)) have the same constant distribution parameter

d2(t) = 4R2. (26)

12Such planar rational curves with planar rational offset curves have been considered by
R. Farouki and T. Sakkalis [6].

13As mentioned before, cubic ruled surfaces contained in a 3-dimensional space have been
studied in detail by H. Brauner [2]. He showed that for the conoidal case C there are no
nontrivial counterparts with constant DP contained in a 3-space.
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So the case C contains twisted cubic ruled surfaces with constant distribution
parameter if we choose the starting conic section L(t) as a non-degenerate 2-
dimensional planar section of Γ.14 As a standard representation we can use

L(t) =
1

1 + t2


(1− t2)α1 + 2tβ1

(1− t2)α2 + 2tβ2

R(1− t2)
2Rt

 and E(t) =


1
t
0
0

 (27)

with arbitrary constants α1, α2, β1, β2 ∈ <. We sum up in

Theorem 2. The only twisted cubic ruled surfaces of constant distribution param-
eter are special conoidal ruled surfaces of case C. They are contained in quadratic
cylinders of revolution with 2-dimensional generators. A standard parametrization
is given by (27).

Remarks.
• If we reparametrise by t := tan(u/2) our parametric representation of the

ruled surface can be transformed into the normal form

X(u, v) =


α1 cos u + β1 sin u
α2 cos u + β2 sin u

R cos u
R sin u

 + v


cos(u/2)
sin(u/2)

0
0

 (28)

with u ∈ [0, 2π), v ∈ <.

• These results demonstrate that in E4 there do exist twisted cubic ruled
surfaces with constant distribution parameter which are conoidal – their
generators being parallel to a fixed plane of E4. This is remarkable, as there
are no nontrivial counterparts to this case in E3 (see H. Brauner [2]).

• The surface has two conjugate complex isotropic generators. According to
the results by H. Brauner for E3 (see [2]) we would expect these isotropic
generators being generators with isotropic asymptotic planes. Here the two
isotropic generators are contained in the absolute quadric M of E4 in the
ideal space Ω.

• The case α1 = α2 = β1 = β2 = 0 in (28) gives a helical ruled surface of E4

which is generated by a one-parameter helical motion. This special motion
is generated by the composition of two rotations in totally orthogonal planes
of E4. The ratio of the angular velocities is 1 : 2. The corresponding helical
paths in general are rational quartics. In the ideal space Ω it induces a
one-parameter subgroup of the group of elliptic displacements with respect
to the absolute M.15

14We gain further conoidal ruled surfaces with constant DP immersed into Γ if l1(t) and l2(t)
are chosen as arbitrary C1-functions in t.

15Such non-Euclidean screws have been considered by K. Strubecker in [14].
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Now we sum up in the final

Theorem 3. There are twisted cubic ruled surfaces of constant distribution pa-
rameter in E4. They are conoidal ruled surfaces contained in a quadratic cylinder
of revolution with 2-dimensional generators. A standard parametrisation of all
these surfaces is given by (27) and (28).

5. Conclusions

In this paper we have been able to determine all twisted cubic ruled surfaces of E4

with constant distribution parameter. Amazingly, in E4 there is no counterpart
to the only case in E3 (the special Cayley-surface). So this special Cayley-surface
is embedded into a series of forth order ruled surfaces with constant DP of E3

(see H. Brauner [1] – [5]), but not into a series of third order ruled surfaces with
constant DP of E4.

It comes as a surprise that there is another range of twisted cubic ruled surfaces
with constant DP in E4 which is conoidal. This is astonishing as there is no
conoidal cubic ruled surface with constant DP showing up in E3.
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