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Abstract. We present results on reflexive modules over Gorenstein
rings which generalize results of Serre and Samuel on reflexive modules
over regular local rings. We characterize Gorenstein rings of dimension
at most two by the property that the dual module HomR(M, R) has G-
dimension zero for every finitely generated R-module M . In the second
section we introduce the notions of a reflexive cover and a reflexive
envelope of a module. We show that every finitely generated R-module
has a reflexive cover if R is a Gorenstein local ring of dimension at
most two. Finally we show that every finitely generated R-module has
a reflexive envelope if R is quasi-normal or if R is locally an integral
domain.
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Introduction

It is well known that if R is a regular local ring of dimension at most 2, then every
reflexive module is free. This result was proved in the late 1950s by J. P. Serre [15].
In Section 1 we generalize this result by observing that if R is a Gorenstein local
ring of dimension at most 2, then every reflexive module is G-projective (i.e. has
G-dimension zero). This is our Corollary 1.2. We also generalize the following
result of P. Samuel:
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For a regular local ring R of dimension 3, an R-module M is reflexive if and only
if pdR M ≤ 1 and the localizations Mp are free over Rp for every prime ideal p

distinct from the maximal ideal.

We prove (Proposition 1.7) that for a Gorenstein local ring R of dimension 3, an
R-module M is reflexive if and only if G-dimR M ≤ 1 and the localizations Mp

have G-dimension zero over Rp for every prime ideal p distinct from the maximal
ideal. We also prove (Theorem 1.9) that R is Gorenstein of dimension at most
two if and only if M∗ is G-projective for every finitely generated R-module M .

In Section 2 we define reflexive covers and reflexive envelopes. We show that if R
is a Gorenstein local ring of dimension at most two, then every finitely generated
R-module has a reflexive cover. We also prove that if R is a quasi-normal ring or
if R is locally an integral domain then every finitely generated R-module has a
reflexive envelope.

All rings in this paper will be assumed to be commutative Noetherian rings
with identity. As usual, M∗ denotes HomR(M, R), where R is any ring and M
any R-module. We call M∗ the algebraic dual of M . There is a natural evaluation
map φM : M → M∗∗ defined by φM(m)(f) = f(m), for m ∈ M , f ∈ M∗, and we
say M is a reflexive module if this natural map is an isomorphism.

The Gorenstein dimension, or G-dimension, of a module was introduced by
Auslander [1] and Auslander-Bridger [2] in the mid 1960s.

Definition. A finitely generated R-module M is said to have G-dimension zero
(notation: G-dimR M = 0) if and only M satisfies the following three properties:
1. M is reflexive,

2. Exti
R(M, R) = 0 for each i ≥ 1,

3. Exti
R(M∗, R) = 0 for each i ≥ 1.

A module of G-dimension zero is also called G-projective or Gorenstein projective.
The term totally reflexive is also used by some authors. For simplicity we will
sometimes write simply G-dim instead of G-dimR if the ring R is understood.
The same convention applies to projective dimension (denoted pd or pdR) and
injective dimension (denoted id or idR). G-dimension is a refinement of projective
dimension in the sense that there is always an inequality G-dim M ≤ pd M . More-
over equality holds if pd M < ∞. Like projective dimension, the G-dimension of
a module may range from 0 to ∞. If R is a Gorenstein ring, then every R-
module has finite G-dimension. G-dimension enjoys many of the nice properties
of projective dimension. For example, if R is local and M is a finitely generated
R-module with G-dim M < ∞, then G-dim M +depth M = depth R, an equation
which is now known as the Auslander-Bridger formula. In fact, G-dimension is to
Gorenstein local rings what projective dimension is to regular local rings (cf. the
regularity theorem and Gorenstein theorems in the synopsis of [8]). Modules of G-
dimension zero over Gorenstein local rings are simply maximal Cohen-Macaulay
modules. For these and other standard facts about G-dimension, see [8].
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1. Gorenstein rings and reflexive modules

In this section we present generalizations of results of Serre and Samuel, in the
context of Gorenstein rings. We also prove that Gorenstein rings R of dimension
at most two are characterized by the property that HomR(M, R) has G-dimension
zero for all finitely generated R-modules M .

We begin by demonstrating the first result stated in the introduction.

Proposition 1.1. Let R be a local ring with depth R ≤ 2 and M an R-module
with G-dim M < ∞. If M is a reflexive R-module, then G-dim M = 0.

Proof. By [7, Exercise 1.4.19] (or [3, Proposition 4.7]) we have

depth M = depth HomR(M∗, R) ≥ min{2, depth R} = depth R.

Since G-dim M < ∞ we may apply the Auslander-Bridger formula

G-dim M + depth M = depth R

to conclude that G-dim M = 0. �

Corollary 1.2. Let R be a local Gorenstein ring with dim R ≤ 2. If M is a
reflexive R-module, then G-dim M = 0.

Remarks. This generalizes Serre’s result [15] that reflexive modules are free if
R is regular local and dim R ≤ 2. Using other terminology, the proposition says
reflexive implies totally reflexive if R is Gorenstein local and dim R ≤ 2.

Our next goal is to generalize the following result of Samuel ([14, Proposition 3]):

Proposition 1.3. Let R be a regular local ring of dimension 3. For an R-module
M to be reflexive, it is necessary and sufficient that pd M ≤ 1, and that Mp is
free over Rp for every prime ideal p distinct from the maximal ideal m.

We will use the following nice characterization of reflexive modules over Gorenstein
rings due to Vasconcelos [17, (1.4)]: “A necessary and sufficient condition for M
to be reflexive is that every R-sequence of two or less elements be also an M -
sequence.” We will refer to this as Vasconcelos’ theorem. First we quote the
following result from Samuel, where h(p) denotes the height of the prime ideal p.

Proposition 1.4. Let R be Cohen-Macaulay ring, M an R-module and q ≥ 1 an
integer. The following are equivalent:

(i)q depth(Mp) ≥ inf(q, h(p)) for all prime ideals p of R;

(ii)q every R-sequence of length ≤ q is an M-sequence.

This result is stated and proved in [14], Proposition 6, page 246.

Corollary 1.5. Let R be a Gorenstein local ring, M an R-module, and q ≥ 1 an
integer. Then (i)q and (ii)q are equivalent to
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(iii)q G-dimRp(Mp) ≤ sup(h(p)− q, 0) for all prime ideals p of R.

Proof. Modify the proof of [14, Corollary 2, p. 247], using the Auslander-Bridger
formula. �

Corollary 1.6. Let R be a Gorenstein local ring. An R-module M is reflexive if
and only if

G-dimRp(Mp) ≤ sup(h(p)− 2, 0)

for all prime ideals p of R.

Proof. Suppose M is reflexive. For any prime ideal p of R, we have Mp is a
reflexive Rp-module. If dim Rp ≤ 2 then G-dimRp(Mp) = 0 by Corollary 1.2 and
the result is true. Assume therefore that dim Rp > 2. By [17, Theorem (1.4)],
depthRp(Mp) ≥ 2, and then by the Auslander-Bridger formula, G-dimRp(Mp) ≤
h(p)− 2.

Conversely, if the condition is true, then by the equivalence of (iii)2 and (ii)2,
M is a reflexive R-module by Vasconcelos’ theorem. �

Now we can generalize the result of Samuel [14, Proposition 3, p. 239] mentioned
above.

Proposition 1.7. Let (R,m) be a Gorenstein local ring of dimension 3. An R-
module M is reflexive if and only if G-dimR(M) ≤ 1 and G-dimRp(Mp) = 0 for
all prime ideals p distinct from m.

Proof. Assume M is reflexive. By Vasconcelos’ theorem, depth M ≥ 2 and then
by Auslander-Bridger G-dimR(M) ≤ 1. For any prime p 6= m, Mp is a reflexive
module over the Gorenstein local ring Rp and we have dim Rp ≤ 2; therefore
G-dimRp(Mp) = 0 by Corollary 1.2.

Conversely, we show that M is reflexive by showing that M satisfies the con-
dition of Corollary 1.6. If p = m, then because G-dim M ≤ 1 and h(m) = 3 the
condition is satisfied. If p 6= m then h(p) ≤ 2 and the condition is also satisfied in
this case. �

Our third goal of this section (Theorem 1.9) is a characterization of Gorenstein
rings of dimension at most two.

Reminders about pure submodules. Recall that a submodule A of a module
B is called a pure submodule if the induced sequence

0 → Hom(N, A) → Hom(N, B) → Hom(N, B/A) → 0

is exact for every finitely presented R-module N , or equivalently the sequence

0 → M ⊗ A → M ⊗B → M ⊗B/A → 0

is exact for every R-module M (see e.g. [12, Theorem 1.27] for a proof). It is not
hard to see that if A is a pure submodule of an injective module, then A is itself
an injective module.
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Lemma 1.8. Let N be an R-module. If Ext1
R(M∗, N) = 0 for every finitely

generated R-module M , then idR N ≤ 2.

Proof. Let 0 → N → E0 d1

−→ E1 d2

−→ E2 d3

−→ · · · be an injective resolution of N .
The complex

E• : 0 −→ E0 d1

−→ E1 d2

−→ E2 d3

−→ · · ·

is a complex of injective modules, and the Hom evaluation morphism

θMRE• : M ⊗R HomR(R,E•) −→ HomR(HomR(M, R), E•)

is an isomorphism of complexes (see (0.3)(b) of [9]). By hypothesis, the first
cohomology module of M ⊗R E• is zero. It follows that 0 → M ⊗R Im(d2) →
M ⊗R E2 is exact. This means that Im(d2) is a pure submodule of the injective
module E2. Therefore Im(d2) is injective, and idR N ≤ 2. �

Theorem 1.9. For a commutative Noetherian ring R, the following are equiva-
lent.
1. R is a Gorenstein ring of dimension at most two.

2. G-dim M∗ = 0 for every finitely generated R-module M .

Proof. (1) =⇒ (2). Assume (1) and let M be a finitely generated R-module.
By [17, Corollary 1.5], M∗ is a reflexive module. For any prime ideal p of R, we
have that (M∗)p is a reflexive Rp-module. Since dim Rp ≤ 2, by Corollary 1.2
G-dimRp(M

∗)p = 0. By the localization property of G-dimension, G-dimR M∗ =
0.

(2) =⇒ (1). Let M be a finitely generated R-module. By hypothesis and the
definition of G-dimension, we have Ext1

R(M∗, R) = 0. By Lemma 1.8 with N = R,
we conclude that idR R ≤ 2 and R is a Gorenstein ring. �

2. Reflexive covers and envelopes

In this section we study the covering and enveloping properties of the class of
finitely generated reflexive modules. The reflexive covers (when they exist) lie
between the projective covers and the torsion-free covers, as finitely generated
projectives are reflexive, and reflexive modules are torsion-free.

Let X be a class of R-modules, and let M be any R-module. An X -precover
of M is defined to be an R-homomorphism φ : C → M from some C ∈ X to M
with the property:

(i) for any R-homomorphism f : D → M from a module D ∈ X to M , there is
a homomorphism g : D → C such that φg = f .

An X -precover φ : C → M is called an X -cover if it satisfies property

(ii) whenever g : C → C is such that φg = φ, then g is an automorphism of C.
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For example, a projective precover of a module M is just a surjection φ : P → M
where P is a projective module. Projective covers were originally studied by Bass
in [5]. If X is the class of torsion-free modules over an integral domain, we get
the torsion-free covers, which were shown to exist by Enochs in [10]. Flat covers
exist for all modules over any ring; see [6] or [11, Theorem 7.4.4].

We note that an X -cover, when it exists, is unique up to isomorphism.

Definition. Let X be the class of finitely generated reflexive R-modules. An
X -cover of a finitely generated R-module M will be called a reflexive cover.

A Gorenstein projective module is reflexive according to the definition. Corollary
1.2 states the converse is true for a Gorenstein local ring R with dim R ≤ 2. Thus
we immediately get the following.

Proposition 2.1. Let R be local Gorenstein with dimension at most 2. A finitely
generated R-module M is Gorenstein projective if and only if M is a reflexive
R-module.

Theorem 2.2. Let R be a local Gorenstein ring of dimension at most 2, and let
M be a finitely generated R-module. Then M has a finitely generated reflexive
cover C → M .

Proof. By [11, Theorem 11.6.9], M has a Gorenstein projective cover C → M
and C is finitely generated. It follows from the previous proposition that C → M
is the reflexive cover of M . �

Example of a reflexive cover. We now give a nontrivial example of a reflexive
cover. Let k be a field and consider the one-dimensional local Gorenstein domain
R = k[[t2, t3]]. Since R is a one-dimensional local Gorenstein domain, a finitely
generated module is reflexive if and only if it is torsion-free [Kaplansky, Theorem
222]. In particular the maximal ideal m of R is reflexive. Let I be any principal
ideal of R. We first show that the natural map φ : m → m/I is a reflexive precover.
Let P be any finitely generated reflexive R-module. Since G-dimR P = 0, and I
is free on one generator, we have Ext1

R(P, I) = 0. This shows that m → m/I is
a reflexive precover. We know that m/I has a reflexive cover, and any reflexive
cover is a direct summand of any precover. That is, m = M1⊕K for submodules
M1 and K such that the restriction φ|M1 : M1 → m/I is a reflexive cover of m/I
([Xu, Theorem 1.2.7], for example). But m is indecomposable, being of rank 1,
and so K = 0. Thus m = M1 and m → m/I is the reflexive cover of m/I.

Remarks. (1) Other than Gorenstein local rings of dimension at most two, we
would like to know which other rings R (if any) have the property that all finitely
generated R-modules have reflexive covers.

(2) If R is a ring with the property that there are only finitely many isomorphism
classes of indecomposable reflexive R-modules, then every R-module has a reflex-
ive precover. The argument uses the idea in the proof of [4, Proposition 4.2]. See
also [16, page 409].
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We now turn to envelopes, which are dual to covers. For a class X of modules,
an X -preenvelope of an R-module M is an R-homomorphism φ : M → X with
X ∈ X such that

(i) for any R-homomorphism f : M → Y where Y ∈ X , there is a homomor-
phism g : X → Y such that gφ = f .

An X -preenvelope φ : M → X is called an X -envelope if it satisfies

(ii) whenever g : X → X is such that gφ = φ, then g is an automorphism of X.

Definition. Let X be the class of finitely generated reflexive R-modules. An X -
envelope of a finitely generated R-module M will be called a reflexive envelope of
M .

Recall that when R is an integral domain we have the notion of the rank of a
module M , which can be defined to be the maximal number of R-linearly inde-
pendent elements contained in M . If K is the field of fractions of the domain R,
then rank M is equivalently, the dimension of M ⊗R K as a vector space over K,
or the dimension of the localization S−1M , where S = R \ {0}. We denote the
torsion submodule of an R-module M by t(M). That is, t(M) := {m ∈ M | rm =
0 for some nonzero r ∈ R}. We say M is a torsion module if M = t(M), and M
is torsion-free if t(M) = 0. The proof of the next lemma is omitted, as the results
are either well-known or are easily proved.

Lemma 2.3. Let R be an integral domain, and let M and N be finitely generated
R-modules.

1. The map φM : M → M∗∗ is injective if and only if M is torsion-free.

2. The module M is a torsion module if and only if S−1M = 0.

3. rank M = rank M∗.

4. If M is a torsion and N is a torsion-free R-module, then HomR(M, N) = 0.

5. The modules M and M/t(M) have the same duals and biduals.

6. If 0 → M ′ → M → M ′′ → 0 is an exact sequence of R-modules, then rank M =
rank M ′ + rank M ′′.

The next lemma is almost certainly known but will be needed later; we sketch a
proof for lack of a convenient reference.

Lemma 2.4. Let R be a integral domain. If a finitely generated R-module N is
of the form N = M∗ for some R-module M , then N is reflexive.

Proof. The exact sequence 0 → N
φN−→ N∗∗ → C → 0 is split exact, where

C = Coker(φN) (by [8, Proposition 1.1.9(a)] for example). Since N and N∗∗ have
the same rank, rank C = 0 and C is a torsion module. But C is isomorphic to a
direct summand of the torsion-free module M∗∗ and hence C = 0. �

The previous result is true for rings which are locally domains. To prepare for
the proof of this we quote [13, Corollary IV.1.6, p. 94]. In the following Max(R)
denotes the set of all maximal ideals of R.
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Lemma 2.5. A linear mapping α : M → N of finitely generated R-modules (R
any ring) is bijective if and only if for all m ∈ Max(R) the mapping αm : Mm → Nm
is bijective.

We note that for a ring R, a multiplicatively closed subset S, and a finitely
generated R-module M we have

S−1(M∗) = S−1 HomR(M, R) ∼= HomS−1R(S−1M, S−1R) = (S−1M)∗.

Of course we are using (−)∗ here in two different ways: the first is the dual
with respect to R; the second the dual with respect to S−1R. In particular,
(M∗)p = (Mp)

∗ for any prime ideal p of R and this module will be denoted simply
M∗
p .

Proposition 2.6. Let R be any ring. A finitely generated R-module M is reflex-
ive if and only if it is locally reflexive for all m ∈ Max(R).

Proof. Since localization is exact, it is clear that if the natural map φ : M → M∗∗

is bijective R-linear, then φm : Mm → M∗∗
m is bijective Rm-linear for all m ∈

Max(R). Conversely, if φm : Mm → M∗∗
m is bijective Rm-linear for all m ∈ Max(R),

then φ : M → M∗∗ is a bijective R-linear map by Lemma 2.5. �

Proposition 2.7. If R is a ring with the property that Rm is a domain for all
m ∈ Max(R), then every dual module is reflexive; that is, if N = M∗ for some
finitely generated R-module M , then N is reflexive.

Proof. For all m ∈ Max(R) the Rm-module Nm = M∗
m is reflexive over Rm by

Lemma 2.4. Now since Nm → N∗∗
m is bijective for all m ∈ Max(R), N is reflexive

by Lemma 2.5. �

Proposition 2.8. Let M be a finitely generated R-module and suppose that M∗

is reflexive. Then the natural map φM : M −→ M∗∗ is a reflexive envelope of M .

Proof. Since M∗ is reflexive, M∗∗ is reflexive. Let Y be a reflexive R-module and
f : M → Y a homomorphism. Then the homomorphism φ−1

Y ◦ f ∗∗ : M∗∗ → Y
satisfies φ−1

Y f ∗∗φM = f . This shows that φM : M → M∗∗ is a reflexive preenvelope.
Now suppose g : M∗∗ → M∗∗ is a homomorphism and gφM = φM . Then φ∗

Mg∗ =
φ∗

M and since φM is invertible g∗ = 1. Taking duals once again gives g∗∗ = 1. Then
φM∗∗g = g∗∗φM∗∗ and since φM∗∗ is invertible we have g = 1. This completes the
proof. �

Note. The proof shows that φ : M → M∗∗ actually enjoys a property stronger
than that of an envelope: any map g : M∗∗ → M∗∗ such that gφ = φ is not just
an automorphism of M∗∗ but is in fact the identity map on M∗∗.

Definition. (cf. [17]) A ring R is said to be quasi-normal if for any prime ideal p

of R the following hold: (1) if ht(p) ≥ 2, then depth Rp ≥ 2; and (2) if ht(p) ≤ 1,
then Rp is Gorenstein.
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Theorem 2.9. If R is either a quasi-normal ring or locally an integral domain,
then for every finitely generated R-module M , the natural map φM : M → M∗∗ is
a reflexive envelope of M .

Proof. Let M be an R-module. If R is a quasi-normal ring, then M∗ is reflexive by
[17, Corollary 1.5]; then by 2.8 the natural map M → M∗∗ is a reflexive envelope.
If R is locally a domain, then by 2.7 and 2.8 the natural map φM : M → M∗∗ is
a reflexive envelope. �
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