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1. On the Cayley cubic

The classification of singular cubic surfaces in CP3 was done in the 1860’s, by
Schläfli [22] and Cayley [7]. Surface XVI in Cayley’s classification is now called
Cayley cubic, and when embedded in CP3, it is defined by the following equation

4(X3 + Y 3 + Z3 + W 3)− (X + Y + Z + W )3 = 0,

and has four singularities, which are ordinary double points. Cayley noticed that
this surface is the unique cubic surface having four ordinary double points, which
is the maximum possible number of double points for a cubic surface (see, for
example, Salmon’s book [21]). In [12], one can find an important information
about the Cayely cubic, such as the fact that it contains exactly nine lines, six of
which connect the four nodes pairwise and the other three of which are coplanar.

Note that the Cayley cubic is invariant under the symmetric group Sym4.

Let us denote by C this surface and by SingC = Sing the set of the four nodes.
We are interested in the fundamental group of the complement of the set of sin-
gularities in the Cayley cubic π1(C−Sing). A direct computation of this group is
elementary. Consider the smooth del-Pezzo surface S6 of degree 6. The Cremona
involution Cr is the regular automorphism of S6 and has 4 fixed points, which we
denote as Fix(Cr). The factor S6/Cr is the Cayley cubic; singular points of the
Cayley cubic are images of fixed points of Cr on S6. Therefore, the universal cover
of (C − Sing) is (S6 − Fix(Cr)), and hence the fundamental group π1(C − Sing)
is Z/2Z.

However, for a general singular surface X in CP3 there is no general method for
computing the fundamental group π1(X−SingX). We present here two other dif-
ferent approaches for this problem, demonstrating them on the Cayley cubic. We
compute first the braid monodromy factorization of the branch curve of the Cay-
ley cubic in CP2, based on the braid monodromy techniques of Moishezon-Teicher
([18], [19]). We then apply two methods in order to compute this fundamental
group. The first method consists of lifting the factorization to a factorization in
the mapping class group, from which we can find the desired group. The second
method is based on [16] and finds the fundamental group using the Reidemeister-
Schreier method ([15]).

The paper is divided as follows. In Section 2 we compute the braid monodromy
factorization of the branch curve of the Cayley cubic C and the fundamental group
of the complement of the branch curve, using a degeneration of the surface into a
union of three planes. In Section 3 the fundamental group of the Cayley surface
minus the singular points is computed using the results from Section 2.

2. The factorization ∆2
6 and the fundamental group π1(CP2 − S̄)

In this section we give the braid monodromy factorization of the branch curve S
in C2. We also present the fundamental groups π1(C2 − S) and π1(CP2 − S̄).

We begin with a few basic notations. Let S̄ be a branch curve of the surface C
in CP2, and let l∞ be a line in CP2, transverse to S̄. We introduce S = S̄− S̄∩ l∞.
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Take a projection π : CP2 → CP1. Let πaff : C2 → C be the affine generic
projection. Then there is a finite subset of points Z ⊂ C, which is the projection
on C of the nodes and cusps of S and the branch points of πaff |S. Above each
point of Z ⊂ C there is just one singular point of πaff |S. Let {δi} be a basis of
non-intersecting loops in C−Z around each point of Z, starting from x0 ∈ C−Z.

Now we use the theorem of Zariski [24]: Let z ∈ Z and δ be a loop in
C − Z around z. Then there is a braid monodromy action ϕ : π1(C − Z, x0) →
Bn[Cx0 , Cx0 ∩ S], s.t. Cx0 is the fiber of πaff over x0 and Bn is the braid group.

We define a halftwist Zij as the exchange of the positions of two points i and j,
which occurs as follows: we take a tubular neighborhood of a path which connects
i and j below the x-axis, then we let i and j rotate in a counterclockwise manner
along the boundary of this neighborhood, until they exchange their position.

Notation 1. We denote by Zij (resp. Z̄ij) the counterclockwise halftwist of i and
j below (resp. above) the axis. Z2

i′j is a fulltwist of i′ around j. Z2
i′,jj′ = Z2

i′j′Z
2
i′j

is the fulltwist of i′ around j and j′. In a similar way, we define also Z2
ii′,jj′ =

Z2
i′,jj′Z

2
i,jj′ and Z3

i′,jj′ = Z3
i′jZ

3
i′j′(Z

3
i′j)

Z2
jj′ .

In the case when the singular point above z is a branch point of πaff , a node, a
cusp of S, or a point of tangency of two branches of the curve, then ϕ(δ) = Hε,
where H is a halftwist and ε = 1, 2, 3, 4 (respectively).

When z can be given locally as an intersection on m lines, then ϕ(δ) = ∆2
m,

when ∆2
m is a 360 degree rotation of the m points in the fiber.

More details for explicit computations and technical methods appear in [18]
and [19].

Definition 2. The braid monodromy w.r.t. S, π, u is the following factorization

∆2
S =

∏
i

ϕ(δi).

Remark 3. Let ∆2 be the generator of the center of the braid group Bn[D, K].
Then, by a theorem of Artin (see [18]), ∆2 =

∏
ϕ(δi). Note that ∆2 is a 360

degree rotation of the disc D.

Denote the Cayley cubic as C and the set of the four nodes as Sing. We aim
to compute the fundamental group π1(C − Sing). In general, the branch curve
of a generic projection onto CP2 of a surface is singular and quite complicated.
Therefore we wish to start from a more basic curve and do some “regeneration”
in order to recover information on the branch curve.

Recall that another equation of the Cayley cubic can also be given by the
following

XY Z + W (XY + XZ + Y Z) = 0

(which is the original equation given in [7]). Looking at the following deformation

CP3 × [0, 1] → [0, 1], {XY Z + t ·W (XY + XZ + Y Z) = 0} 7→ t.
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We get a degeneration of the Cayley cubic into a union of three planes meeting at
a point. The branch curve of the degenerated surface is an arrangement of three
lines meeting at one point, one of which is set to be the “diagonal line”.

The next step is to apply the regeneration process. The regeneration meth-
ods are actually, locally, the reverse process of the degeneration method. When
regenerating a singular configuration consisting of lines and conics, the final stage
in the regeneration process involves doubling each line, so that each point of K
corresponding to a line labelled i is replaced by a pair of points, labelled i and
i′. The purpose of the regeneration rules is to explain how the braid monodromy
behaves when lines are doubled in this manner. We denote by Zi,j = H(zi,j) where
zi,j is a path connecting points in K.

The rules are (see [20, pp. 336–337]):

1. First regeneration rule: The regeneration of a branch point of any conic
– any branch point regenerates into two branch points:
A factor of the braid monodromy of the form Zi,j is replaced in the regen-

eration by Zi′,j ·
(j)

Z i,j′ .

2. Second regeneration rule: The regeneration of a node – any node regen-
erates into two (or four) nodes:
A factor of the form Z2

ij is replaced by a factorized expression Z2
ii′,j :=

Z2
i′j · Z2

ij, Z2
i,jj′ := Z2

ij′ · Z2
ij or by Z2

ii′,jj′ := Z2
i′j′ · Z2

ij′Z
2
i′j · Z2

ij.

3. Third regeneration rule: The regeneration of a tangent point – any tan-
gent point regenerates into three cusps:
A factor of the form Z4

ij in the braid monodromy factorized expression is

replaced by Z3
i,jj′ := (Z3

ij)
Zjj′ · (Z3

ij) · (Z3
ij)

Z−1
jj′ .

The initial braid monodromy factorization of the degenerated surface is ∆2
3. We

first regenerate the “diagonal line” to a smooth conic which is tangent to the two
other lines (see [20, Lemma 1]), as depicted in Figure 1. The braid monodromy
factorization of this arrangement is

(Z2
1,3)

Z−1
2′,3 · ZZ−2

1,2 Z̄2
2,3

2,2′ · (Z4
2,3)

Z2
2,2′ · Z4

1,2′ · Z2,2′ .

3

2’

2 1

3
2

1

Figure 1.

We now regenerate the remaining two lines. By the second regeneration rule, the
node is regenerated into four nodes, and each tangency point regenerates into three
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cusps. For example, the regeneration in a neighborhood of the node is depicted
in Figure 2.

1

1’

3

3’

1

2

3

4

Figure 2.

We end up with a curve S̃ which has 6 cusps, 4 nodes and 2 branch points. The
resulting factorization is

∆̃ = (Z2
1′ 3)

Z−2
2′,3 3′ · (Z2

1′ 3′)
Z2

1′ 3
Z−2

2′,3 3′ · (Z2
1 3)

Z−2
2′,3 3′ · (Z2

1 3′)
Z2

1 3Z−2
2′,3 3′ (1)

·(Z2 2′)
Z−2

1 1′,2Z̄2
2,3 3′ · (Z3

2,3 3′)
Z2

2 2′ · Z3
1 1′,2′ · Z2 2′ .

However, the resulting factorization ∆̃ is not a braid monodromy factorization of
the branch curve S, due to the existence of extra branch points. Let D a disc in
Cx0 containing all the points in the fiber. Define the forgetting homomorphisms:

1 ≤ i ≤ 3 fi : B6[D, {1, 1′, 2, 2′, 3, 3′}] → B2[D, {i, i′}].

It is clear that if ∆̃ was a BMF, then ∀ i, deg(fi(∆̃)) = 2, by Remark 3. However,
this is not the case in the current situation. It was proven in [13] (see also [14]),

that if deg(fi(∆̃)) = k < 2, then there are (2 − k) extra branch points, and so

there is a contribution of the factorization
2−k∏
m=1

Zi,i′ to ∆̃ (by contribution we mean

that we multiply ∆̃ from the right by these Zi,i′ ’s).

It is easy to see that deg(f2(∆̃)) = 2. However, we have the following

Lemma 4. deg(f1(∆̃)) = deg(f3(∆̃)) = 1.

Proof. We prove the lemma only for f1; the proof for f3 is identical. The braids

coming from the nodes are sent by f1 to Id, and also the braids (Z2 2′)
Z−2

1 1′,2Z̄2
2,3 3′ ,

(Z3
2,3 3′)

Z2
2 2′ , Z2 2′ . By [20, Lemma 2, (i)], we see that deg(f1(Z

3
1 1′,2)) = 1.

Multiplying ∆̃ from the right by Z1,1′ ·Z3,3′ we get a factorization of a curve with
four nodes, six cusps and four branch points, which is the branch curve of the
Cayley surface C.
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Theorem 5. The braid monodromy factorization of S is given in (2) and its
factors are represented by paths in Figure 3.

∆2
S = (Z2

1′ 3)
Z−2

2′,3 3′ · (Z2
1′ 3′)

Z2
1′ 3

Z−2
2′,3 3′ · (Z2

1 3)
Z−2

2′,3 3′ · (Z2
1 3′)

Z2
1 3Z−2

2′,3 3′ (2)

·(Z2 2′)
Z−2

1 1′,2Z̄2
2,3 3′ · (Z3

2,3 3′)
Z2

2 2′ · Z3
1 1′,2′ · Z2 2′ · Z1,1′ · Z3,3′ .

Note that the first, the fourth and the last two paths correspond to braids of branch
points. The second and third ones correspond to braids of cusps and the rest
correspond to braids of nodes.

3 3’2’21’

1 2

1

1’ 2’ 3’321

2’21’1

1 1’ 2 2’ 3 3’

3
3’

3 3’2’1’

1 2 3 3’2’1’

1

3 3’
1 2’

1’

2

2

1 2 3 3’2’1’

3 3’2’1’

1 2 3 3’2’1’

Figure 3.
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2.1. The fundamental group π1(C2 − S)

The van Kampen theorem [23] states that there is a “good” geometric base {γj} of
π1(Cx0 −S∩Cx0 , ∗) (where Cx0 is the fiber of the projection π|aff above x0), such
that the group π1(C2 − S, ∗) is generated by the images of {γj} in π1(C2 − S, ∗)
with the following relations: ϕ(δi) γj = γj ∀i, j. We recall that

π1(CP2 − S̄) ' π1(C2 − S)/ <
∏

γj > .

Recall that S has only branch points, nodes and cusps (when the cusp is locally
defined by the equation y2 = x3). Denote by a and b the two branches of S
at a neighborhood of a singular point, and γa, γb be two non-intersecting loops
in π1(Cx0 − S ∩ Cx0 , ∗) around the intersection points of the branches with the
fiber Cx0 (constructed by cutting each of the paths and creating two loops, which
proceed along the two parts and encircle a and b). Then by the van Kampen
theorem, we have the relation < γa, γb >= γaγbγaγ

−1
b γ−1

a γ−1
b = 1 for cusp, the

relation [γa, γb] = γaγbγ
−1
a γ−1

b = 1 for node, the relation γa = γb for branch point.

Theorem 6. The fundamental group π1(C2−S) is generated by γ1, γ2, γ3 subject
to the relations

〈γ1, γ2〉 = e (3)

〈γ2, γ3〉 = e (4)

[γ2, γ
2
1γ

2
3 ] = e (5)

[γ1, γ
−1
2 γ3γ2] = e. (6)

The group π1(CP2 − S̄) has relations (3), (4), (6) and an additional relation

γ2
3γ

2
2γ

2
1 = e. (7)

Proof. By the above explanation and Figure 3, we have the following relations

γ2 = γ2′ (8)

〈γ1, γ2′〉 = 〈γ1′ , γ2′〉 = 〈γ1′γ1γ
−1
1′ , γ2′〉 = e (9)

〈γ2′γ2γ
−1
2′ , γ3〉 = 〈γ2′γ2γ

−1
2′ , γ3′〉 = 〈γ2′γ2γ

−1
2′ , γ3′γ3γ

−1
3′ 〉 = e (10)

γ−1
1 γ−1

1′ γ−1
2′ γ3′γ3γ2′γ2γ

−1
2′ γ−1

3 γ−1
3′ γ2′γ1′γ1 = γ2′ (11)

[γ1, γ
−1
2′ γ3γ2′ ] = [γ1′ , γ

−1
2′ γ−1

3 γ3′γ3γ2′ ] = e (12)

[γ1, γ
−1
2′ γ3γ2′ ] = [γ1, γ

−1
2′ γ−1

3 γ3′γ3γ2′ ] = e (13)

γ1 = γ1′ (14)

γ3 = γ3′ . (15)

We want to simplify this presentation. By (8) and (14), relation (9) gets the form
(3). By (8) and (15), relation (10) gets the form (4). Relation (11) is transformed
(by (3), (8), (14) and (15)) to (5), and relations (12) and (13) are transformed
(by (8), (14) and (15)) to (6).



476 M. Amram et al.: Fundamental Group for the Complement . . .

In order to get the group π1(CP2− S̄), we add the projective relation γ3′γ3γ2′

γ2γ1′γ1 = e, which is transformed to γ2
3γ

2
2γ

2
1 = e. Therefore relation (5) is omitted

and π1(CP2 − S̄) is generated by γ1, γ2, γ3 with relations (3), (4), (6) and (7).
We note that if we consider the relations which are derived from the complex

conjugates of the braids of Figure 3, we gain no new relations, therefore the
presentation is complete.

Remark 7. Since we deal with a singular cubic surface, we note that a result of
Zariski [24] for a smooth cubic surface in CP3 was generalized by Moishezon [17]
for any degree. Let S̄n (resp. Sn) be the branch curve of a smooth surface in CP3

in CP2 (resp. C2). Moishezon proved that

π1(C2 − Sn)∼=Bn and π1(CP2 − S̄n)∼=Bn/Center(Bn)

3. Finding the fundamental group π1(C − Sing)

In this section we give two different ways to find the fundamental group of the
complement of the singular points in the Cayley surface.

3.1. Using a lifting to the mapping class group

The projection π defines a pencil of lines on CP2. Considering the preimages
of these lines under the projection of C onto CP2, we obtain a pencil of elliptic
curves on C, intersecting transversely at the base locus, namely three smooth
points (the preimages in C of the pole of the projection π). This pencil has eight
nodal fibers, of which four pass through the singular points of C and the four
others pass through the preimages of the branch points of S with respect to the
projection π. The monodromy of this fibration can be encoded by a factorization
in a mapping class group, which can be obtained from the braid monodromy of
S by a simple lifting algorithm. See Section 5.2 of [6] and Section 3.3 of [5] for
details.

Among the various factors of (2), those corresponding to cusps of S (i.e.

Z3
1 1′,2′ and (Z3

2,3 3′)
Z2

2 2′ ) lie in the kernel of the lifting homomorphisms and do not
contribute to the monodromy of the elliptic pencil. This is because the preimage
of the fiber of π through a cusp of S is actually a smooth elliptic curve.

To determine the lifts of the other factors, we view the fiber E of the elliptic
pencil as a triple cover of a line in CP2 (the reference fiber of π on which the
braid monodromy acts) branched at six points (the points where S intersects the
considered line), which we label 1, 1′, 2, 2′, 3, 3′ as before. Each of these branch
points corresponds to a simple ramification, i.e. involving only two of the three
sheets of the covering. Looking at the combinatorics of the degeneration of C to a
union of three planes, we can label these sheets by elements of {1, 2, 3} in such a
way that the monodromy of the triple cover maps γ1 and γ1′ to the transposition
(23), γ2 and γ2′ to (13), and γ3 and γ3′ to (12).

The lifting homomorphism (see [6, 5]) maps the halftwist Z1 1′ to a positive
Dehn twist along the simple closed loop on E formed by the two lifts of the
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supporting arc of the halftwist in sheets 2 and 3 of the covering. Similarly for
the other halftwists appearing in the braid monodromy factorization. Because
the halftwists Zi i′ (1 ≤ i ≤ 3) have disjoint supporting arcs, the corresponding
Dehn twists τi i′ also have disjoint supporting loops; moreover it is easy to check
that these loops are homotopically non-trivial (see below). Since disjoint non-
trivial simple closed loops on an elliptic curve are homotopic, the Dehn twists
τi i′ correspond to mutually homotopic vanishing cycles, and represent the same
element in the mapping class group Map1 = SL(2, Z); we call α ∈ π1(E) the
homotopy class of these vanishing cycles, and τα the corresponding Dehn twist.

Next we observe that the support of the halftwist t = (Z2 2′)
Z−2

1 1′,2Z̄2
2,3 3′ (Figure 3,

fourth line) is also disjoint from those of Z1 1′ and Z3 3′ , which indicates that the
corresponding vanishing cycle again represents the homotopy class α in π1(E).

For a generic projection of a smooth surface, the nodes of the branch curve cor-
respond to smooth fibers of the pencil, and the corresponding braid monodromies
lie in the kernel of the lifting homomorphism. However, in our case the four nodes
of the branch curve correspond to nodal fibers of the pencil; the corresponding
braid monodromies are squares of liftable halftwists, which lift to the squares of
the corresponding Dehn twists.

We first consider ν = (Z1′ 3)
Z−2

2′,3 3′ (Figure 3, fifth line): the supporting arc
of this halftwist intersects that of Z1 1′ only once, at the common endpoint 1′.
Hence, the double lifts of the supporting arcs (which give the supporting loops of
the corresponding Dehn twists) intersect transversely exactly once (at the branch
point which lies above 1′). Calling β ∈ π1(E) the homotopy class of the vanishing

cycle corresponding to the lift of (Z1′ 3)
Z−2

2′,3 3′ , the intersection number α · β = 1
implies that α and β form a basis of π1(E) ' Z2 (and confirms that the vanishing
cycles are indeed not homotopically trivial as claimed above). The same argument
could have been used considering Z3 3′ (whose support intersects that of ν once at
the common end point 3), or Z2 2′ or t instead of Z1 1′ (in that case the supporting
arcs intersect transversely once at interior points, but their double lifts each live
in only two of the three sheets of the covering, and it is easy to check that the
supporting loops of the corresponding Dehn twists intersect transversely once). In
any case, we conclude that the braid monodromy factor ν2 lifts to τ 2

β , the square
of the positive Dehn twist about a loop in the homotopy class β.

Finally, the three other nodes of S ((Z2
1′ 3′)

Z2
1′ 3

Z−2
2′,3 3′ , (Z2

1 3)
Z−2

2′,3 3′ and

(Z2
1 3′)

Z2
1 3Z−2

2′,3 3′ ) correspond to the conjugates of ν2 by the braids Z−1
3 3′ , Z−1

1 1′ , and
Z−1

1 1′Z
−1
3 3′ respectively (Figure 3, sixth, seventh, eighth lines). Applying the lifting

homomorphism, we obtain that the corresponding mapping class group elements
are respectively (τ 2

β)τ−1
α = τ 2

β−α, (τ 2
β)τ−1

α = τ 2
β−α, and (τ 2

β)τ−2
α = τ 2

β−2α. In other
words, the vanishing cycles represent respectively the homotopy classes β − α,
β − α, and β − 2α.

In conclusion, the mapping class group monodromy factorization of the elliptic
pencil (in Map1) is

Id = τα · τα · τ 2
β · τ 2

β−α · τ 2
β−α · τ 2

β−2α · τα · τα. (16)
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As a verification, one can consider the isomorphism Map1 ' SL(2, Z) given by the
action on H1(E, Z), working in the basis {α, β}: then, recalling that the action of
a Dehn twist on homology is given by [τδ(γ)] = [γ] + ([δ] · [γ])[δ], we have

τα =

(
1 1
0 1

)
, τβ =

(
1 0
−1 1

)
, τβ−α =

(
2 1
−1 0

)
, τβ−2α =

(
3 4
−1 −1

)
,

and the identity (16) indeed holds (recalling that our products are written in the
braid order, i.e. with composition from left to right, while the usual product of
matrices is a composition from right to left).

Let us recall the quasi-projective Lefschetz Hyperplane Section Theorem: Let
X := Y − Z, (of dimension d) where Y is an algebraic subset of the complex
projective space CPn, n ≥ 2, and where Z is an algebraic subset of Y. Let L be
a projective hyperplane which is in generic position with respect to X. If X is
nonsingular, then the natural maps

Hq(L ∩X) → Hq(X) and πq(L ∩X, ∗) → πq(X)

are bijective for 0 ≤ q ≤ d − 2 and surjective for d − 1 (see [11] and [10]). In
our case X is the Cayley cubic C minus the singular locus. The above generically
chosen central projection π : CP2 − P0 → CP1 (where P0 is the center of the
projection) defines a pencil of lines in CP2 which lifts to a generic pencil of planes
in CP3 whose axis is a line M . The above curve E is then the intersection of C
with a generic member L of the pencil of planes. It follows that the natural map

π1((C − Sing) ∩ L) = π1(E) → π1(C − Sing)

is a surjection. In particular, the fundamental group of C is abelian, so we can
work with homology groups instead of fundamental groups. It follows that we are
left to determine the kernel of the natural map

ϕ : H1(E) → π1(C − Sing).

Let Li be the exceptional hyperplanes of the above pencil (the planes for which
Li∩(C−Sing) are not isotopic to E). In [8], Cheniot defines homological variation
operators

vari,q : Hq(X ∩ L, M ∩X) → Hq(X ∩ L), i ∈ I,

by patching each relative cycle on X ∩ L modulo M ∩ X with its transform by
monodromy around the exceptional lines. It is then shown in [8], that

Kernel(ϕ) =
∑
i∈I

Im(vari,q).

If we choose a basis {α, β} of H1(E) ' H1(E, M ∩X) as above, then the image
of vari,q is nothing else as the image of the lifted braid, viewed as an element in
the mapping class group Map1. (This can be seen by unravelling the definitions of
Cheniot and the above construction of the mapping class group factorization, see
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also [9], Section 2). It follows that in our case π1(X) = π1(C−Sing) is isomorphic
to the quotient of π1(E) = Zα⊕Zβ by the relations γ = ρ∗(γ) for every γ ∈ π1(E)
and for every factor ρ in the mapping class group factorization (16). The relation
τα(β) = β implies that [α] is trivial in π1(C −Sing), while the relation τ 2

β(α) = α
implies that 2[β] is trivial; hence, π1(C − Sing) is a quotient of Z/2. It follows
from the monodromy factorization given in formula (16) that for every element
ρ of the monodromy subgroup, the image of ρ − Id is in the span of α and 2β.
Therefore, we get no further relations, and we recover that π1(C − Sing) = Z/2.

3.2. Using the RMS method

We find π1(C − Sing) by a second method, using the Reidemeister-Schreier algo-
rithm. We follow the method proposed in [16]. We recall this method briefly.

Denote by Gr∗d,n the set of the graphs with d labelled vertices and n labelled
edges. Assuming we have a homomorphism f : π1(C2 − S) → Symd and let
γ1, . . . , γn be generators of π1(C2 − S). Denote by g the homomorphism from the
free group with n generators Fn = 〈γ̄1, . . . , γ̄n〉 to π1(C2 − S) such that g(γ̄i) =
γi, ∀ i = 1, . . . , n.

Assume we have a homomorphism f̄ : Fn → Symd such that f̄(γ̄i) is a trans-
position ∀ i = 1, . . . , n. So we can associate to it a graph Γf̄ ∈ Gr∗d,n in the

following way. If f̄(γ̄i) = (h, k), then the edge i will have the vertices h and k.
Given a monodromy map f : π1(C2 − S) → Symd, the monodromy graph associ-
ated to it is the graph Γ = Γf̄ , where f̄ is the lifting of f to Fn under the map
g.

In order to compute π1(C − Sing), let us consider the projection
π|C−D : C − D → C2 − S, where D = π−1(S) and D = 2R + F (R is the
ramification locus of π). As this is an unramified cover, we can identify π1(C−D)
with the subgroup of π1(C2 − S) given by those elements γ such that γ stabilizes
a vertex of Γ (i.e. the γ’s such that f(γ)(j) = j for a fixed vertex j of Γ).

Explicitly, taking a base point in C −D to be the preimage of the base point
of C2 − S lying in the sheet labelled 1, then a loop g in C2 − S lifts to an arc
in C −D, whose other end point is the preimage in the sheet f(g)(1); hence we
obtain a closed loop in C −D if and only if f(g) maps 1 to 1.

Let us fix a numeration on Γ, and let Γ′ be a maximal subtree. By abuse of
notation, let us denote by γi the edges of Γ.

Definition 8. A sequence c = (kj)j=1,...,l of distinct edges of Γ such that the edge
ki intersects the edge ki+1 only in a single vertex is called a chain of Γ (of length
l). A p-chain is a chain with p as a starting vertex. A p, q-chain is a chain with
p as a starting vertex and q as an ending vertex.

If c = (kj)j=1,...,l is a 1-chain in Γ′, then set γc = γk1 · · · γkl
, and if c is the trivial

1-chain, then set γc = id. The set of all σ ∈ Symd such that σ = f(γc) for c a
1-chain in Γ′ is a complete set of representatives for left cosets of the stabilizer of
the vertex 1 in Symd : if c is a 1, q-chain in Γ′ then f(γc)(1) = q.
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So in order to calculate π1(C−D), we apply the Reidemeister-Schreier method
([15]) to the Schreier set RS = {γc| c is a 1-chain in Γ′} to get the following propo-
sition [16, Proposition 6.1]:

Proposition 9. π1(C − D) is generated by ηc,k = γcγk(γcγk)
−1, where c is a 1-

chain in Γ′, k an edge of Γ (such that c ∪ {k} is not a 1-chain in Γ′), and is
defined by the relators γcRγ−1

c (written in terms of η’s), where c is a 1-chain in
Γ′, R is a relator of π1(C2 − S).

As the proof of this proposition describes, in order to obtain a presentation for
π1(C − Sing), we must quotient by the normal subgroup generated by all loops
around the components D = 2R + F . The loops around the components of R are
those ηc,k with k equal to the last edge of c and loops ηc,kηc′,k in case k is an edge
of Γ such that c∪{k} is not a 1-chain in Γ′, and γc′ = γcγk ∈ RS; while the loops
around the components of F are those ηc,k with k an edge which does not pass
through the ending vertex of c.

Using this proposition, we can find π1(C − Sing) in our case. Recall that the
monodromy maps γ1 to the transposition (2, 3), γ2 to (1, 3) and γ3 to (1, 2). In
this way, we create the map f : π1(C2 − S) → Sym3, and thus we can associate
to it the graph Γ = Γf̄ in Figure 4.

2

1 3g
2

g
3

g
1

Figure 4. The graph Γ

Denote by Γ′ the maximal subtree composed of the edges γ1 and γ3 (and the
vertices {1, 2, 3}). Let RS = {Id, γ3, γ3γ1} be the Schreier set of the stabilizer
of the vertex 1. Let us denote γc1 = Id, γc2 = γ3, γc3 = γ3γ1 , ki = i, and let
ηi,j = γci

γkj
(γci

γkj
)−1 be the generators of π1(C −D).

We get the following generators:

η1,1 = Id · γ1(Id · γ1)
−1 = γ1

η1,2 = Id · γ2(Id · γ2)
−1 = γ2γ

−1
1 γ−1

3

η1,3 = Id · γ3(Id · γ3)
−1 = γ3γ

−1
3 = Id

η2,1 = γ3 · γ1(γ3 · γ1)
−1 = γ3γ1γ

−1
1 γ−1

3 = Id
η2,2 = γ3 · γ2(γ3 · γ2)

−1 = γ3γ2γ
−1
3

η2,3 = γ3 · γ3(γ3 · γ3)
−1 = γ2

3

η3,1 = γ3γ1 · γ1(γ3γ1 · γ1)
−1 = γ3γ

2
1γ

−1
3

η3,2 = γ3γ1 · γ2(γ3γ1 · γ2)
−1 = γ3γ1γ2

η3,3 = γ3γ1 · γ3(γ3γ1 · γ3)
−1 = γ3γ1γ3γ

−1
1 γ−1

3 .
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Thus we have 7 generators; to find π1(C − Sing) we have to eliminate all loops
around D. That is – we quotient by the generators η1,1, η2,2, η2,3, η3,1, η3,3, leaving
us with η1,2 and η3,2. However, η1,2 ·η3,2 = γ2

2 , which also represents a loop around
D, and thus γ2

2 = Id. Thus, π1(C − Sing) is generated by one elements – γ2 –
and isomorphic to Z/2Z.

Acknowledgements. This work initiated while the first named author was
hosted at the Mathematics Institute, Erlangen-Nürnberg University, Germany.
Thanks are given to the institute and to the host Wolf Barth, who presented the
problem and gave motivation for this work. We are grateful to Ron Livne and
Yann Sepulcre for fruitful discussions. Thanks are given to Denis Auroux for
helping us completing Section 3.1. We also thank Anatoly Libgober and Sandro
Manfredini for helpful discussions in Section 3.2.

References

[1] Amram, M.; Goldberg, D.; Teicher, M.; Vishne, U.: The fundamental group
of a Galois cover of the surface CP1×T. Algebr. Geom. Topol. 2(20) (2002),
403–432. Zbl 1037.14006−−−−−−−−−−−−

[2] Amram, M.; Teicher, M.: On the degeneration, regeneration and braid mon-
odromy of T× T. Acta Appl. Math. 75(1) (2003), 195–270. Zbl 1085.14504−−−−−−−−−−−−

[3] Amram, M.; Teicher, M.; Vishne, U.: The fundamental group of the Galois
cover of Hirzebruch surface F1(2, 2) branch curve. (submitted).

[4] Amram, M.; Ciliberto, C.; Miranda, R.; Teicher, M.: Braid monodromy
factorization for a non-prime K3 surface branch curve . (submitted).

[5] Auroux, D.: Symplectic maps to projective spaces and symplectic invariants.
Turkish J. Math. 25 (2001), 1–42. (math.GT/0007130). Zbl 1008.53068−−−−−−−−−−−−

[6] Auroux, D; Katzarkov, L.: Branched coverings of CP2 and invariants of
symplectic 4-manifolds. Invent. Math. 142 (2000), 631–673. Zbl 0961.57019−−−−−−−−−−−−

[7] Cayley, A.: A Memoir on Cubic Surfaces. Philos. Trans. R. Soc. Lond., Ser.
A 159 (1869), 231–326. JFM 02.0576.01−−−−−−−−−−−−

[8] Chéniot, D.: Vanishing cycles in a pencil of hyperplane sections of a non-
singular quasi-projective variety. Proc. Lond. Math. Soc. (3) 72 (1996), 515–
544. Zbl 0851.14003−−−−−−−−−−−−

[9] Chéniot, D.; Eyral, C.: Homotopical variations and high-dimensional Zariski-
van Kampen theorems. Trans. Am. Math. Soc. 358 (2006), 1–10.

Zbl 1086.14015−−−−−−−−−−−−
[10] Goresky, M.; MacPherson, R.: Stratified Morse Theory. Springer Verlag,

1988. Zbl 0639.14012−−−−−−−−−−−−
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