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Abstract. In this paper we describe how the inherent geomet-
ric properties of the Graver bases of integer matrices of the form
{(1, 0), (1, a), (1, b), (1, a + b)} with a, b ∈ Z+ enable us to deter-
mine that the Graver complexity of the more general matrix A =
{(1, i1), (1, i2), (1, i3), (1, i4)} associated to a monomial curve in P3 can
be bounded as a linear relation of the entries of A.
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1. Introduction

Vector configurations of the form A = {(1, i1), (1, i2), (1, i3), (1, i4)} with 0 ≤ i1 <
i2 < i3 < i4 define a toric ideal whose projective toric variety is a monomial
space curve in P3 [2]. We will study matrices of this form and use the well-
known result that any minimal generating set of binomial generators of a Lawrence
ideal is the Graver basis of this defining ideal [16] in order to determine some
geometric properties of the Graver basis of A as well as an upper bound on the
Graver complexity of A. For u,v ∈ Rn, define the relation v on Rn by u v v
if u(i)v(i) ≥ 0 and |u(j)| ≤ |v(j)| for every component 1 ≤ j ≤ n. We say that u
reduces v if u v v. Let Oρ denote an orthant in Rn where ρ ∈ {+,−}n and let
Cρ = kerZ(A) ∩ Oρ be a pointed polyhedral cone. Let Hρ be the Hilbert basis of
Cρ as in [15]. The Graver basis, Gr(A) =

⋃
ρHρ\{0}, of a matrix A is the set of

nonzero minimal elements in the poset {Hρ,v} for each cone Cρ.
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Given a vector u = (u1, u2, . . . , un) ∈ Rn the 1-norm of u is ‖u‖1 =
∑n

i=1 |ui|.
The following result from Santos-Sturmfels [14] provides an explicit formula for
computing the Graver complexity of a d × n integer vector configuration A =
(a1a2 · · · an) ⊆ Zd×n without using higher-dimensional Lawrence configurations:

Theorem 1.1. The Graver complexity of a vector configuration A = (a1a2 · · · an)
⊆ Zd×n is the maximum 1-norm of the elements of the Graver basis of the Graver
basis of A.

If one takes as column vectors the Graver basis of A, the Graver basis of this
new matrix is the Graver of the Graver basis, Gr(Gr(A)). Define the non-unique
element ψ ∈ Gr(Gr(A)) with maximal 1-norm as the Graver representative. Since
there is the natural identification of Graver basis elements as exponent vectors of
binomials in some polynomial ring, taking the 1-norm of a Graver representative
tells us the degree of a Graver basis element [16]. Note that the Graver complexity
of the 2×3 case A = {(1, 0), (1, a), (1, b)} is uninteresting since (b−a,−b, a) is the
unique element (up to sign) in kerZ(A). Thus the kernel of Gr(Gr(A)) is trivial.

In general, it is not clear how the degree of the generators of the homogeneous
ideal IA = 〈xα − xβ : α, β ∈ Nn, α − β ∈ kerZ(A)〉 is related to the matrix A.
L’vovsky [9] showed that the toric ideal IA defined by a 2 × n integer matrix
A = {(1, i1), (1, i2), . . . , (1, in−1), (1, in)} with 0 ≤ i1 < i2 < · · · < in is generated
by elements of degree at most the sum of the two largest consecutive differences
ik− ik−1. Thus, if δk = ik− ik−1, where 1 ≤ k ≤ n, then the maximal degree of the
generators for the monomial curve ideal IA is max{δk +δj} for 1 ≤ k < j ≤ n. We
remark that the Graver complexity is not necessarily the regularity of the ideal
IA. For example, the Graver complexity of the twisted cubic curve represented by
the matrix A = {(1, 0), (1, 1), (1, 2), (1, 3)} is g(A) = 6; however, the regularity of
the ideal is reg(IA) = 2.

For u ∈ Rn, the support of u is supp(u) = {i : ui 6= 0}. A vector u ∈ ker(A)
is called a circuit of A if supp(u) is minimal with respect to inclusion and the
coordinates of u are relatively prime. Denote by C(A) the set of all circuits of a
d × n matrix A. We may define the 1-norm of a nonzero vector u ∈ ker(A) by
applying Cramer’s rule to the d× (d+ 1) submatrices of A ⊆ Zd×n :

‖u‖1 =
d+1∑
j=1

(−1)jD(ai1 , . . . , aij−1
, aij+1

, . . . , aid+1
) · eij .

Circuits defined by Cramer’s rule are called true circuits, denoted by T C(A).

Example. Consider A = {(1, 0), (1, 3), (1, 4), (1, 6)}. Using 4ti2 [5], we find
that the circuits for A are C(A) = {c1 = (0, 2,−3, 1), c2 = (1,−2, 0, 1), c3 =
(1, 0,−3, 2), c4 = (1,−4, 3, 0)} and the true circuits are T C(A) = {c1, 3c2, 2c3, c4}.

Denote by maxg(A) = max{‖u‖1 : u ∈ Gr(A)} the elements in the Graver
basis of A with maximal 1-norm. For a homogenous toric ideal IA ⊂ S =
k[x1, . . . , xn], Hosten [8] proved that reg(IA) ≤ n

2
maxg(A) where reg(IA) is the

Castelnuovo-Mumford regularity determined by its minimal free resolution. It
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is necessary to define the maximal 1-norm of the true circuits in order to get a
bound on maxg(A) [8]. Thus to give the bound on the total degree of the Graver
basis elements for codim 2 matrices, we utilize the geometric relationship between
circuits in a Gale dual diagram and circuits in the Graver basis for A.

Definition 1.2. [12] Let A be a 2 × 4 integer matrix and let B = (a1, a2)
T be

the 4× 2 matrix whose columns are a basis of L(A). The Gale diagram GL of A
is the collection of row vectors bi = (bi1, bi2) which is unique up to the action of
SL2(Z). We are interested in the Gale dual diagram, GL

∗ = {b∗1, b∗2, b∗3, b∗4}, where
each b∗i = (−bi2, bi1) ∈ Z2.

The four row vectors in GL
∗ correspond to the circuits in the Graver basis Gr(A)

for the matrixA and are extremal rays dividing R2 into eight cones. The remaining
vectors of Gr(A) are elements in the Hilbert basis of the cones defined by these
rays. If b∗1, b

∗
2 are two vectors defining a cone C = cone(b∗1, b

∗
2) and if det(b1b2) = 1,

then the cone is unimodular and thus there is exactly one lattice point in the
interior of the parallelogram spanned by these two vectors.

3b
*

b1
*

b4
*

2b
*

Figure 1. The Gale dual diagram for A = {(1, 0), (1, 1), (1, 3), (1, 14)}

Example. The matrix A = {(1, 0), (1, 1), (1, 3), (1, 14)}. Using 4ti2 [5], the
minimal generators for the toric ideal are IA = 〈(−2, 3,−1, 0), (3, 1,−5, 1)〉. Thus
the Gale dual diagram is defined by the 4× 2 matrix

GL
∗ =

(
−3 −1 5 −1
−2 3 −1 0

)T

=
(
b∗1, b

∗
2, b

∗
3, b

∗
4

)T
see Figure 1. The extremal rays defining each 2-dimensional cone correspond to
the circuits in the Graver basis and the minimal lattice points in the interior of
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the cones are Hilbert basis elements. Thus finding a bound on the circuits C(A)
would be meaningful. It is important to distinguish the cases where the circuits
of the Graver basis of a matrix A are the true circuits. We will do this using Gale
dual diagrams.

Lemma 1.3. Let A = {(1, 0), (1, a), (1, b), (1, a + b)} ⊆ Z2×4 where 0 < a < b
and the differences of integers in the second row of A are pairwise co-prime. The
circuits of A are the true circuits.

Proof. Let c = a+ b. By Cramer’s rule [15] the 2× 2 minors of A determine the
circuits

C(A) = {(0, b− c, c− a, a− b), (b− c, 0, c,−b), (a− c, c, 0,−a), (a− b, b,−a, 0)}

whose pairwise differences are co-prime. Therefore the circuits for A are the true
circuits.

Corollary 1.4. For u ∈ Gr(A) the maximal 1-norm of true circuits is 2(a+ b).

Using matrices of the form A = {(1, 0), (1, a), (1, b), (1, a + b)} where 0 < a < b
allows us to further reduce the computation of the Graver complexity. Theorem
2.3 shows that in order to compute the Graver complexity of matrices of this form
it is sufficient to find the maximal 1-norm of the Graver basis elements for the

matrix Bc =

(
1 1 1 · · · 1 0
0 1 2 · · · c 1

)
, where c = a + b. In [6], we showed that

the maximal 1-norm of the Graver basis elements for Bc is 2c. We define what it
means for a Graver basis to be covered by circuits and prove in Theorem 2.6 that
the region bounded by the circuits for matrices of this particular form have area
2c. Although the Graver basis of A is covered by circuits, the Graver basis of the
Graver basis of A is not covered by circuits (Theorem 2.8). Therefore, we must
assume

Conjecture 1.5. True Circuit Conjecture (Hosten [8, 2.2.10]). The 1-norm of a
Graver basis element Gr(A) is bounded by the 1-norm of a true circuit.

In order to prove our main result that the Graver complexity of a homogeneous
codim 2 matrix can be bounded in terms of a linear relation on the entries of A:

Theorem 1.6. Let A be the homogeneous 2× 4 matrix of the form A = {(1, i1),
(1, i2), (1, i3), (1, i4)} such that 0 ≤ i1 < i2 < i3 < i4. Then assuming the true
circuit conjecture the Graver complexity g(A) is bounded above by the maximal
1-norm of the true circuits of A by max{i2 + i3 + i4 − 3i1, 3i4 − i1 − i2 − i3}. If,
in addition, the set of integers {i2 − i1, i3 − i1, i4 − i1, i3 − i2, i4 − i2, i4 − i3} is
pairwise co-prime, then the bound is tight.

To clarify the notion of pairwise co-prime consider the matrix A = {(1, 0), (1, a),
(1, b), (1, c)}. We require that a, b, c are pairwise co-prime in addition to their dif-
ferences being pairwise co-prime. For example, consider the matrix associated to
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the twisted cubic curveA = {(1, 0), (1, 1), (1, 2), (1, 3)}. Each difference is pairwise
co-prime and hence the Graver complexity bound is tight. However, for the matrix
A = {(1, 0), (1, 1), (1, 2), (1, 6)} the theorem gives the bound g(A) ≤ 15 whereas
the Graver complexity is 10 with Graver representative ψ = (0, 4,−5, 0, 0, 0, 1)
using 4ti2.

2. Geometric structure for A = {(1, 0), (1, a), (1, b), (1, c)}

To determine the generating elements for the Graver basis ofA we perform column
operations on the Hermite normal form of A to obtain the column vector λ =
(1,−1,−1, 1). Using the unimodular matrix and the vector λ to transform any
vector v in the kernel of A into a vector with a zero third component, we obtain
a unique minimal generator h = (b,−(a+ b), 0, a) and thus

Lemma 2.1. The kernel of the matrix A = {(1, 0), (1, a), (1, b), (1, a + b)} with
0 < a < b is generated by λ = (1,−1,−1, 1) and h = (b,−(a+ b), 0, a).

Lemma 2.2. The matrix A = {(1, 0), (1, a), (1, b), (1, a + b)} with 0 < a < b
has Graver basis Gr(A) = ±{h, h + λ, h + 2λ, . . . , h + (a + b)λ, λ}, where h =
(b,−(a+ b), 0, a) and λ = (−1, 1, 1,−1).

Proof. The lattice associated to the kernel of A is generated by h = (b,−(a +
b), 0, a) and λ = (−1, 1, 1,−1). Notice that the set Gr(A) in the hypothesis
generates kerZ(A) because it contains λ, h. Using Algorithm 2.7.1 in Hemmecke
[4] (or Pottier [13]), we must show this set is a minimal set of irreducible vectors.
Notice that h v h− λ = (b+ 1,−(a+ b+ 1),−1, a+ 1) and that h+ (a+ b)λ =
(−a, 0, a+b,−b) v (h−(a+b)λ)+λ = (a+2b−1,−2(a+b)+1,−(a+b)+1, 2a+b−1).
The difference of any two elements in the set Gr(A) is some multiple of λ so there
are no new elements obtained from taking differences of the sets. It remains to
consider possible sums of elements in the generating set and determine whether or
not these sums are irreducible. Consider the sum of any two elements in the set
Gr(A), say h+pλ+h+qλ = 2h+(p+q)λ. If we find an element h+rλ v 2h+(p+q)λ
then 2h+ (p+ q)λ is reducible.

There is a structure to the set Gr(A). The generators λ, h define a line of
negative slope (see Figure 2). None of the elements on this line are divisible by
the other elements and therefore they are minimal. If 2 | (p+q) then take r = p+q

2

and hence h+ rλ = 2h+ (p+ q)λ v 2h+ (p+ q)λ. If 2 does not divide p+ q, take
r = p+q±1

2
. Then h + rλ = 2h + (p + q ± 1)λ where p + q ± 1 is even and we use

the first case. Thus we have found an r dividing the sum of any two elements in
Gr(A) so that element is not minimal.

The next theorem gives an important geometric property of the Graver basis:

Theorem 2.3. Given the matrix A = {(1, 0), (1, a), (1, b), (1, a + b)} satisfying
0 < a < b, the Graver complexity g(A) is equal to the maximal 1-norm of a

Graver basis element of Bc =

(
1 1 1 · · · 1 0
0 1 2 · · · c 1

)
, where c = a+ b.
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Proof. By Lemma 2.2,

Gr(A) = {h, h+ λ, h+ 2λ, . . . , h+ (a+ b)λ, λ},

where h = (b,−(a+ b), 0, a) and λ = (−1, 1, 1,−1).
Now let c = (a+ b) and let (α0, α1, . . . , αc, β) ∈ ker(Gr(A)) which is the case

if and only if (
c∑

i=0

αi

)
h+

(
c∑

i=0

iαi + β

)
λ = 0. (1)

Since h and λ are linearly independent, this implies that the coefficients in (1)
must vanish. Therefore, the kernel of Gr(A) is the same as the kernel of the matrix
Bc implying Gr(Gr(A)) = Gr(Bc), and the result follows.

g+2L

g+3L

g + c L

g+ (c−1) L

g+L

g

L

Figure 2. Graver basis of A = {(1, 0), (1, a), (1, b), (1, a+ b)}

We make the following definition which will be useful in characterizing the Graver
basis.

Definition 2.4. The Graver basis for an integer d × n matrix A is covered by
circuits if, in each orthant, the Hilbert basis of that orthant lies in the simplex
spanned by the circuits defining that orthant.

For example, the extremal rays have largest 1-norm in each cone in the Gale
dual diagram in Figure 1 of the matrix {(1, 0), (1, 1), (1, 3), (1, 14)}. Matrices of
the form {(1, 0), (1, a), (1, b), (1, c)} where 0 < a < b < c and the differences of
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1b*

2b*

3b*
4b*

Figure 3. Gale dual diagram for {(1, 0), (1, 1), (1, 2), (1, 3)}

the numbers in the second row of A are pairwise co-prime have a unique form
of Gale dual diagram; see Figure 3 for the Gale dual diagram of the matrix
{(1, 0), (1, 1), (1, 2), (1, 3)} representing the twisted cubic curve in P3.

By Lemma 1.3, the maximal 1-norm for elements in the Graver basis is 2(a + b)
and is taken on by a circuit. Therefore

Theorem 2.5. Given A = {(1, 0), (1, a), (1, b), (1, c)} satisfying 0 < a < b, c =
a+ b and the differences of entries in the second row of A are pairwise co-prime,
the Graver basis Gr(A) of the matrix is covered by circuits.

The following theorem describes a relationship between the maximum 1-norm of
elements in the Graver basis and the area of the region bounded by the circuits
in the Gale diagram:

Theorem 2.6. Given the matrix A = {(1, 0), (1, a), (1, b), (1, c)} satisfying 0 <
a < b, c = a+ b and the differences of entries in the second row of A are pairwise
co-prime, the region bounded by the circuits in R2 has area 2c.

Proof. Construct GL
∗. From Theorem 2.5, for each cone there is at least one of

the vectors defining the extremal rays that has norm greater than or equal to
any other element restricted to that cone. Denote by P the region formed from
connecting the lattice points corresponding to the circuits of Gr(A). Since these
vectors of GL

∗ define a central hyperplane arrangement, there is symmetry about
the origin. Hence P is a parallelogram and it is defined by those vectors in GL

∗

with the largest norms. We claim the area of the parallelogram is 2c.
From above, the vector λ = (1,−1,−1, 1) lies in the kernel of A and we may

take any other vector in Gr(A) that is nonconformal to λ as the other vector
defining GL

∗. The Gale diagram is determined by two vectors of minimal length.
Using the λ, g0 previously determined, choose λ and the vector v = (b,−c, 0, a) +



528 K. A. Nairn: On the Graver Complexity of Codimension 2 Matrices

2λ = (b− 2,−c+2, 2, a− 2) to define GL. From the set of vectors in GL
∗, the two

of largest norms are {±(−1, c−2),±(−1,−2)} and these define the parallelogram
determining the area 2 · (c− 2 + 2) = 2c.

The Graver basis for arbitrary matrices A = {(1, i1), (1, i2), (1, i3), (1, i4)} with
0 ≤ i1 < i2 < i3 < i4 is also covered by circuits but the Gale dual diagram does
not have the same nice symmetry. Let N := Z2 and let σ = cone(c1, c2) be a
strongly convex rational polyhedral cone in NR := N ⊗Z R with dim(σ) = 2. We
define a corner in σ as an interior Hilbert basis element h whose 1-norm satisfies
‖ h‖1 ≤ min{‖c1‖1, ‖c2‖1}. Therefore

Theorem 2.7. For matrices A = {(1, i1), (1, i2), (1, i3), (1, i4)} satisfying 0 ≤
i1 < i2 < i3 < i4 the Graver basis Gr(A) is covered by circuits.

Proof. Let {b∗1, . . . , b∗4} ∈ GL
∗ be the row vectors defining the Gale dual diagram.

Oda ([11, Proposition 1.19]) proved that every two consecutive vectors in GL
∗

define cone(b∗i , b
∗
i+1) whose interior Hilbert basis elements h lie on the boundary

polygon. Therefore ‖h‖1 ≤ max{‖b∗i ‖1, ‖b∗i+1‖1}. Since this is true for every i,
the result follows.

This proof fails for dimensions greater than 2.

Theorem 2.8. The circuits of a 2× (c+2), c ≥ 3, integer matrix Bc are not the
true circuits for Bc.

Proof. By Cramer’s rule, the possible 2 × 2 minors of Bc define the true circuits
T C(Bc). Thus there are three cases of circuits to consider.

Case 1: The true circuit is defined by any three consecutive nonzero coordinates

(0, . . . ,

∣∣∣∣1 1
s s+ 1

∣∣∣∣ , ∣∣∣∣ 1 1
s− 1 s+ 1

∣∣∣∣ , ∣∣∣∣ 1 1
s− 1 s

∣∣∣∣ , 0, . . .)
which is the vector (0, . . . , 1, 2, 1, 0, . . .) and thus the g.c.d. of the coordinates is
one.

Case 2: The true circuit is defined by any two consecutive nonzero coordinates
and one separate (0, . . . , s, s+ 1, 0, . . . , k, . . . , 0)

(0, . . . ,

∣∣∣∣ 1 1
s+ 1 k

∣∣∣∣ , ∣∣∣∣1 1
s k

∣∣∣∣ , 0, . . . , ∣∣∣∣1 1
s s+ 1

∣∣∣∣ , . . . , 0)

which is the vector (0, . . . , k − s − 1, k − s, 0, . . . , 1, . . . , 0) and the g.c.d. of the
components is one.

Case 3: All three nonzero coordinates are separate (0, . . . , s, . . . , 0, t, 0, . . . , k, 0,
. . .) where s < t < k.

(0, . . . ,

∣∣∣∣1 1
t k

∣∣∣∣ , . . . , 0, ∣∣∣∣1 1
s k

∣∣∣∣ , 0, . . . , ∣∣∣∣1 1
s t

∣∣∣∣ , 0, . . .)
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which is the vector (0, . . . , k − t, . . . , 0, k − s, 0, . . . , t − s, 0, . . .). If the s, t, k are
all even, then the g.c.d. of the components is not equal to one. However, when
the s, t, k are all odd, the g.c.d. is equal to one or more. Thus having s, t, k all
odd is not sufficient to have the g.c.d. of the coordinates equal to one. Therefore,
the true circuits are not equal to the circuits.

For example, in B11,

∣∣∣∣ 1 1
11 9

∣∣∣∣ = 2,

∣∣∣∣ 1 1
11 3

∣∣∣∣ = 8,

∣∣∣∣1 1
9 3

∣∣∣∣ = 6. The g.c.d. is 2.

Remark 2.9. For a matrix A ⊆ Z2×n, there are n − 2 generating vectors for
the lattice L(A) and

(
n

n−3

)
true circuits in Gr(A). For example, Bc has

(
c+2
c−1

)
=

1
6
(c3 + 3c2 + 2c) true circuits.

For the special case of the codim 2 matrix B2 = {(1, 0), (1, 1), (1, 2), (1, 1)} its
Graver basis is given by two circuits {(0, 1,−1, 1), (−1, 1, 0,−1)} that generate a
lattice. Thus the Gale dual diagram associated to this lattice is given by the four
vectors {(1, 0), (−1, 1), (0,−1), (1, 1)} which define unimodular cones. Therefore,
every element in Gr(B2) is a circuit and thus the Graver basis is covered by
circuits.

Consider B3 and look at the orthant defined by the following Graver basis
elements Gr(B3):

(1,−2, 1, 0, 0), (1,−2, 0, 1,−1), (0,−1, 1, 0,−1), (0,−1, 0, 1,−1).

Write the non-circuit as a linear combination of the three circuits:

h = (1,−2, 0, 1,−1) = 1(1,−2, 0, 1,−1) + 1(0, 1,−1, 0, 1) + 1(0,−1, 0, 1,−1)

where the height of h is height(h) = 3 > 1. Thus the element h lies outside the
simplex defined by the circuits and therefore Gr(B3) is not covered by circuits. In
general, many examples can be found where interior Hilbert basis vectors are not
covered by the circuits. Thus we have

Proposition 2.10. The Graver basis of Bc, c ≥ 3 is not covered by circuits.

3. Proof of the main theorem

Since the Graver of the Graver basis of the matrix A = {(1, 0), (1, a), (1, b), (1, c)}
where 0 < a < b and c = a+ b has kernel isomorphic to the kernel of Bc, we have

Corollary 3.1. The Graver basis of the Graver basis of A = {(1, 0), (1, a),
(1, b), (1, c)} where 0 < a < b and c = a+ b is not covered by circuits.

Therefore, it is necessary to assume the true circuit conjecture in order to prove
Theorem 1.6 on the Graver complexity of the codim 2 matrix A. Denote by
C(C(A)) the vectors in Gr(Gr(A)) that are integer combinations of circuits in
Gr(A).
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Proposition 3.2. Let A = {(1, i1), (1, i2), (1, i3), (1, i4)}, with 0 ≤ i1 < i2 < i3 <
i4. Then C(C(A)) ⊆ C(Gr(A)T ).

Remark 3.3. The reverse inclusion is not true. Unfortunately, not every element
in C(Gr(A)T ) arises in this way. The matrix {(1, 0), (1, 2), (1, 5), (1, 8)} has Graver
representatives (5,−4, 0, 0, 0, 0,−1), (0,−3, 0, 5, 0, 0,−2), (0,−2, 0, 0, 5, 0,−3),
(0,−1, 0, 0, 0, 5,−4) where only (5,−4, 0, 0, 0, 0,−1) ∈ C(C(A)).

By Corollary 1.4, the second row entries of A = {(1, 0), (1, a), (1, b), (1, c)} were
relatively prime and so were their respective differences. Thus, for general matrices
A = {(1, 0), (1, i2), (1, i3), (1, i4)}, with 0 < i2 < i3 < i4 we expect the property of
relatively prime differences to be necessary to obtain a tight bound.

We now prove Theorem 1.6:

Proof. These bounds equivalently hold using A = {(1, 0), (1, i2), (1, i3), (1, i4)}
such that 0 < i2 < i3 < i4. The Graver basis Gr(A) is covered by circuits; thus
the Graver representative in Gr(Gr(A)) will correspond to an element in C(C(A))
by Proposition 3.2. Moreover, since Gr(Gr(A)) is not covered by circuits, we
assume the True Circuit Conjecture so that the elements in the Graver basis
of the Graver basis are covered by the true circuits of the Graver basis of A.
But the Graver basis of A is covered by circuits; hence Gr(Gr(A)) is covered
by the true circuits of the circuits of A. Possible combinations of the numbers
in D(A) = max{i1, i2, i3, i4, i2 − i1, i3 − i1, i4 − i1, i3 − i2, i4 − i2, i4 − i3} give
the upper bound defined by the maxcircuit(Gr(A)). Thus maxcircuit(Gr(A)) =
max{i1+i2+i3+i4 = i2−i1+i3−i1+i4−i1 = i2+i3+i4−3i1, i4−i1+i4−i2+i4−i3 =
3i4− i1− i2− i3}. Therefore, these give an upper bound for the Graver complexity
of A in terms of the true circuits for A. If all the differences are pairwise co-prime,
then i2 + i3 + i4 − 3i1 = 3i4 − i1 − i2 − i3 and the bound is tight.

For example, consider the matrix A = {(1, 0), (1, 3), (1, 7), (1, 8)} which has Gra-
ver representative g = (0, 0, 8, 0,−7, 0, 0, 3) with Graver complexity g(A) = 18.

Remark 3.4. The matrix {(1, 0), (1, 1), (1, 2), (1, 3)} that represents the twisted
cubic curve in P3 has entries whose differences are relatively prime. The Graver
representative is (3,−2, 0, 0, 1) which implies that the Graver complexity is g = 6
so the bound is tight. However, it is not necessary for the differences of the entries
to be co-prime in order to obtain a tight bound. For example, consider A =
{(1, 0), (1, 1), (1, 7), (1, 9)} where the pairwise differences are not co-prime. The
Graver representative is g = (9,−7, 0, 0, 0, 0, 0, 1) and thus the Graver complexity
is g(A) = 17 which is a tight bound.
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