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Abstract. First, we characterize finite groups that are not absolutely
solvable, but every proper subgroup of them is absolutely solvable. Sec-
ond, we show that every hereditary absolutely solvable group of odd
order is an M-group. Third, we exhibit examples of groups which are
not absolutely solvable, although they can be written as a product of
two absolutely solvable normal subgroups.
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1. Introduction

The concept of absolutely solvable groups was invented by Gerhard Pazderski,
and it was introduced in the paper [7] of his former student Edit Szabó.

Let G be a finite solvable group with a chief series

G = N0 > N1 > · · · > Nn−1 > Nn = 1 ,

that is, the Ni’s are normal subgroups of G and this series is not refinable. Solv-
ability of G yields that each chief factor Ni−1/Ni is an elementary abelian pi-group
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for some prime pi, so |Ni−1/Ni| = pdi
i with some di ≥ 1. Hence Ni−1/Ni can be con-

sidered as a vector space of dimension di over the pi-element field. Every element
g ∈ G induces an automorphism of Ni−1/Ni by conjugation: xNi 7→ gxg−1Ni

(x ∈ Ni−1). This way we obtain a linear representation Ψi : G → GL(di, pi).
As each Ni−1/Ni is a chief factor, this representation is irreducible for every
i = 1, . . . , n.

As it is well known, a representation is called absolutely irreducible if it re-
mains irreducible over any extension field. Absolutely irreducible representations
play a significant role in representation theory. We now recall Pazderski’s defini-
tion of absolutely solvable groups.

Definition 1. A finite solvable group G is called absolutely solvable (abbreviated
AS), if all representations induced on the chief factors are absolutely irreducible.

Clearly, by the Jordan-Hölder theorem, the definition does not depend on the
choice of the particular chief series.

Since subgroups of AS groups need not be AS, the following definition is more
restrictive.

Definition 2. A finite solvable groups G is called hereditary absolutely solvable
(abbreviated HAS), if every subgroup of G is AS.

In Section 2 we will summarize the main results of Edit Szabó from her papers [7]
and [8]. The present work can be considered as a continuation of her investigations.
The reader is advised to study the papers [7], [8] before reading this article.

In Section 3 we will determine the minimal non-AS groups, that is, those finite
groups which are not AS themselves but every proper subgroup of them is AS.

The class of AS groups shows some similarities with the class of monomial groups
(M-groups in short). In Section 4 we explore the relationship between the two
classes. In particular, we show that every HAS group of odd order is an M-group.

Finally, in Section 5 we will give examples of groups which are the product of two
AS normal subgroups, but they are not AS themselves.

2. Summary of Edit Szabó’s results

We are going to give a short overview of Edit Szabó’s two papers [7], [8] on AS
groups, with emphasis on those results which we will apply in our proofs.

She showed that the class of AS groups is a formation, but not a saturated
formation [7, Theorem 2.6]. However, the class of HAS groups is a saturated
formation [7, Theorem 4.2], namely, the following local definition of HAS groups
can be given using the notation from the Introduction.

Theorem 1. [7, Theorem 4.1] A finite solvable group G is HAS iff for every
i = 1, . . . , n the exponent of G/ ker Ψi divides pi − 1.

In the examples and constructions she used the following easy observations (see
[7, Lemmas 2.2, 2.4]):
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(1) One-dimensional representations are absolutely irreducible.

(2) An irreducible representation of an abelian group is absolutely irreducible
iff it is one-dimensional.

(3) If the dimension of an irreducible representation is a prime number and
the image of the group is nonabelian, then the representation is absolutely
irreducible.

Based on these elementary observations she was able to construct examples of
groups what are AS but not HAS, and others that are HAS but not supersolvable
[7, Proposition 4.4]. Note that, obviously, every supersolvable group is HAS.

We will also make use of the following result, which was actually proved under
a weaker assumption that all normal subgroups of G are AS.

Theorem 2. [7, Theorem 3.2] Every HAS group possesses an ordered Sylow tow-
er. That is, if |G| = pk1

1 · · · pks
s with primes p1 < · · · < ps, then there exists a series

of normal subgroups G = P0 > P1 > · · · > Ps−1 > Ps = 1 such that |Pi−1/Pi| = pki
i

for each i = 1, . . . , s.

In the other paper [8] embeddings into AS groups are investigated. Edit Szabó
proved that every finite solvable group can be embedded as a subgroup into an
AS group [8, Theorem 2.2]. However, she constructed a finite solvable group that
cannot be embedded into an AS group as a subnormal subgroup [8, Theorem 4.1].

3. Minimal non-absolutely-solvable groups

It has been a recurrent topic in group theory to investigate groups that do not
satisfy a certain property but all proper subgroups have that property. The best
known example is the description of minimal non-nilpotent groups (see [1, Satz
III.5.2] and [5]). For a survey of results of this type see [3]. For the class of AS
groups we obtain the following.

Theorem 3. Let G be a finite group which is not AS, but every proper subgroup
of G is AS. Then G = PQ, where P is a normal Sylow p-subgroup, Q is a cyclic
Sylow q-subgroup (p and q are distinct primes) and one of the following holds:

(i) q does not divide p− 1 and G is a minimal non-nilpotent group;

(ii) q divides p−1, |Q/CQ(P )| = qs+1 where qs is the highest power of q dividing
p − 1, and either P is elementary abelian of order pq or q = 2, P is a
nonabelian group of order p3 and exponent p.

Furthermore, we have that every proper subgroup of G is supersolvable.

Proof. Let r be the smallest prime divisor of |G|. Every proper subgroup of G is
HAS, hence it possesses an ordered Sylow tower (see Theorem 2). In particular,
every proper subgroup of G is r-nilpotent.

If G itself is not r-nilpotent, then G is a minimal non-r-nilpotent group, and
the theorem of Itô (see [1, Satz IV.5.4]) applies, so G is in fact a minimal non-
nilpotent group and G = PQ where P is a normal Sylow p-subgroup, Q is a cyclic
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Sylow q-subgroup (r = p 6= q primes). Since p < q, q does not divide p− 1, so we
are in case (i).

If G is r-nilpotent, then G itself has an ordered Sylow tower. Let p be the
largest prime divisor of |G| and let P be the normal Sylow p-subgroup of G. By
the Schur-Zassenhaus Theorem there is a complement K to P . Since G is not
HAS, Theorem 1 implies that there exists a chief factor Ni−1/Ni of G such that the
exponent of G/CG(Ni−1/Ni) does not divide pi−1 where |Ni−1/Ni| = pdi

i for some
prime pi and di ≥ 1. As G/P ∼= K is HAS, we must have pi = p and Ni−1 ≤ P .
Since P is normal in G, it is contained in the Fitting subgroup of G, hence it acts
trivially on each chief factor, and so K induces the same linear group on Ni−1/Ni

what G does. Now Ni−1K is not AS, hence we have Ni−1K = G, Ni−1 = P . Since
K acts completely reducibly on P/Φ(P ), we get Ni = Φ(P ).

As the exponent condition is not satisfied for the action of K on P/Φ(P ), we
can find a prime q 6= p and an element g ∈ K of q-power order such that the linear
transformation induced by g on P/Φ(P ) has order qs+1, where qs is the highest
power of q dividing p − 1 (s ≥ 0). Then P 〈g〉 is not AS, hence P 〈g〉 = G, so we
have established that G = PQ with normal Sylow p-subgroup P and cyclic Sylow
q-subgroup Q = 〈g〉 in this case as well.

If q does not divide p − 1 (i.e., s = 0), then g induces an automorphism of
order q of P and acts irreducibly on P/Φ(P ) and trivially on Φ(P ). Hence in this
case G = PQ is a minimal non-nilpotent group, so we are again in case (i).

If q divides p−1 (i.e., s ≥ 1), then the irreducible module P/Φ(P ) of the cyclic
group Q has dimension q. Then gqs

acts by scalar multiplication of order q on
P/Φ(P ). The action of G on any chief factor below Φ(P ) is absolutely irreducible,
hence by the commutativity of Q, these chief factors have order p. Then the group
of linear transformations induced on them by G has order dividing p − 1, hence
Q1 = 〈gqs〉 acts trivially on every chief factor below Φ(P ), and therefore also on
Φ(P ). The same holds obviously for every conjugate of Q1. Since the normal
closure of Q1 in G is PQ1, we obtain Φ(P ) ≤ Z(PQ1). In particular, P has
nilpotence class at most 2. We can write P/P ′ = CP/P ′(Q1) × [P/P ′, Q1] =
Φ(P )/P ′× [P/P ′, Q1]. Since we know that the only chief factor of G on which Q1

acts nontrivially is P/Φ(P ), we obtain P ′ = Φ(P ).
If P is abelian, then it is elementary abelian of order pq.
If P is nonabelian, then let Φ(P )/N be a chief factor of G. We know that

|Φ(P )/N | = p, hence we obtain that P/N is an extraspecial p-group. Since
|P/Φ(P )| = pq, this is only possible if q = 2. Then |P/Z(P )| = p2 implies
|P ′| = p, so |P | = p3. Since P cannot contain a characteristic subgroup of order
p2, we get that P has exponent p. This finishes the analysis of case (ii).

Now it is easy to check that the groups with the structure given in (i) or (ii)
are not AS, but every proper subgroup of them is supersolvable, hence AS.

Clearly, every group described in Theorem 3 can be generated by two elements.
Hence we obtain the following.

Corollary 4. If every 2-generated subgroup of G is AS, then G is HAS.
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4. Absolutely solvable groups and M-groups

There are some similarities between the class of AS groups and that of M-groups.
By Taketa’s theorem [9] every M-group is solvable. Subgroups of M-groups need
not be M-groups, moreover, every finite solvable group can be embedded into an
M-group (Dade, see [1, Satz V.18.11]). An analogous statement is valid for AS
groups [8, Theorem 2.2]. Also, both concepts are related to representation theory.
However, this similarity seems to be rather superficial, the classes of AS groups
and M-groups are scarcely related.

It is quite easy to construct M-groups that are not AS groups. Namely, let
p and q be distinct primes such that q does not divide p − 1. Let k > 1 be the
multiplicative order of p modulo q, then the elementary abelian group of order
pk has an automorphism of order q. Forming the semidirect product we obtain a
group G of order pkq that is clearly not AS. However, it is an M-group, since it
has an abelian normal subgroup with supersolvable quotient group (see [1, Satz
V.18.4]).

For the reverse direction, let P be a noncommutative group of order 53 and
exponent 5. Then a Sylow 2-subgroup Q of SL(2, 5) < GL(2, 5) ∼= Aut(P/Φ(P ))
can be lifted to act on P , and we can form the semidirect product G = PQ. Here
Q is isomorphic to the quaternion group of order 8, and its exponent 4 divides
(actually equals) 5− 1. Hence it is clear by Theorem 1 that G is HAS. However,
since Q acts trivially on the center of P , any faithful irreducible character (of
degree 5) of P is invariant under the action of Q, hence it can be extended to an
irreducible character of degree 5 of G (see [2, Corollary 6.28]). It is easy to check
that G does not have any subgroup of index 5, so this character is not monomial,
and G is not an M-group. In fact, G is a minimal non-M-group, see [4, Lemma
2.2(c)].

The only positive result we were able to prove works for HAS groups of odd
order.

Theorem 5. Every HAS group of odd order is an M-group.

Proof. Let G be a minimal counterexample. All proper subgroups and quotient
groups of G are also HAS, hence by our minimal choice of G they are M-groups.
Since G itself is not an M-group we can find a non-monomial irreducible character
χ of G. Now, by the minimality of G, we see that χ is faithful and primitive. A
minimal noncentral normal subgroup of a primitive solvable linear group is the
central product of a central cyclic subgroup and an extraspecial p-group for some
prime p (see [6]), hence G has a chief factor of even dimension.

On the other hand, we are going to show that the dimension of every chief
factor of G is odd, and this will be a contradiction. Since G is HAS, the exponent
condition in Theorem 1 holds. Therefore, G induces absolutely irreducible linear
groups on chief facors that have order coprime to the characteristic of the given
chief factor. In this case the dimension agrees with the dimension of an absolutely
irreducible representation of G in charactersitic 0, hence it divides the order of G,
so it is an odd number, indeed.
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In the proof we used the fact that G is hereditary absolutely solvable. Can we
relax this condition?

Question. Is it true that every AS group of odd order is an M-group?

5. Products of absolutely solvable groups

In this section we answer a question Hermann Heineken asked from Edit Szabó
at the Groups St Andrews 1993 conference in Galway. Our original example was
just one particular group of order 2454. However, the referee suggested that this
example can be generalized, and moreover, he produced examples of odd order as
well.

Example 6. Let Q = 〈 a, b | a8 = 1, b2 = a4, b−1ab = a−1〉 be a generalized
quaternion group of order 16. Let p be a prime number congruent to 3 or 5
modulo 8 and take a faithful irreducible Q-module P over the p-element field. Let
G = PQ be the semidirect product, and N1 = P 〈a2, b〉, N2 = P 〈a2, ab〉. Then N1

and N2 are normal subgroups in G, G = N1N2, both N1 and N2 are AS, but G is
not AS.

Proof. Both 〈a2, b〉 and 〈a2, ab〉 are quaternion groups of order 8, hence both N1

and N2 have index 2 in G, so they are normal subgroups, and N1N2 = G obviously
holds. It is easy to check that every irreducible representation of the 8-element
quaternion group is absolutely irreducible, hence both N1 and N2 are AS. (If p ≡ 5
(mod 8), then the exponent condition from Theorem 1 holds, so N1 and N2 are
even HAS in this case.)

Every faithful absolutely irreducible Q-module is 2-dimensional, since Q has
an abelian subgroup of index 2. However, if p ≡ 3 or 5 (mod 8), then GL(2, p)
does not contain any subgroup isomorphic to Q, hence our Q-module P cannot
be 2-dimensional, so it is not an absolutely irreducible Q-module, thus G is not
AS.

Now let q be an odd prime. We consider the wreath product of the cyclic group of
order q2 with the cyclic group of order q. The base group of the wreath product
is { (x1, x2, . . . , xq) | xi ∈ Zq2 (i = 1, . . . , q)} and the cyclic shift of the coordinates
will be denoted by b. We take the following subgroups of the base group:

A = { (x1, x2, . . . , xq) | xi ∈ Zq2 , x1 ≡ x2 ≡ · · · ≡ xq (mod q),
∑

xi = 0}

and

A0 = { (x1, x2, . . . , xq) | xi ∈ Zq2 , x1 ≡ x2 ≡ · · · ≡ xq ≡ 0 (mod q),
∑

xi = 0}.

Then A0 is elementary abelian of order qq−1, A is abelian of order qq and it has
exponent q2. Clearly, A0 and A are invariant under b. Furthermore, let us choose
an a ∈ A \ A0, then A = 〈A0, a〉 and a simple computation shows that ab has
order q. Let us define Q = A〈b〉.
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Example 7. Let q be an odd prime, and take the group Q defined above. Let p be
a prime such that p−1 is divisible by q but not by q2, and take a faithful irreducible
Q-module P over the p-element field. Let G = PQ be the semidirect product, and
N1 = P 〈A0, b〉, N2 = P 〈A0, ab〉. Then N1 and N2 are normal subgroups in G,
G = N1N2, both N1 and N2 are HAS, but G is not AS.

Proof. Since the center of Q is cyclic (generated by aq), Q indeed has a faithful
irreducible representation (see [2, Theorem 2.32(b)]).

Since both 〈A0, b〉 and 〈A0, ab〉 are maximal subgroups of Q, we clearly have
that N1 and N2 are normal subgroups of G, and N1N2 = G. Since the (isomorphic)
groups 〈A0, b〉 and 〈A0, ab〉 have exponent q, it follows from Theorem 1 that N1

and N2 are HAS.
Any faithful absolutely irreducible representation of Q has dimension q, since

A is an abelian normal subgroup of index q in Q. Our assumption on p implies
that the Sylow q-subgroup of GL(q, p) is the wreath product of two cyclic groups
of order q. Now Q and this Sylow q-subgroup have the same order, but they are
not isomorphic, since the unique abelian maximal subgroup in the wreath product
of two cyclic groups of order q is elementary abelian, while the abelian maximal
subgroup A < Q is not elementary abelian. This implies that Q does not have a
faithful irreducible representation of dimension q over the p-element field, hence
P is not an absolutely irreducible Q-module, thus G is not AS.

Acknowledgement. The author is very grateful to the referee for the construc-
tion reproduced here as Example 7.
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