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Abstract. We introduce a concept “degree of triangle centers”, and
give a formula expressing the degree of triangle centers on generalized
Euler lines. This generalizes the well known 2 : 1 point configuration
on the Euler line. We also introduce a natural family of triangle centers
based on the Ceva conjugate and the isotomic conjugate. This family
contains many famous triangle centers, and we conjecture that the de-
gree of triangle centers in this family always takes the form (—2)* for
some k € Z.
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Introduction

In this paper we present a new method to study triangle centers in a systematic
way. Concerning triangle centers, there already exist tremendous amount of stud-
ies and data, among others Kimberling’s excellent book and homepage [32], [36],
and also various related problems from elementary geometry are discussed in the
surveys and books [4], [7], [9], [12], [23], [26], [41], [50], [51], [52]. In this paper
we introduce a concept “degree of triangle centers”, and by using it, we clarify
the mutual relation of centers on generalized FEuler lines (Proposition 1, Theorem
2). Here the term “generalized Euler line” means a line connecting the centroid
G and a given triangle center P, and on this line an infinite number of centers
lie in a fixed order, which are successively constructed from the initial center P
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(for precise definition, see Section 3). This generalizes the well known 2 : 1 point
configuration on the Euler line, concerning centroid, orthocenter, circumcenter,
nine-point center, etc. In addition we exhibit a new class of triangle centers P¢
based on the Ceva conjugate and the isotomic conjugate, which contains many
famous centers and possesses an intimate relationship to the concept “degree of
triangle centers”.

Now we state the contents of this paper. In Section 1 we define the concept
“triangle centers” in terms of barycentric coordinate. In this paper we only treat
triangle centers whose barycentric coordinates f(a,b,c) are expressed as a quo-
tient of polynomials of edge lengths a, b, c¢. In Section 2 we give a definition of
degree of triangle centers d(f). We remark that for most famous centers the value
d(f) takes the form (—2)¥ (k € Z). In Section 3 we generalize the notion of the
Euler line by using barycentric coordinates, and state the relation between centers
on generalized Euler lines and the sequence of infinite homothetic triangles con-
structed successively by taking the medians of edges (Proposition 1). This result
is more or less well known for many situations. For example we already know
that the circumcenter of AABC' is equal to the orthocenter of the medial triangle
of AABC', which is also equal to the nine-point center of the anticomplementary
triangle of AABC (see Figure 3).

In Section 4 we give a formula on the degree d(f) of centers on generalized
Euler lines (Theorem 2), which is the principal result of the present paper. By this
formula, in case deg f # 0 (mod 3), we can read the relative position of centers
on the generalized Euler line from the value d(f). On the other hand, in case
deg f = 0(mod 3), the degree d(f) gives an invariant of the generalized Euler line.
In Section 5 we give three other invariants of generalized FEuler lines. In Section 6
we introduce a new class of triangle centers P based on two conjugates: the Ceva
conjugate and the isotomic conjugate. This family contains many famous triangle
centers, including centers on the generalized Fuler line, and is quite naturally
adapted to the concept degree d(f). But unfortunately its explicit form is not
determined yet. In the final section Section 7, we give several conjectures on the
family Pc. Among others we conjecture that for centers f(a, b, ¢) in the family Pe
we have d(f) = (—2)* (Conjecture 2). The number —2 appears in several places
in elementary geometry, and we believe that this conjecture gives one basepoint of
our approach to the new understanding of elementary geometry, after it is settled
affirmatively.

1. Triangle centers

We denote by A the set of triangles in the plane R?. Remark that vertices
and edges of triangles are unnamed at this stage. A triangle center is a map
v 1 A — R? satisfying the following condition: The map ¢ commutes with the
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action of homothety g, i.e., the following diagram is commutative:

A % R?

i E

A —— R?

%)

Here, g : R? — R? is a map defined by

o(5) =+ (5)+ (2):

where k£ > 0, A € O(2), <§> € R? and g : A — A is a map naturally induced

from g. This condition means that triangle centers do not depend on the choice
of a coordinate of R?, and also not on scaling.

Note that in some special cases we must restrict the domain of ¢ to a subset
of A. For example to define the Feuerbach point, we must exclude equilateral
triangles from A.

For later use we put names to vertices and edges of triangles, and reformulate
the above definition of triangle centers. Let AABC be a triangle in the plane
with vertices A, B, C', and we denote by a, b, ¢ the edge lengths of AABC, i.e.,
a = BC,b=CA, ¢c = AB. Then any point P of the plane can be uniquely
expressed as P = 2A+yB + 2C (z+y+ z = 1). The triple (z,y, z) is called the
barycentric coordinate of P.

Since the shape of a triangle is determined by its edge lengths a, b, ¢ and the
position of a triangle center depends only on the shape of the triangle, we know
that the barycentric coordinate (z,y, z) of a triangle center o(AABC)) is expressed
as functions of a, b, ¢, i.e., o(AABC) = f(a,b,¢)A+ g(a,b,c)B + h(a,b,c)C.

Next, since the position of a triangle center o(AABC') does not depend on
the naming of vertices A, B, C (for example, o(AABC) = ¢(AACB) etc.), we
obtain the equalities such as

fla,b,c)A+g(a,b,¢)B + h(a,b,c)C = f(a,c,b)A+ g(a,c,b)C + h(a,c,b)B.

From these conditions it is easy to see that the map ¢(AABC) = f(a,b,c)A +
g(a,b,c)B + h(a,b,c)C gives a triangle center if and only if g(a,b,c) = f(b, ¢, a),
h(a,b,c) = f(c,a,b) and

fla,b,¢) + f(b,c,a) + f(c,a,b) =1,
f(avbv C) = f(a’ ¢, b)7
f(ka, kb, ke) = f(a,b,c) Vk > 0.

Hence we may say that a triangle center is uniquely determined by a function
f(a, b, c) satistying the above three conditions. (See also [2], [28], [31], [33] con-
cerning this formulation.) For example, we have f(a,b,c¢) = a/(a+ b+ ¢) for the
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incenter Xy, f(a,b,c) = 1/3 for the centroid X, and f(a,b,c) = a*(—a® + b* +
A /(a+b+c)(—a+b+c)(a—b+c)(a+b—c) for the circumcenter X3. Here the
symbol X} means the k-th triangle center listed in [29], [32], [36].

Clearly, the essential part of a function f(a,b,c) is its numerator, since we
can recover the denominator of f(a,b,c) by a cyclic sum of its numerator. Two
numerators fi(a,b,c) and fy(a,b, ¢) define the same function f(a,b, ) if and only
if fo(a,b,c) = fi(a,b,c)(a,b, c) for some symmetric function ¥ (a, b, c).

In this paper, for the reason which will be clarified in Section 2, we only treat
triangle centers f(a, b, ¢) whose numerators (and also denominators) are expressed
as real homogeneous polynomials of a, b, ¢. (So the Fermat point, Napoleon point,
etc., are beyond our scope in this paper.)

We reformulate the above setting as follows: Let JH be the set of all real
homogeneous polynomials f(a, b, ¢) satisfying

f(a,b,c) = f(a,c,b), fla,b,¢) + f(b,ec,a) + f(c,a,b) # 0.

We say f(a,b,c) and f'(a,b,c) € H are equivalent if f'(a,b,c) = f(a,b,c)y(a,b,c)
for some symmetric function ¥ (a,b,c), and denote it by f(a,b,c) ~ f'(a,b,c).
Then the quotient set P = H/ ~ constitutes a natural subclass of triangle centers.
In the following we often express the representative class of f(a,b,c) by the same
symbol. Note that the position P of a triangle center defined by f(a,b,c) € P is
given by
fla,b,c)A+ f(b,c,a)B + f(c,a,b)C

fla,b,c) + f(b,c,a) + f(c,a,b)
and abuse of notations, we often express this point as f(a,b,c), if there is no
confusion.

The above formulation on triangle centers seems to be a quite natural one.
But actually it contains many redundant points. For example, a point P on the
Euler line with GP : PO = 1 : 100 does not perhaps possess any geometrical
significance. And so some more restricted class of triangle centers should be
considered. We will introduce such a class in Section 6 as one attempt. (For
another important formulation of triangle centers, see [43], [44], [45].)

pP=

2. Degree of triangle centers

Now we define the degree d(f) of triangle centers. We assume that the polynomial
f(a,b,c) € P corresponding to a triangle center does not possess a symmetric
polynomial of a, b, ¢ as its factor. This is always possible, because we may divide
f(a,b,c) by a symmetric polynomial of a, b, ¢ in case f(a,b,c) has such a factor.
Then after this modification, the polynomial f(a,b,c) is uniquely determined up
to a non-zero constant.

Under this preparation, we define a map d : P — R U {oo} by

f(1,w,w?)
i) =4 Fa11 f(1,1,1) #0,
o0 f(1,1,1) =0,
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where w,w? = (=1 + /3i)/2. Note that the value d(f) is well defined since
f(a,b,c) is symmetric with respect to b, ¢ and f(a, b, ¢) is uniquely determined up
to a non-zero constant, as we explained above. Also note that d(f) takes a real
value since w + w? = —1 and w - w? = 1. The equality f(1,1,1) = 0 holds if and
only if the triangle center corresponding to f(a,b,c) is undefined for equilateral
triangles (such as the Feuerbach point).

Since b and c represent the edge lengths of a triangle, they must be real num-
bers, and so the value f(1,w,w?) itself does not possess any geometric meaning.
But, as we shall explain later, we can attach a nice geometric meaning to the
value d(f), which actually expresses a “degree of triangle centers” in a sense.

The assumption that a polynomial f(a,b,c) has no symmetric factor is indis-
pensable in order to obtain the definite value. In fact if we use the expression
fla,b,c) = (a+b)(b+c)(c+a)(—a+ b+ c) instead of f(a,b,c) = —a+b+c, we
have d(f) = 1/4, though the actual value is d(f) = —2.

Interestingly, as the following examples show, the value d(f) takes the form
(=2)* (k € Z) in many (or rather, for most) cases.

Example 1.

X1 (I, Incenter) : f=a, d(f)=1,

Xy (G, Centroid) : f=1, d(f)=1,

X3 (O, Circumcenter) : f = a*(—a®+b* + %), d(f) = -2,
X, (H, Orthocenter) : f = (a*> — b* + *)(a®* + b* — ¢?), d(f) =
X5 (N, Nine-point center) : f = a?(b? + ¢?) — (b2 — A2 d(f) =
Xs (Na, Nagel point) : f=—a+0b+ec, d(f)
X0 (S, Spieker center) : f=b+c, d(f)=—73,
X11 (F, Feuerbach point) : f= (b—c)?)(—a+b+c), d(f)= oo,
Xous (Ho, Hofstadter trapezoid point) : f = —3a* +2a3(b+ ¢) + 2a*(b — ¢)?

—2a(b—c)*(b+c) + (b* — )%, d(f) = —20.

| ||

3. A generalization of the Euler line

The Euler line is a fundamental line of a triangle, which passes through many
famous triangle centers such as centroid, circumcenter, orthocenter, nine-point
center, de Longchamps point, etc. Also the Nagel line passes through the centers
such as centroid, incenter, Nagel point, Spieker center, etc. In this section, by
using f(a,b,c) € P, we generalize these lines and centers lying on it in a unified
way (Proposition 1). This result is a preparation for the next section.

First, for a given f(a,b,c) € P we define a new center f,, € P (n € Z) by

fn(aa ba C) = 2n(fa + fb + fc) + (_1)n(2fa - fb - fc)a

where f, = f(a,b,¢), fy = f(b,c,a) and f. = f(c,a,b). Clearly this definition
does not depend of the choice of representatives f(a, b, c) in P. We can easily see
that

f():fv (fm)n:fm-i-m (m,nEZ).
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(Strictly speaking, we have f; = 3f, and so we should write it as fo ~ f. But
in the following, we write fy = f in such a situation, if there is no danger of
confusion.) In particular, two correspondences f —— f; and f —— f_; give
mutually the inverse map to each other since (f1)_1 = (f-1)1 = fo = f.

Example 2. In case f(a,b,c) = a*(—a* + b* + ¢?), then we have fi(a,b,c) =
a?(b* + ) — (B* —c)? and f_1(a,b,c) = (a®> — b* + ) (a® + b* — ¢?). Note that f
corresponds to the circumcenter and f;, f_; correspond to the nine-point center
and the orthocenter, respectively.

The center f,(a,b,c) € P constructed above possesses the following geometric
meaning. First we consider an infinite series of triangles A, (ABC) (n € Z),
whose vertices are given by

A, =3{A+B+C+ (-
B,=1+{A+B+C+ (-
Ch=3+{A+B+C+ (-

)" (2A— B - C)},
)" (2B—C — A)},

[N N

Ay

Figure 1

Clearly, the triangle Ag(ABC) is the initial triangle AABC itself. It is easy to see
that A1(ABC) is the medial triangle of Ag(ABC), and Ay(ABC) is the medial
triangle of A;(ABC), etc. Also A_1(ABC) is the anticomplementary triangle
of Ag(ABC), and A_5(ABC) is the anticomplementary triangle of A_;(ABC),
etc. In general, the triangle A, 1(ABC) is the medial triangle of A, (ABC), and
conversely, A, (ABC') is the anticomplementary triangle of A, 1(ABC'). Further,
the property A, (A,(ABC)) = Apyn(ABC) holds. We call A,,(ABC) the n-th
iterated triangle of AABC. Note that the centroid of A, (ABC) coincides with
the centroid of AABC for any n € Z, and the triangle A, (ABC') converges to
the centroid as n — oco. Then we have the following proposition.
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Proposition 1. Let f(a,b,c) € P and n € Z.

(1)

The triangle center of AABC' determined by the polynomial f,(a,b,c) € P
coincides with the triangle center of the n-th iterated triangle A,(ABC)
which is determined by the initial f(a,b,c). Or more generally, for any
k € Z, this point is equal to the center of A(ABC) determined by the
polynomial f,_j(a,b,c).

The infinite centers of AABC determined by f,(a,b,c) (n € Z) together
with the centroid G of AABC' are collinear. For any n € 7Z the cen-
troid G is situated between two points f,(a,b,c), fui1(a,b,c), and the ratio

— —

fnla,b,c) G : Gfpia(a,b,c) is always 2 : 1, i.e., Gf, = —2Gfn41. Conse-
quently, Ji—{gof"(a’ b,c) =G.

2 1
NN
fn G fn+1
Figure 2

The above fact (1) implies that in spite of their appearances, the centers de-
termined by the family of polynomials {f,(a,b,c)},cz define essentially “one”
geometric concept in the family of iterated triangles {A,,(ABC)}ez.

A-1
Figure 3

For example, from Figure 3, we can easily see that the circumcenter of AABC,
the orthocenter of the medial triangle, and the nine-point center of the anticom-
plementary triangle give the same point in the plane. This is the special case of
the above proposition. We put n =1 and f(a,b,c) = (a* — b* + ¢?)(a® + b* — ¢?),
which corresponds to the orthocenter of AABC. Then we have fi(a,b,c) =
a*(—a*+0* + %) and fo(a, b, c) = a®(b* +c*) — (b* — ¢*)?, which correspond to the
circumcenter and the nine-point center of AABC, respectively. And hence, from
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Proposition 1 (1), three points determined by f; in Ag(ABC), fy in A;(ABC)
and fy in A_;(ABC) coincide, which is nothing but the above statement.

Moreover, we may add the de Longchamps point to this family of centers, since
the de Longchamps point is by definition the orthocenter of the anticomplementary
triangle. Actually it corresponds to the polynomial f_i(a,b,c) = 3a* — 2a%(b* +
) — (b* — ¢*)?, and is the circumcenter of A_»(ABC). We can also add the
point X149 to this family since it corresponds to the polynomial f3(a,b, c) = 2a* —
3a*(b? + ) + (b* — )2

Therefore, the orthocenter, the nine-point center, the de Longchamps point,
etc., are the circumcenters of A, (ABC) for some n € Z, and so we may say that
they indicate essentially one concept in the set of triangle centers. Or in other
words, we can draw the Euler line by only plotting circumcenters of triangles
A, (ABC). This fact is already stated in many publications.

Similarly, we consider the case f(a,b,c) = a which determines the incenter.
Then we have fi(a,b,c) =b+c, f_1(a,b,c) = —a+ b+ ¢, and these linear polyno-
mials correspond to the Spieker center X;y and the Nagel point Xg, respectively.
From the above proposition, we know that the incenter of AABC' coincides with
the Spieker center of the anticomplementary triangle, and also coincides with the
Nagel point of the medial triangle. Or in other words, the Nagel point of AABC'is
the incenter of the anticomplementary triangle, and the Spieker center of AABC
is the incenter of the medial triangle, which is nothing but the definition of the
Spieker center. These three points are collinear, including the centroid G. The
ratios of distance of these points keep the value 2 : 1, and this line is called
the Nagel line. The Nagel line also contains the points fo(a,b,¢) = 2a + b + ¢,
f-a(a,b,c) = —3a + b+ ¢, which are Xj155 and X5, respectively in Kimberling’s
list. In this case the Nagel line is obtained by only drawing incenters of A, (ABC),
which is also a well known fact.

Starting from the Feuerbach point Xj; corresponding to the polynomial f =
(b—c)*(—a+b+c), we know that the points X149 (f_2), X100 (f-1 = ala—b)(a—c)),
X1 (fo), X035 (f1) and Xy = G are collinear (see [32], [36]).

In this way, the above proposition shows that there are an infinite number of
lines that possess similar property as the Euler line. In the following we call such
lines the generalized Euler lines determined by f(a,b,c) (or f,(a,b,c)).

Perhaps the contents of Proposition 1 are more or less well known, and the
proof is not so difficult. For example, see references [2], [6], [8], [14], [17], [18], [19],
[22],[46], [47], [48], [61], [62], [63], etc. But as far as the author knows, a unified
treatment as stated in Proposition 1 cannot be found anywhere, and so we give
here its complete proof.

Proof of Proposition 1. First, we state one remark. In considering the center of
A, (ABC) corresponding to the polynomial f, we must substitute in f the edge
lengths of the triangle A, (ABC), instead of a, b, ¢. But since the edge lengths
of A,(ABC) are given by B,C, = a/2", etc., and since f is a homogeneous
polynomial, we may use the initial edge lengths a, b, ¢ to calculate the position of
the center.
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(1) We show that the center of Ay(ABC') determined by f,,_x(a,b,c) is indepen-
dent of k. This center is represented by
frr(a,b,¢)Ax + fui(b,c,a) By + fui(c,a,b)Cy
foor(a,b,¢) + frr(b,c,a) + foir(c,a,b)

We substitute

fn—k(a;b, C) = 2n_k(fa + fb + fc) + (_1)n_k(2fa - fb - fc):
A= HA+B+C+ (-1 @a-B-0)},
etc., to the above point. Here f, = f(a,b,¢), fo = f(b,c,a), f. = f(c,a,b), as we

stated before. Then after some calculations, it follows that the coefficient of A is
equal to

2n(fa+fb+fc)+(_1)n<2fa_fb_fc) _ fn(a7bac)
3-2"(fat+ fo + fo) fa(a,b,¢) + fu(b,c,a) + fulc,a,b)
And thus the integer k disappears. This point corresponds to the center of AABC
determined by f,(a,b,c).
(2) The point determined by f,(a,b,c) is given by

fnla,b,c)A+ f(b,c,a)B+ fu(c,a,b)C
fala,b,c) + fu(b,c,a) + ful(c,a,b)

and hence we have

CT]? _ fala b, )A+ fu(bic,a) B+ falc,a,0)C 1
" falabo) + falbca) + falc,ab) 3

Substituting f,(a,b,¢) = 2"(fo + fo + fo) + (=1)"(2fs — fo — f.), etc., into this
equality, we have finally

(A+B+0).

Gr, - (_1)" 2fa— fo = f)A+ 2y — fo— fo) B+ (2fe = fa— /1)C
' 2 3(fatFo+ 1)
All results follow immediately from this equality. q.e.d.

As we can easily see, the polynomiality assumption on f(a,b, ¢) is actually unnec-
essary to prove this proposition. The Euler line itself possesses several interesting
properties related to other triangle centers. (See for example [49], [54], [55], [56].)
It is natural to ask to what extent these similar properties hold for generalized
Euler lines.

4. Main theorem

In Proposition 1 we showed that the center of AABC' defined by the polynomial
fn(a,b,c) coincides with the center of the n-th iterated triangle A, (ABC) de-
fined by the initial f(a,b,c). And so we may say that the absolute value |n| in
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fn(a, b, c) expresses a sort of complexity of the center, since the geometric situation
of fn(a,b,c) becomes more complicated as the value |n| becomes large.

The following theorem shows that the degree d( f,,) of a center f,(a, b, ¢), which
we introduced in §2, essentially determines the value n in case deg f # 0 (mod 3),
where deg f means the usual degree of the polynomial f. This implies that a
complexity of f(a,b,c) can be directly read from d(f) in this case.

Theorem 2. Assume that f(a,b,c) € P does not possess a symmetric factor.
Then f,(a,b,c) also does not possess a symmetric factor for any n € Z, and the
following equality holds in case f(1,1,1) # 0:

(—4)"d(f) deg f#0(mod3),
d(f) deg f = 0 (mod 3).

Thus, if deg f # 0(mod3) and f(1,1,1) # 0, we can read the value n from the data
d(f.)/d(f). This number n indicates the relative position of f, in the generalized
Euler line. If n is sufficiently large, its position is close to the centroid G, and
conversely if n is sufficiently small, it is situated far from G on the generalized
Euler line. For example, the center Xgo defined by f(a,b,c) = a?(a + b)*(a +
¢)?(—a+ b+ c) is situated near G since d(f) = (—1/2)3.

d(fn) =

Example 3. On the Euler line, according to the distance from the centroid G, the
nine-point center, the circumcenter, the orthocenter, and the de Longchamps point
lie in this order. The degree of these centers is 1, —2, (—2)?, (—2)3, respectively.

Similarly, on the Nagel line, X195, the Spieker center, the incenter, the Nagel
point, and Xj45 lie in this order, and the degree of these centers is given by
(—=1/2)%, —1/2, 1, —2 and (—2)?, respectively.

We remark that two different classes {f.(a,b,¢)} ez and {f',(a,b,c)} ez may
define geometrically the same line in the plane. For example, the Exeter point
X also lies on the Euler line. But it is defined by the sextic polynomial a?(—a*+
b +c*), and clearly does not belong to the standard family of centers on the Euler
line, which is generated by f(a,b,c) = a*(—a® + b* + ¢*). Similarly, the Schiffler
point Xy also lies on the Euler line, and this point corresponds to the quartic
polynomial a(—a + b+ ¢)(a + b)(a + ¢). But it is easy to see that this point also
does not belong to the standard family.

Proof of Theorem 2. In general, if f’ is divided by a symmetric polynomial, then
fon=2""(flat+ o+ o)+ (=1)"(2f"a — s — f'c) is also divided by the same
symmetric polynomial, where f, = f'(a,b,c), etc. Now assume that f does not
possess a symmetric factor, but f,, admits a symmetric factor. Then by the above
reason (fn)—n = fo = f possess a symmetric factor, which is a contradiction.
Hence f, does not possess a symmetric factor.

Now we prove the main part. We express f(a,b,c) as f(a,b,c) = Z”k fijra'(b+
c)?(bc)*, where deg f =i + j + 2k. Then, since

fn(aa b, C) = 2n(fa + fb + fc) + <_1)n(2fa - fb - fc)a
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we have f,(1,1,1) = 3-2"f(1,1,1). In particular, f(1,1,1) # 0 if and only if
fn(1,1,1) # 0. On the other hand, we have

fn(law’WQ) = 2”{f(1,w,w2) + f(w7w2’ 1) + f(w2> 17"‘])}
+ (=D)"™2f(1,w,w?) — f(w,w? 1) — f(w? 1,w)}.

Here we have

F(Lw,w®) =Y fir(=1),

flw,0,1) = fipw' (—w)w™ = fir(=1)w ™2,

F? Lw) =Y fipw (Yl =3 figp(—1) w2k

- Z Fian(—1) w2428

Hence, by putting ¢ 4+ j + 2k = p, we have

Falliw,w?) =2 (3 fi(=17) (1 +w? +w™)

FED (X (1Y) (2= o — ).

If p = 0(mod3), we have f,,(1,w,w?) =3-2"3" fir(—1)? = 3-2"f(1,w,w?), which

implies
_ fbww?)  fLww)

If p # 0 (mod 3), we have f,(1,w,w?) =3(=1)"Y fir(—1) = 3(=1)"f(1,w,w?).

Hence
_ fn(lﬁw’“ﬂ) _ 1\" f(1>w>w2) o 1\"
i =555y = () Goa = (5) o
This completes the proof. q.e.d.

5. Invariants of generalized Euler lines

From Theorem 2 we may say that in case deg f = 0(mod3), the degree d(f,,) gives
an invariant of the generalized Euler line, since the value d(f,) does not depend
on n. In this section we introduce other types of invariants naturally associated
with generalized Euler lines.
We first consider the following quantity ¢(f), assuming that f(a,b,c) € P
does not possess a symmetric factor:
J(1, o, 5)
oh=1 faLy LD
00 f(1,1,1) =0,

where a, B = (=14 +/3)/2. Clearly q(f) is well defined. Then we have the

following proposition.
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Proposition 3. Assume deg f = 2 and f does not possess a symmetric factor.
Then the value q(f) gives an invariant of the generalized Euler line determined by

f.

Proof. By putting f(a,b,c) = pa® + qa(b + ¢) + r(b* + %) + sbc, we have easily
fn(lLa, ) =3-2"(p—q+2r—s/2) =3-2"f(1,a, F) and f,(1,1,1) = 3-2"(p+2q+
2r +s)=3-2"f(1,1,1), which imply f.(1,a,0)/f.(1,1,1) = f(1,,3)/f(1,1,1)
for any n € Z. Here, we use the relation a + 8 = —1, af = —1/2, a* + > =2 to
check this fact. q.e.d.

Curiously, for many triangle centers, the value of this invariant ¢(f) also takes the
form (—2)*, as in the case of d(f). But in the case of general degree (deg f # 2),
the value ¢(f) does not give an invariant of the generalized Euler line. For example
we have ¢(f,) = (=1/2)" for f, =2"(a+b+c¢c) + (—1)"(2a — b —¢).
Next, considering the direction of the generalized Euler line, we can construct
another invariant of the generalized Euler line.

In the proof of Proposition 1, we showed that the vector

2fa—fo = [)A+ 2fs — fo = fu) B+ 2fc — fa — [1)C
3(]% +‘j%'+’jk)

is parallel to the generalized Euler line determined by the family {f,(a,b,¢)},ez.
Essentially this direction is determined by the coefficient of A

2]%‘_(ﬁ)_‘j;
3(12 +’j%‘+’f;)7

since remaining two coeflicients can be obtained by cyclic permutation of a, b,
c. But the above coefficient depends on n, i.e., if we use f, instead of f, then
n appears in the coefficient. Slightly modifying this quantity, we obtain another
invariant as follows.

Proposition 4. Assume f(a,b,c), f'(a,b,c) # 1.
(1) Two points f(a,b,c) and f'(a,b,c) lie on the same generalized Euler line if
and only if
2f'a = f'o = f'e = (2fa = fo — fe)ib(a, b, c)
for some symmetric function ¥ (a,b,c).

(2) Assume deg f # 0 (mod 3), f(1,w,w?) # 0, and f does not possess a sym-
metric factor. Then f,(1,w,w?) # 0, and the polynomial

Q(fn)a _ (fn)b _ (fn)c
fo(lw,w?)

does not depend on m. Hence the polynomial (2f, — fo — f.)/f(1,w,w?)
gies an invariant of the generalized Euler line determined by the family

{jh(a7bvc)}nez-
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Proof. The statement (1) is clear from the explanation stated above. We show (2).
The property f,(1,w,w?) # 0 follows immediately from the equality f,(1,w,w?) =
3(—1)"f(1,w,w?), as we explained in the proof of Theorem 2 in case deg f #
0 (mod 3). By the definition of f,(a,b,c), we immediately obtain the equality

2(fa)a — (fu)o — (fu)e = 3(=1)"(2fa — f» — fc). Hence the statement (2) follows.
q.e.d.

Remark. The above invariant is related to the direction of the generalized Euler
line as follows. We further assume f(1,1,1) # 0 in addition to the assumption
in Proposition 4 (2). Then we have f,(1,1,1) # 0, as explained in the proof of
Theorem 2, and so the degree d(f,) has a non-zero finite value. Since deg f #

—_—
0 (mod 3), we have d(fn+1) = —5d(f,) from Theorem 2. Then, since Gf,11 =

—%CT_)fn (Proposition 1 (2)), we see that the vector CTf—)n/d(fn) does not depend
on n, and it is equal to

{Q(fn)a_<fn)b_(fn)c}A+ 1{2(fn)b_(fn)c _(fn)a}B+{2(fn)c_(fn)a_(fn)b}c
3d(fn){(fn)a + (fn)b + (fn)c} '

The coefficient of A is equal to

2(fn)a — (fn>b — (fn)c _ 2(fn)a — (fn)b — (fn)c . fn(lv 17 1)
3d(fn){<fn)a + (fn)b + (fn)c} fn<17 w, w2) 3{(fn)a + (fn)b + (fn)c}
2(fn)a_ (fn)b_ (fn)c . f(1a171)
fa(l,w,w?) 3(fat+ fo+ fe)

L1) =3-2"f(1, 1,1) and (fu)a + (fu)o + (fa)e = 3-2"(fa + fo + fo).
1)/3(fa + fo + f.) does not depend on n, we know once again that
o — (fa)e}/ fo(1l,w,w?) gives an invariant of the generalized Euler

because f,(1

(1,
Since f(1,1,
{2(fn)a — (

line.

In this remark, we showed that the symmetric polynomial

(fn)a + (fn)b + (fn)c
fu(1,1,1)

is also an invariant of the generalized Euler line. In the following, assuming that
f(a,b,c) € P does not possess a symmetric factor, we put

2fa_fb_fc

()= fEwen eI ?O
00 f(l,w,w?) =0,
fothtle oy 4,

s(f)=9 [f(1,1,1)
0 f(1,1,1) =0.
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These two quantities are also well defined. As seen above, the direction of the
generalized Euler line is essentially determined by the quotient of two polynomials
e(f)/s(f). Remark that e(f) is not an invariant of the generalized Euler line in
case deg f = 0 (mod 3), as we see in the next example, though for the invariant
s(f) such an assumption is unnecessary.

From Proposition 4 (1), we know that two centers determined by f(a, b, ¢) and
f'(a,b,c) lie on the same generalized Euler line if and only if e(f) and e(f’) are
equal up to a symmetric function (under the assumption f(1,w,w?), f'(1,w,w?) #
0).

Example 4. For the centers on the Euler line determined by the circumcenter,
the orthocenter, the nine-point center, we have the common expression

e(f) = 5{2a" —a*(V* + ¢*) — (b = *)*},
s(fy=(a+b+c)(—a+b+c)la—b+c)(a+b—c).

For the Schiffler point X5, which also lies on the Euler line, the invariant s(f)
takes a little different form:

e(f) = ${2a" —a®(b* + %) — (b* — )},
s(fy=t(a+b+e){(—a+b+c)(a—b+c)(a+b—c)+ 3abc}.

Remark that X5, is not contained in the above family of centers on the Euler line.
For other points on the Euler line such as X5, Xo3, Xo4, we have

P { e(f) = 5(a® +b* + A){2a* — a®(b* + 2) — (b* — )?},
20 s(f) = (a2 + 0P+ ) (a? = 0+ A)(a® + b — )+2a2b2 2

. { e(f) = 1@ + 1 + )20t — a2+ ) — (7 — )%},

e(f) = —2{(=a®>+ b+ ) (a® - b + ¢ )(a + % — 2) + 4a?b*c*}
x{2a* — a®(b* + 2) — (b* — *)?},
s(f):(a+b+c)(—a+b+c)(a—b—l—c)(a+b—c)
x{2a*b*c* — (—a® + b* + *)(a® — b* + *)(a® + b* — *)}.

X24 .

As for the centers Xoy and Xo3, corresponding to the sextic polynomials f(a, b, c) =
a*(—a* +bv* + c*) and f(a,b,c) = a*(—a* + b* + ¢* — b2c?), we have

e(fn) = L(=3)"(@® +b* + *){2a"* — a*(b* + %) — (b 2)2},
e(fu) = 3(=%)"(a* + b + ){2a" — (V" + *) = (b* — *)*},
respectively, and these values clearly depend on n. The values e(f) for these

centers imply that Xo;, Xoo, Xo3, Xo4 all lie geometrically on the same Euler line,
though they do lie on “algebraically different” generalized Euler lines.
As for the Nagel line, we have

e(fn) =2a—b—c, s(fn)=a+b+c
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for f.(a,b,c) =2"(a+b+c)+(—1)"(2a —b—c), and so the polynomial 2a —b— ¢
gives a fundamental invariant of this line.

Finally, we remark that f(a,b, ¢) has a natural decomposition into three quantities
d(f), e(f), s(f) as follows. Assume f(1,1,1), f(1,w,w?) # 0. Then we have

f(17w7w2>‘2fa_fb_fc fa+fb+fc

FLLD fLwo?) AL
= ﬁf(‘%bac) :f(a,b,c),

since 3/f(1,1,1) is a non-zero constant. This equality means that a triangle center
in P is uniquely determined by these three quantities (or invariants).

d(f)e(f) +s(f) =

6. A new family of centers

In this section we introduce a new family of triangle centers P that is based
on two conjugates: The isotomic conjugate and the Ceva conjugate. This family
Pc is a subset of P that was introduced in Section 1. The family of centers P
is a natural one, on which we can introduce the concept degree d(f). But most
centers in P do not possess a geometric meaning. For example, on the Euler
line, the point which divides the centroid and the circumcenter with ratio 1 : z
seems to have no geometric meaning for most € R. (Perhaps, geometrically
important centers appear discretely, though the term “geometrically important”
has no precise definition here.) So it is desirable to restrict centers to a subclass
of P, all of which possess some definite geometric meaning. The class P which
we introduce here contains many famous centers. It also contains the family
{fn(a,b,c)}nez on the generalized Euler line if f(a,b,c) € Pe.

Definition. P¢ is a minimum subset of P satisfying the following conditions:
(i) 1, a € Pg,
(i) f, ['€Po= fof'c+ fo]c € Po,
(ili) f, [ € Po= fla(=Tafa+ [of"s + fef'c) € Pe.

Here, f’, means f'(b,c,a) etc., as before. Note that the conditions (ii), (iii) do
not depend on the choice of representatives of f and f’. The subclass P actually
exists. In fact it is the intersection of all subsets of P satisfying the above condi-
tions (i), (i), (iil). But unfortunately, its explicit form is not clear at present (see
Section 7).

Before stating several properties of P, we must give some explanation on the
definition of Px. The condition (i) clearly means that the centroid G and the
incenter I are contained in Pe. To explain the remaining two conditions (ii) and
(iii), we review the concept “Ceva conjugate”.

Let P and @ be two centers corresponding to f(a, b, c), f'(a,b, c), respectively.
Then the P-Ceva conjugate of @), which we denote by Cp(Q), is a point defined
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by

We remark that if P, @ € P, then Cp(Q) € P, because the above expression is
equivalent to

f/a<_f/afbfc + faf/bfc + fafbflc) eP

up to a symmetric function. The geometric meaning and many examples of Cp(Q)
are exhibited in Kimberling’s book [32]. By computation, we can easily check that
the property Cp(Cp(Q)) = @ holds for any P, @, i.e., if we put Cp(Q)) = R, then
we have Cp(R) = Q.

In this situation, from two points Q and R, we can determine the point P as
follows. We put

which corresponds to the point R. Then we have

N T AN Y
fb‘“(fa fb+fc>’ Je fC(fﬁfb fc)‘

From these equalities we have

2fla B f/lb f”c _ f/bf”c + f”bf/c

fa N f,b f,c f/bf/c ’

and thus we have )

= f/bf//c + f//bf/c'
(Note that 2f', f',f'. is a symmetric function, and so we may cut it.) The point
P is usually called the Ceva point of () and R.

Here we assume that a set of centers is closed under the following three geo-
metric operations

fa

(a) the isotomic conjugate,

(b) the Ceva conjugate,

1
: /!
(c) the operation (f,f")r— TR
Then this set satisfies the conditions (ii) and (iii).

In fact, the condition (a) means that if f is contained in this set of centers,
then 1/f = f,f. is also contained in the set. (Remind that in terms of barycentric
coordinates, the isotomic conjugate of f is given by 1/f.) Then from the condition
(c), this set satisfies the condition (ii). Similarly, from the conditions (b) and (a),
the condition (iii) follows.

Conversely, assume that a set of centers satisfies the conditions (ii) and (iii).
Then it satisfies (a), (b), (c¢). First, we put f' = f in (ii). Then we know that
2fyfe = 1/f is contained in this set, which implies the condition (a). Next, from



Y. Agaoka: Degree of Triangle Centers and ... 79

the conditions (iii) and (a), we have (b). The condition (c) immediately follows
from (ii) and (a).

Thus we see that the conditions (ii) and (iii) in the definition of P have quite
natural geometric meaning based on two conjugates. Of course, by only imposing
the conditions (ii), (iii), there exists a trivial set {1}, consisting only one center
(the centroid). Thus we add the condition (i) to exclude this case.

Now we state some properties of P¢ that can be obtained directly from the
definition.

Proposition 5. Let f(a,b,c) € Pc. Then:

(1) f* € Pc for anyn € Z. (We consider f~' = fuf., 72 = (fof.)?, etc.)
2) (fa)"(fo + fc) € Pc for any n € Z.

(2)

(3) falfy® + f%) € Pe.

(4) fn € Pe for anyn € Z.
(5)

5) fufn € Pe for any m, n € Z.

Proof. By putting f'(a,b,¢) = 1 in (ii) and (iii), we know that fi(= f, + f.),
foa(=—fo+ fo+ feo) € Poif f € Po. Hence, using the property (fin)n = fimin,
we have inductively f,, € Pc, which shows (4).
We prove ™, (fofe)"(fo+ fe) € Pe for integer n > 0 by induction. The case n = 0
is clear. We assume f", (fof.)"(fo + f.) € Pc for some integer n > 0. Then by
putting f = (fofe)"(fs + fo), f' = f™ in (iii), we obtain f"*!' € Po. Next, by
putting f = f"*, f' = (fofo)"(fo + f) in (iii), we have (fpf)""(fy + f.) € Pe.
Hence by induction, we obtain f", (fyfe)"(fs + fc) € Pc for integer n > 0. The
latter means (f,)"(fo + f.) € Po.

We already showed that 1/f = f,f. € P if f € Pe. Hence, (1) immediately
follows from this fact.

To prove the remaining part of (2), we show (f,)"(f» + f.) € Pc for integer n > 0.
Assume (f)"(fo + fe) € Pc for some integer n > 0. Then by putting f = (f,)™",

= (fo)"(fs + fe) in (iil), we have (f,)""(f, + f.) € Pc, which completes the
proof of (2).

Next, in (ii), we put f' = fyf.. Then we have f,f'. + f'vfe = fu(fo? + [2) € Pc,
and hence (3) follows.

Finally we prove (5). From (1) and (4) we have f,?> € P¢. Next, by putting f =1
and f' = f,y1 in (iii), the property f,f.+1 € P holds for any integer n.

Hence, to complete the proof of (5), we have only to show the following prop-
erty: If f,, foir € Po for any n € Z, then the polynomial f,, f, 2 is also contained
in Pe for any n € Z. Assume f, foir € Po. Then, putting f = f, and f' = f,. frnik
in (i), we have (fu)b(fofnsr)e + (fofur)s(fa)e = (f)o(fu)e(frorns1)a € Peo, after
some calculations. Then taking the inverse, we have (f,,)a(friks1)o(fraki1)e € Peo.
Finally we put f = (fn)a(fotrt+1)s(foirt1)e and f* = fr 11 in (iii). Then we have
(frrrr1)a” Frorr)s(fasrsr)e {=(fa)a + (fu)o + (fa)e} = fao1fuirrs € Po, which

implies f, fnikio € Pe for any integer n. g.e.d.
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Starting from 1 and a in Po, we can successively construct famous centers as
follows: First, from Proposition 5 (1), we know a? € P¢, which corresponds to
the Lemoine point Xg. Then, since the circumcenter X3 is the X,-Ceva conjugate
of Xg, we know that X3 is contained in Pr. From this fact it follows that the
centers on the Euler line such as the orthocenter X,, the nine-point center X,
the de Longchamps point X, etc., are also contained in Pc.

Similarly, since the incenter X7 is contained in P¢, the centers on the Nagel
line such as the Nagel point Xg, the Spieker center X7, etc., are contained in Pc.
The Gergonne point X7 is the isotomic conjugate of Xg, and the Mittenpunkt Xg
is the Xs-Ceva conjugate of X, and so these points are also contained in Pe.

By developing such procedures, we know that among Kimberling’s list Xj
(k=1 ~400) in [32], at least the following 167 points are contained in P¢:

k=1,2 34,5 6,7 8,09, 10, 12, 19, 20, 21, 22, 25, 27, 28, 29, 31, 32, 33,
34, 37, 38, 39, 40, 41, 42, 43, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 58,
63, 65, 66, 69, 71, 72, 73, 75, 76, 77, 78, 81, 82, 83, 84, 85, 86, 87, 92
95, 97, 140, 141, 142, 144, 145, 154, 155, 157, 158, 159, 160, 165, 169,
170, 184, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 204,
205, 206, 207, 208, 209, 210, 211, 212, 213, 216, 217, 218, 219, 220, 221,
222, 223, 224, 225, 226, 227, 228, 229, 233, 251, 253, 255, 261, 264, 269,
270, 271, 273, 274, 275, 276, 278, 279, 280, 281, 282, 283, 284, 286, 288,
304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 318, 321, 322
324, 326, 329, 330, 331, 332, 333, 341, 342, 343, 345, 346, 347, 348, 349,
393, 304.

We may say that the family P¢ constitutes a network of triangle centers, and this
network is constructed from the initial centers G and I, by applying only two
geometric operations (ii) and (iii).

On the other hand, unfortunately, we have no effective method to show X ¢
Pc for a given center X, at present. For example, we cannot determine whether
Xo4, Xog, X35, Xyg, ... are contained in Pe or not, and we conjecture certainly
that the Feuerbach point X7; is not contained in P¢ (see Conjecture 2 in Section
7). Finally we remark that there were several attempts to grasp a meaninful set
of triangle centers by Kimberling [30], [34], [35], etc., and there may further exist
other type of natural set of centers deserve to study.

7. Conjectures on Po

Explicit determination of the set P is an important but difficult problem. The
essential difficulty comes from a reduction by a symmetric factor, which suddenly
appears during the operations (ii) and (iii). (See the example after Conjecture 2.)
In this section we state several conjectures concerning Pe.
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Conjecture 1. The set Pc is closed under the multiplication, i.e., the following
property holds:
f, ' €Po= [} €Pc.

For example, we conjecture Xgo € P, since it corresponds to the polynomial
fla,b,c) = a*(a+b)*(a+c)* (—a+b+c)and both Xg (f = —a+b+c), Xg (f =
a(a+b)(a+c)) are contained in Pr. At present we cannot find a counterexample
to Conjecture 1.

The following is the most important conjecture on P. This gives one neces-
sary condition for a point f(a,b,c) € P to belong to Pc.

Conjecture 2. For any f(a,b,c) € Po the degree d(f) takes the form (—2)*
(ke Z).

As above, we have no counterexample to this conjecture at present. For all centers
Xy € Po (k < 400) listed at the end of Section 6, this property holds. The
following “incomplete proof” partially supports our Conjecture 2.

“Incomplete” proof of Conjecture 2. Let f, f" € Pe, and we put [ = fof'c+ f'u fe,
ie., f'(a,b,c) = f(b,c,a)f'(c,a,b)+ f'(b,c,a)f(c,a,b). Then we have f”(1,1,1) =
2£(1,1,1)f'(1,1,1), and

(1, w,w?) = flw,w? 1) f (W 1,w) + f(w,w? 1) f(w?1,w).

Now assume that deg f = p and deg f' = ¢. Then we have f(w,w? 1) =
flw,w?w?) = WP f(l,w,w?), and similarly f(w? 1,w) = W f(1,w,w?). Hence
we have

(1, w,w?) = (WP + W) F(1,w, W) f(1,w, w?).

Thus, if the polynomial f” does not possesses a symmetric factor, we have d(f”) =
(w24 WP d(f)d(f'). We can easily see that

1 p=q(mod3),
—% p # q (mod 3).

Hence if both d(f), d(f') are of the form (—2)%, and in addition if f” does not
possess a symmetric factor, then d(f”) is also the power of —2.

In case f" = f'o(=fof'a + fof's + fef'c) we can similarly calculate its degree
under the same assumption:

o[ AP p+g=0(mod3),
ds )‘{ “2d(A)d(f)? p+ g2 0 (mod3).

Hence under the assumption that f” never possess a symmetric factor under the
operations (ii) and (iii), we have “proved” that d(f) = (—2)* for any f € Pc.
“q.e.d”.

v - {

But of course, the above assumption does not hold in general. For example we
consider the following case:
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f=0+c)(-a+b+c),
f'=b+c)(—a+b+c){a*(b+c) —2a*be — a(b+ c)(b* — 3bc + ) — be(b — ¢)?}.

Then we have

f// = fbf/c+f/bfc
=2d*(a+b)(b+c)(cH+a)(—a+b+c)a—b+c)a+b—c)

= CL2.

As this example shows, it is hard to judge whether f” admits a symmetric factor
or not by only seeing f and f’, and in case it admits, it is also hard to find its
symmetric factor without explicit calculations. This is the principal difficulty in
the explicit determination of Pc.

But if we can succeed to show Conjecture 2, we can easily see that some

centers does not belong to Po. For example, for the point X5 corresponding
to the polynomial f(a,b,c) = a(—a + 2b + 2¢), we have d(f) = —1, and so we
“know” that Xy5 & Pe. Similarly concerning the Feuerbach point X;;, we can
“show” Xi1 € Pc by applying Conjecture 2, since d(f) = oo in this case.
The converse to Conjecture 2 certainly does not hold. For example, for the
quadratic polynomial f(a,b,c¢) = a® + b* + & — (=2)"(a® + b* 4+ ¢* — 3bc), we
have d(f) = (—2)". But we conjecture that f(a,b,c) & Pe for n # 0,1, as we will
explain later (Conjecture 4). It seems that some more conditions are necessary
to characterize the set P in addition to Conjecture 2. As known from the above
“Incomplete proof”, the degree d(f) roughly gives the number of operations (ii),
(iii) to obtain the center f from the initial one, unless symmetric factors appear
during these operations. Hence we may say again that the degree d(f) indicates
a sort of complexity of the center f.

Next, we state two conjectures concerning polynomials in Pe with lower de-
gree. For linear polynomials, we have the following conjecture.

Conjecture 3. Linear polynomials in Pe are exhausted by
2%(a+b+c)+ (—1)"(2a—b—¢) (neZ).

Note that these centers are lying on the Nagel line and we already know that
they are contained in Po. We can easily see that this conjecture is an easy
consequence of Conjecture 2. If Conjecture 3 holds, we can uniquely specify the
linear polynomials in P by one invariant d(f).

Concerning quadratic polynomials in P, we have the following conjecture.

Conjecture 4. Quadratic polynomials in Pe are exhausted by the following two
famalies, depending on three parameters l, m, n € Z:
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Qi (a+b+e)?— (=)™ N a*+ b+ —ab—bc— ca)
H{(=2)""+ (=3) " Hat+ b+ ) (2a—b—c)

(= )HmHni2a? — 2a(b + ) — b* + 4be — ¢*},

Q2 (a+b+c)*— (=1 )" (@ +b*+ ¢ —ab— bc — ca)
(=) (=) Ha b+ ) 2a—b— o)

4 (—%)l+m+n{2a2 —2a(b+c¢) — b* + 4bc — *}.

+

These two families are actually contained in Pe. In fact, by putting f(a,b,c) =
a, the first family @, coincides with the polynomial (f,,f.);. (See Proposi-
tion 5(5),(4).) Under the same notations, the second family @ is given by
(e + (Fdo( )b

These two families ()1 and ()2 have quite similar expressions. But they actually
constitute different families. For example, the polynomial a? is contained in Q1,
but not in Q5. Conversely, the polynomial a®+bc is contained in (5, but not in Q.
(The intersection (1 N Q9 is non-empty, because be is contained in both families.)
We also note that these polynomials can not be divided by the symmetric linear
polynomial a + b + ¢, and hence these polynomials are essentially quadratic.

Now we calculate the invariants of these quadratic polynomials. First we have
d(f) = (=1/2)#™*™" for both families. The exponent [ + m + n is almost equal
to the number of operations (ii), (iii) to obtain polynomials in @, Q2 from the
initial f = a.

For the polynomial in @), we have ¢(f) = (—1/2)™"" and

e(f) = 1 [2a°—2a(b+c)—b*+4bc—c* H(—2)"+(—2)"}Ha+b+c)(2a—b—c)]
and for the polynomial in Qy, we have ¢(f) = (—1/2)™™*! and
e(f)=3%[2a>—2a(b+c)—b*+4bc—c* H(=2)" " +(=2)"""}a+b+c)(2a—b—c)] .
The invariant s(f) has a common expression in terms of ¢(f):

s(f) = +{(a+b+c)* +29(f)(a® + b* + ¢ — ab — bc — ca)}.

Triangle centers defined by linear polynomials 2"(a+b+c¢) + (—1)"(2a —b—¢) all
lie on the Nagel line, as we examined above. As for the quadratic centers ()1 U Q)s,
they constitute a curious figure like a milky way, possibly contains several lines.
We here plot them for small [, m, n as a reference (Figure 4).

For higher degrees it seems difficult to characterize the centers in Pr. We conjec-
ture that polynomials in P with degree n contain 2n — 1 free parameters as in
the case of n =1, 2. (See [24] for other interesting point configuration consisting
of triangle centers.) The points in P are situated discretely in the plane, and
we may say that three invariants d(f), e(f) and s(f) give a “discrete coordinate”
of the points in Pr. Conjecture 2 implies that among these invariants d(f) must
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Figure 4

take a special form. Perhaps there are another restrictions on polynomials e(f)
and s(f), and it is an important problem to characterize the set of these polyno-
mials. We conjecture that e(f) and s(f) admit some decompositions consisting
of finer invariants. And many geometric facts can be verified in terms of these
finer invariants. For example, we suppose that three points in Po are collinear
if and only if these finer invariants satisfy some simple algebraic relations, as in
Proposition 4 (1) for generalized Euler lines. It is our final problem to give an
atlas of triangle centers in terms of several invariants, by which we can understand
many geometric facts in a simple unified manner.

Finally, we state one more conjecture concerning isogonal conjugate. In defining
the set P¢, we used the barycentric coordinate. But if we use trilinear coordinate
instead of barycentric coordinate, we obtain another class of triangle centers P/..
(We consider f(a, b, c) as a trilinear coordinate of the triangle center, and construct
Pl completely by the same procedure as Pe.) Geometrically we can say that
the set P/ is closed under the Ceva conjugate and the isogonal conjugate, since
1/f(a,b, c) means the isogonal conjugate of f(a,b,c) in trilinear coordinate. But
this set may coincide with P itself.

Conjecture 5. Po = P/.

In barycentric coordinate the isogonal conjugate of f(a,b,c) is given by a?/f(a, b,
¢). Hence if Conjecture 1 holds, then Conjecture 5 follows immediately, since
a® € Pc.

In this paper we considered a sequence of infinite triangles A, (ABC'). But there
are many other sequences such as orthic triangles, as recently discussed in [16].
(For other examples, see [1], [3], [5], [10], [11], [13], [15], [20], [21], [25], [27],
[38], [39], [40], [42], [53], [57], [58], [59], [60], [64], [65], etc.) (See the list of
publications in References at the end of this paper.) It seems an interesting
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Figure 5

problem to investigate a trajectory of a fixed triangle center for each sequence of
triangles, keeping in mind the results in Proposition 1.

As one example, we consider a sequence of infinite Cevian triangles determined by
a fixed triangle center P (see Figure 5). In case P is the centroid of AABC this
sequence is nothing but A, (ABC) we discussed above. For a general triangle cen-
ter P, we can show that the trajectory of the centroid of this sequence of triangles
lies on a cubic curve, not on a line. If P is the orthocenter H of AABC then this
cubic curve possesses a cusp singularity at H, and three asymptotic lines of this
cubic curve form a triangle which is homothetic to the original AABC. Many
interesting properties seem to hold in this setting. As one important problem,
we ask whether a similar result as in Theorem 2 holds or not in this sequence of

Cevian triangles, or more generally for other sequences of central triangles listed
in [32], [37].
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