
Beiträge zur Algebra und Geometrie
Contributions to Algebra and Geometry
Volume 51 (2010), No. 1, 1-7.

Second Order Parallel Tensors on
Generalized Sasakian Space Forms and

Semi Parallel Hypersurfaces in
Sasakian Space Forms

Fatiha Gherib Mohamed Belkhelfa

Laboratoire de Physique Quantique de la matière
et de Modélisation Mathématique (LPQ3M)
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Abstract. In this paper, we show that a second order parallel symmet-
ric tensor in a generalized Sasakian space form is proportional to the
metric tensor and we deduce that there is no semi parallel hypersurface
in a Sasakian space form.
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1. Introduction

In 1926, Levy [4] has proved that a second order parallel symmetric non singular
tensor in real space forms is proportional to the metric tensor. In 1989, Sharma
[8] has proved that a second order parallel tensor in a Kähler space of constant
holomorphic sectional curvature is a linear combination with constant coefficients
of the Kählerian metric and the fundamental 2-form. Recently, Das [6] has es-
tablished the same result for an α-Sasakian manifold (α ∈ R0). In this paper we
generalize this result to generalized Sasakian space form and we prove that there
is no semi parallel hypersurface in a Sasakian space form.
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2. Preliminaries

Let M denote an n-dimensional Riemannian manifold with its metric tensor g
and Levi-Civita connection 5̃. Let R̃ denote the Riemann curvature tensor of M.
If B is a (0, 2) tensor which is parallel with respect to 5̃ then we can show that

B
(
R̃ (X, Y ) Z,W

)
+ B

(
Z, R̃ (X, Y ) W

)
= 0. (1)

Das has proved that

Theorem 2.1. [6] On an α−K contact manifold (α ∈ R0) a second order sym-
metric parallel tensor is a constant multiple of the associated positive definite
Riemannian metric tensor.

The first purpose of this paper is to present a similar result for a generalized
Sasakian space form. Let (M2n+1, g) be a 2n + 1 dimensional differentiable mani-
fold and let (φ, ξ, η) be tensor fields of type (1, 1), (1, 0) and (0, 1) respectively on
M , such that

η (ξ) = 1 φ2 = −I + ξ ⊗ η

which implies
η ◦ φ = 0 φ (ξ) = 0 rank (φ) = 2n.

If M admits a Riemannian metric g, such that

g (φX, φY ) = g (X, Y )− η (X) η (Y )

g (X, ξ) = η(X)

then (φ, ξ, η, g) is called an almost contact metric structure on M . If moreover(
5̃Xφ

)
Y = g (X, Y ) ξ − η (Y ) X

where 5̃ denotes the Riemannian connection of g, then (M, φ, ξ, η, g) is called a
Sasakian manifold [10].

The sectional curvature of the plane section spanned by the unit tangent
vector field X orthogonal to ξ and φX is called a φ-sectional curvature. If M
has a constant φ-sectional curvature c, then M is called a Sasakian space form
and denoted by M2n+1 (c). The Riemannian curvature of a Sasakian space form
is given by the following formula

R (X, Y ) Z =
c + 3

4
[g(Y, Z)X − g(X, Z)Y ]

+
c− 1

4
[η (X) η (Z) Y − η (Y ) η (Z) X]

+
c− 1

4
[g(X, Z)η (Y ) ξ − g(Y, Z)η (X) ξ + g(Z, φY )φX

−g(Z, φX)φY + 2g(X,φY )φZ].
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Example 2.2. [10] We consider R2n+1 with the coordinates (xi, yi, z), i=1, . . . , n
and its usual contact form η = 1

2
(dz −

∑n
i=1 yidxi). The characteristic field ξ is

given by ξ = 2 ∂
∂z

, the tensor field φ is given by the matrix

 0 δij 0
−δij 0 0

0 yj 0


and the Riemannian metric g = η ⊗ η + 1

4

∑n
i=1 (dxi )

2
+ (dyi )

2
is an associated

metric for η. In this case R2n+1 is a Sasakian space form with φ-sectional curvature
c = −3 denoted by R2n+1(−3).

Given an almost contact metric (M, φ, ξ, η, g), M is called generalized Sasakian
space form if there exist three functions f1, f2 and f3 such that the Riemannian
curvature tensor is given by the following formula

R (X,Y ) Z = f1 [g(Y, Z)X − g(X, Z)Y ] + f2[g(X,φZ)φY (2)

−g(Y, φZ)φX + 2g(X,φY )φZ] + f3[η (X) η (Z) Y

−η (Y ) η (Z) X + g(X,Z)η (Y ) ξ − g(Y, Z)η (X) ξ].

In such a case, we will write M(f1, f2, f3). This kind of manifold appears as
natural generalization of the Sasakian space form by taking:

f1 =
c + 3

4
and f2 = f3 =

c− 1

4
.

The φ-sectional curvature of a generalized Sasakian space form M(f1, f2, f3) is
f1 + 3f2 [9].

Let N2n be an immersed hypersurface of M2n+1(f1, f2, f3). We denote the Levi-

Civita connection of M by 5̃ and the Levi-Civita connection of N by 5. Then
we have the formulas of Gauss and Weingarten

5̃XY = 5XY + h (X, Y ) r

5̃Xr = −SX.

X and Y are tangent vector fields, r a unit normal vector normal to N and h the
second fundamental form of N and S the shape operator of N . Note that h and S
are related by h(X, Y ) = g(SX, Y ). In a hypersurface the (0, 4) tensor field R̃.h
is defined by

R̃.h (X, Y, Z, W ) = −h
(
R̃(X, Y )Z,W

)
− h

(
Z, R̃ (X, Y ) W

)
.

In [2] J. Deprez has defined semi parallel immersions which satisfy the condition
R̃.h = 0. The authors F. Dillen, J. Fastenakels, S. Haesen, G. Van Der Veken and
L. Verstraelen gave a geometrical interpretation of semi parallel submanifolds.

Proposition 2.3. [16] A submanifold N of M is semi parallel if, ∀p ∈ M , the
normal vectors h (u, v)∗⊥ and h (u∗, v∗) coincide for all u, v ∈ TP M and for
every coordinate parallelogram in M , up to second order. Where u∗ and v∗ are
the parallel transport of u and v with respect to 5 and h (u, v)∗⊥ is the parallel
transport of h (u, v) with respect to the normal connection 5⊥.
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We have proved in [3] that

Theorem 2.4. There is not a parallel connected hypersurface in a Sasakian space
form M2n+1 (c) with n ≥ 2 and c 6= 1.

The Ricci tensor is given by Kim [13]

S (X, Y ) = (2nf1 + 3f2 − f3) g (X, Y )− (3f2 + (2n− 1) f3) η (X) η (Y ) .

3. Main results

Theorem 3.1. In a generalized Sasakian space form M(f1, f2, f3) with f1 6= f3, a
second order parallel symmetric tensor B is a constant multiple of the associated
positive definite metric tensor.

Proof. If B is parallel
(
5̃B = 0

)
, it follows that

B
(
R̃ (X, Y ) Z,W

)
+ B

(
Z, R̃ (X, Y ) W

)
= 0 (3)

for X, Y, Z and W vector fields on M .
By taking Y = ξ and Z = W and using equation (2), we have

(f1−f3) (η (Z) B (X,Z)−g (X, Z) B (ξ, Z)+η (Z) B (Z,X)−g (X, Z) B (Z, ξ))=0

since f1 6= f3 and B is symmetric we have

η (Z) B (X, Z) = g (X, Z) B (Z, ξ)

so
B (Z, ξ) = η (Z) B (ξ, ξ)

which implies that

η (Z) (B (X, Z)− g (X,Z) B (ξ, ξ)) = 0.

If η (Z) 6= 0, we have
B (X, Z) = g (X, Z) B (ξ, ξ) . (4)

If η (Z) = 0, so B (ξ, Z) = 0 and by substituting Y = W = ξ in equation (4) we
get the above equation. �

Corollary 3.2. If the Ricci tensor of a generalized Sasakian space form M(f1, f2,
f3) with f1 6= f3 is parallel, then M is Einstein.

We also have

Theorem 3.3. There are no semi parallel hypersurfaces in a Sasakian space form
M2n+1(c) with c 6= 1 and n ≥ 2.
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Proof. If N is a semi parallel hypersurface and h the second fundamental form
of N , we have:

−h
(
R̃(X, Y )Z,W

)
− h

(
Z, R̃ (X, Y ) W

)
= 0

by using the same argument as in Theorem 3.1 we deduce that

h = λg

where λ is constant. Consequently

5̃h = 0

which contradicts Theorem 2.3. �

Corollary 3.4. There are no semi parallel hypersurfaces in R2n+1(−3) with n≥2.

Remark 3.5. Let us consider the (2n + 1)-dimensional unit sphere, i.e., S2n+1 =
{z ∈ Cn+1 : |z| = 1}. Any point z of S2n+1 can be identified to (x1, . . . , xn, y1, . . . ,
yn) ∈ R2n+2. We put Jz = (−y1, . . . ,−yn, x1, . . . , xn), where J is the usual
complex structure on Cn+1. We define the characteristic vector field ξ, the 1-form
η and the (1, 1) tensor φ by

ξ = −Jz, η(X) = g(X, ξ) and φ = s ◦ J

where g is the induced metric of Cn+1 on S2n+1 and s is the orthogonal projection of
TxCn+1 on TxS

2n+1. So, S2n+1 is a Sasakian space form with φ-sectional curvature
equal to 1.

Now we consider the Clifford hypersurface Mp,q defined by

Mp,q = S2p+1

(√
p

2n

)
× S2q+1

(√
q

2n

)
, p + q = n− 1.

Then, Mp,q is a minimal hypersurface of S2n+1 tangent to the structure field ξ of
S2n+1 and Mp,q has a parallel second fundamental form. Therefore the assumption
in Theorem 2.4 and Theorem 3.3 on the φ-sectional curvature c 6= 1 of the ambient
space is essential.

Remark 3.6. The condition n ≥ 2 in Theorem 2.4 and Theorem 3.3 is also
essential, there exist parallel surfaces for n = 1 [14] and [15].
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