Projectivity and Flatness over the Colour Endomorphism Ring of a Finitely Generated Graded Comodule

T. Guédénon

110 Penworth Drive S.E., Calgary, AB, T2A 5H4, Canada e-mail: guedenth@yahoo.ca

Abstract. Let k be a field, G an abelian group with a bicharacter, A a colour algebra; i.e., an associative graded k-algebra with identity, C a graded A-coring that is projective as a right A-module, C^* the graded dual ring of C and Λ a left graded C-comodule that is finitely generated as a graded right C^* -module. We give necessary and sufficient conditions for projectivity and flatness of a graded module over the colour endomorphism ring ${}^{C}END(\Lambda)$.

0. Introduction

The notion of graded corings (except graded algebras and graded coalgebras) rarely appears in the literature on corings. The only paper we know where this notion appears is [8]. In the present paper we will give some conditions to test projectivity or flatness over the colour endomorphism ring of a finitely generated graded C-comodule, where C is a graded coring. Let k be a field, A a k-algebra, C an A-coring, *C the left dual ring of C and Λ a right C-comodule that is finitely generated as a left *C-module. In [11], we gave necessary and sufficient conditions for projectivity and flatness over the endomorphism ring $End^{\mathcal{C}}(\Lambda)$ of Λ . In the present paper, we will extend these results to a G-graded A-coring C, where G is an abelian group with a bicharacter and A is a colour algebra; i.e., a graded associative k-algebra with identity. More precisely, let us denote by $C^* = HOM_A(C_A, A_A)$ the largest graded vector space contained in $Hom_A(C_A, A_A)$. It has a colour algebra structure. Let Λ be a graded left C-comodule that is finitely generated as a

0138-4821/93 \$ 2.50 © 2010 Heldermann Verlag

graded right \mathcal{C}^* -module. We give necessary and sufficient conditions for projectivity and flatness over the colour endomorphism ring ${}^{\mathcal{C}}END(\Lambda)$ of Λ . The presence of the bicharacter makes the difference with the classical gradation. These results are interesting when $\mathcal{C} = A$, or when \mathcal{C} contains a grouplike element, or when \mathcal{C} comes from a graded entwining structure with respect to a bicharacter. If $\mathcal{C} = A$ then ${}^{gr-A}\mathcal{M}$ is the category of graded left A-modules and A^* is isomorphic to the opposite algebra A^{op} of A. If \mathcal{C} contains a grouplike element X, then A is a graded left \mathcal{C} -comodule that is finitely generated as a graded right \mathcal{C}^* -module. In this case, ${}^{\mathcal{C}}END(A)$ is the colour subring of (\mathcal{C}, X) -coinvariants of A. Our techniques and methods are inspired from [10], [7] and [11].

1. Preliminary results

Throughout the paper, k is a field, G is an abelian group and (./.) is a bicharacter on G; i.e., a map from $G \times G$ into k^{\times} satisfying:

$$(x/y) = (y/x)^{-1}$$
 and $(x/y+z) = (x/y)(x/z)$.

These two relations imply that (x + y/z) = (x/z)(y/z). If M and N are vector spaces Hom(M, N) is the vector space of k-linear maps from M to N.

A vector space A is G-graded or graded if $A = \bigoplus_{x \in G} A_x$, where the A_x are vector subspaces of A. An algebra A (not necessarily associative with identity) is said to be graded if A is a graded vector space as above and the A_x satisfy $A_x A_y \subseteq A_{x+y}$. According to [8, Section 1], a colour algebra is an associative graded algebra. In what follows we assume that all colour algebras are unital. We will consider k as a colour algebra with the trivial gradation. Given colour algebras A and B, a morphism of colour algebras $A \to B$ is a morphism of algebras which is homogeneous of degree 0. Let m be an element of a graded vector space M. If m is homogeneous, we denote by |m| its degree. If |m| occurs in some expression, this means that we regard m as a homogeneous element and that the expression extends to the other elements by linearity. Let M and Nbe graded vector spaces. An element of Hom(M, N) is homogeneous of degree x if $f(M_y) \subseteq N_{x+y}$ for all $y \in G$. We denote by $HOM(M, N)_x$ the vector subspace of Hom(M, N) whose elements are homogeneous of degree x and we will set $HOM(M, N) = \bigoplus_{x \in G} HOM(M, N)_x$. Clearly, HOM(M, N) is the largest graded vector space contained in Hom(M, N). The space HOM(M, N) is denoted $Hom_k(M, N)_G$ in [9]. By [13, Corollary 1.2.11], HOM(M, N) = Hom(M, N) if G is finite or if M is finite-dimensional. By [9], HOM(M, M) is a colour algebra. If M, N, M' and N' are graded vector spaces and if $f: M \to M'$ and $q: N \to N'$ are homogeneous linear maps then $(f \otimes g)(m \otimes n) = (|g|/|m|)f(m) \otimes g(n)$. We will denote by $_{qr-k}\mathcal{M}$ the category of graded k-vector spaces. The morphisms of $_{gr-k}\mathcal{M}$ are the homogeneous k-linear maps of degree 0; we call them the graded k-linear maps. Let N be a graded vector space. For every x in G, the x-suspension of N is the graded vector space N(x) obtained from N by a shift of the gradation by x. As vector spaces, N and N(x) coincide but the gradations are related by $N(x)_y = N_{x+y}$ for all $y \in G$.

Let A be a colour algebra. A left A-module M is called a graded left A-module if M admits a decomposition as a direct sum of vector spaces $M = \bigoplus_{x \in G} M_x$ such that $A_x M_y \subseteq M_{x+y}$; $\forall x, y \in G$.

Definition 1.1. Let M, N be graded left A-modules. A homogeneous element f of Hom(M, N) is colour left A-linear if f(am) = (|f|/|a|)af(m) for all $a \in A$.

If M, N are graded left A-modules, we let $_AHOM(M, N)_x$ denote the vector subspace of Hom(M, N) whose elements are colour A-linear of degree x. So the colour left A-linear maps of degree 0 are exactly the left A-linear maps of degree 0; i.e., $_{A}HOM(M,N)_{0} = _{A}Hom(M,N) \cap HOM(M,N)_{0}$. We define $_{A}HOM(M,N)$ to be the sum of these subspaces; the sum is direct: $_{A}HOM(M, N) = \bigoplus_{x \in G} _{A}HOM(M, N)$ N_{x} . We call $_{A}HOM(M, N)$ the subspace of colour left A-linear maps of Hom(M, M)N). Contrary to the classical gradation, if $A \neq k$ and if the bicharacter is not trivial, there is no comparison relation between $_AHOM(M, N)$ and $_AHom(M, N)$ even if M is finitely generated as an A-module or if G is finite. If $G = \mathbb{Z}/2\mathbb{Z}$, colour A-linear maps are called A-superlinear in [16]. We will denote by $_{qr-A}\mathcal{M}$ the category of graded left A-modules. The morphisms of $_{qr-A}\mathcal{M}$ are the colour left A-linear maps of degree 0; we call them the graded left A-linear maps. It is well known that $_{qr-A}\mathcal{M}$ is a Grothendieck category. We can define in a similar way a graded right A-module and a graded A-bimodule. A colour right A-linear map of degree x is just a homogeneous right A-linear map of degree x. To establish our main results we will need the following well-known results of graded ring theory.

- If N is a graded left (right) A-module, N(x) is a graded left (right) A-module which coincides with N as a graded left (right) A-module.

- An object of $_{gr-A}\mathcal{M}$ is projective (resp. flat) in $_{gr-A}\mathcal{M}$ if and only if it is projective (resp. flat) in $_{A}\mathcal{M}$, the category of left A-modules.

- An object of $g_{r-A}\mathcal{M}$ is free in $g_{r-A}\mathcal{M}$ if it has an A-basis consisting of homogeneous elements or equivalently, if it is isomorphic to some $\bigoplus_{i \in I} A(x_i)$, where $(x_i, i \in I)$ is a family of elements of G.

- An object of $g_{r-A}\mathcal{M}$ is called finitely generated if it is a quotient of a free graded module of finite rank $\bigoplus_{i \leq m} A(x_i)$, where the $x_i \in G$ and m is a natural integer.

- Any object of $g_{r-A}\mathcal{M}$ is a quotient of a free object in $g_{r-A}\mathcal{M}$, and any projective object in $g_{r-A}\mathcal{M}$ is isomorphic in $g_{r-A}\mathcal{M}$ to a direct summand of a free object.

- An object of $_{gr-A}\mathcal{M}$ is flat in $_{gr-A}\mathcal{M}$ if and only if it is the inductive limit of finitely generated free objects in $_{gr-A}\mathcal{M}$.

- An object Λ of $g_{r-A}\mathcal{M}$ is called finitely presented if there is an exact sequence $\bigoplus_{i\leq m}A(x_i) \to \bigoplus_{j\leq n}A(y_j) \to \Lambda \to 0$ for $x_i, y_j \in G$ and some natural integers m and n. A finitely presented graded module is finitely generated.

Lemma 1.2. Let A be a colour algebra and M a graded left A-module which is generated as A-module by a homogeneous element m of degree 0. Then M is finitely generated as a graded left A-module.

Proof. We have M = Am. The k-linear map $f : A \to M$; $a \mapsto am$ is surjective, homogeneous of degree 0 and left A-linear. So f is an epimorphism in $_{gr-A}\mathcal{M}$. \Box

An A-coring \mathcal{C} is an A-bimodule together with two A-bimodule maps $\Delta_{\mathcal{C}} : \mathcal{C} \to \mathcal{C} \otimes_A \mathcal{C}$ and $\epsilon_{\mathcal{C}} : \mathcal{C} \to A$ such that the usual coassociativity and counit properties hold. Let \mathcal{C} be an A-coring. A left \mathcal{C} -comodule is a left A-module M together with a left A-linear map $\rho_{M,\mathcal{C}} : M \to \mathcal{C} \otimes_A M$ such that

$$(\epsilon_{\mathcal{C}} \otimes_A id_M) \circ \rho_{M,\mathcal{C}} = id_M$$
, and $(\Delta_{\mathcal{C}} \otimes_A id_M) \circ \rho_{M,\mathcal{C}} = (id_{\mathcal{C}} \otimes_A \rho_{M,\mathcal{C}}) \circ \rho_{M,\mathcal{C}}$.

For more details on corings, we refer to [1], [2], [3], [4] and [5].

An A-coring \mathcal{C} is called a graded A-coring if \mathcal{C} admits a decomposition as a direct sum of vector spaces $\mathcal{C} = \bigoplus_x \mathcal{C}_x$ such that \mathcal{C} is a graded A-bimodule, and $\Delta_{\mathcal{C}}$ and $\epsilon_{\mathcal{C}}$ are graded left and right A-linear maps. Note that $\epsilon_{\mathcal{C}}(c) = 0$ if c is homogeneous of degree $|c| \neq 0$. We use the notation-type of Sweedler-Heyneman for $\Delta_{\mathcal{C}}$ but we will omit the parentheses on subscripts. So for every homogeneous element $c \in \mathcal{C}$ we will write $\Delta_{\mathcal{C}}(c) = \sum_{|c|} c_1 \otimes_A c_2$; where $\sum_{|c|} \sum_{|c_1|+|c_2|=|c|}$. We have $\sum_{|c|} \sum_{|c_1|} c_{11} \otimes_A c_{12} \otimes_A c_2 = \sum_{|c|} \sum_{|c_2|} c_1 \otimes_A c_{21} \otimes_A c_{22}$. Note that $\epsilon_{\mathcal{C}}(c) = 0$ if $|c| \neq 0$. A left \mathcal{C} -comodule M is called a graded left \mathcal{C} -comodule if M admits a decomposition as a direct sum of vector spaces $M = \bigoplus_x M_x$ such that $\rho_{M,\mathcal{C}}$ is homogeneous of degree 0; i.e., $\rho_{M,\mathcal{C}}$ is a graded left A-linear map. We will write $\rho_{M,\mathcal{C}}(m) = \sum_{|m|} m_{(-1)} \otimes_A m_{(0)}$, where $\sum_{|m|} = \sum_{|m|=1} |m| \cdot |m_{(0)}| = |m|$.

Any colour algebra A is a graded A-coring called the trivial A-coring, and a graded k-coalgebra is a graded k-coring. A morphism of graded left C-comodules $f: M \to N$ is a morphism in ${}_{gr-A}\mathcal{M}$ such that

$$\rho_{N,\mathcal{C}} \circ f = (id_{\mathcal{C}} \otimes_A f) \circ \rho_{M,\mathcal{C}}, \text{ that is}$$

$$\sum_{|m|} f(m)_{(-1)} \otimes_A f(m)_{(0)} = \sum_{|m|} m_{(-1)} \otimes_A f(m_{(0)}) \quad \forall m \in M.$$

A morphism of graded left \mathcal{C} -comodule will be called a graded left \mathcal{C} -colinear map. We denote by ${}^{gr-\mathcal{C}}\mathcal{M}$ the category of graded left \mathcal{C} -comodules. The morphisms of ${}^{gr-\mathcal{C}}\mathcal{M}$ are the graded left \mathcal{C} -colinear maps. The category ${}^{gr-\mathcal{C}}\mathcal{M}$ has direct sums. If \mathcal{C} is projective as a right A-module, then ${}^{gr-\mathcal{C}}\mathcal{M}$ is a Grothendieck category ([4] for the ungraded case).

Definition 1.3. Let C be a graded A-coring and M, N be objects of ${}^{gr-C}\mathcal{M}$. A homogeneous element $f \in Hom(M, N)$ is colour left C-colinear if f is colour left A-linear and $\rho_{N,C} \circ f = (id_{\mathcal{C}} \otimes_A f) \circ \rho_{M,C}$.

It follows from Definition 1.3 that a graded left \mathcal{C} -colinear map is a colour left \mathcal{C} -colinear map of degree 0. If M and N are objects of ${}^{gr-\mathcal{C}}\mathcal{M}$ and $x \in G$, we will denote by ${}^{\mathcal{C}}HOM(M,N)_x$ the vector subspace of Hom(M,N) whose elements are colour left \mathcal{C} -colinear of degree x. So we have

$${}^{\mathcal{C}}HOM(M,N)_x = \{ f \in {}_{A}HOM(M,N)_x, \sum_{|m|} f(m)_{(-1)} \otimes_A f(m)_{(0)} =$$

T. Guédénon: Projectivity and Flatness over the Colour ...

$$\sum_{|m|} (|f|, |m_{(-1)}|) m_{(-1)} \otimes_A f(m_{(0)}) \}.$$

We will set ${}^{\mathcal{C}}HOM(M,N) = \bigoplus_{x \in G} {}^{\mathcal{C}}HOM(M,N)_x$. We call ${}^{\mathcal{C}}HOM(M,N)$ the subspace of colour left \mathcal{C} -colinear maps of Hom(M,N). We can define in a similar way a graded right \mathcal{C} -comodule. A homogeneous colour right \mathcal{C} -colinear map is just a homogeneous right \mathcal{C} -colinear.

If N is a graded left C-comodule, then for every x in G, the x-suspension N(x) is a graded left C-comodule which coincides with N as a C-comodule. By [17], the linear map $i_{-x} : N \to N(x)$ defined by $i_{-x}(n) = (-x/|n|)n$ is bijective and homogeneous of degree -x. It is obviously colour left C-colinear.

Lemma 1.4. Let C be a graded A-coring, and M, N be graded left C-comodules. For every $x \in G$, the linear map $^{c}HOM(M, N)_{x} \rightarrow ^{c}HOM(M, N(x))_{0}$; $f \mapsto i_{-x} \circ f$, where i_{-x} is defined above is an isomorphism of vector spaces.

Lemma 1.5. Let P be an object of ${}^{gr-\mathcal{C}}\mathcal{M}$. Then the functor ${}^{\mathcal{C}}HOM(P,-)$: ${}^{gr-\mathcal{C}}\mathcal{M} \rightarrow_{gr-k} \mathcal{M}$ is left exact.

Proof. Let $0 \to L \to M \to N \to 0$ be an exact sequence in ${}^{gr-\mathcal{C}}\mathcal{M}$; so $0 \to L(x) \to M(x) \to N(x) \to 0$ is exact in ${}^{gr-\mathcal{C}}\mathcal{M}$ for every $x \in G$. By [13, Corollary 1.2.2], P is projective in ${}_{qr-k}\mathcal{M}$. So the sequence

$$0 \to HOM(P, L(x))_0 \to HOM(P, M(x))_0 \to HOM(P, N(x))_0 \to 0$$

is exact for every $x \in G$. It follows from Lemma 1.4 that

$$0 \to HOM(P,L)_x \to HOM(P,M)_x \to HOM(P,N)_x \to 0$$

is an exact sequence for every $x \in G$. We know that $i \circ f \in {}^{\mathcal{C}}HOM(P, M)_x$ for all $f \in {}^{\mathcal{C}}HOM(P, L)_x$. This means that the sequence

$$0 \to {}^{\mathcal{C}}HOM(P,L)_x \to {}^{\mathcal{C}}HOM(P,M)_x \to {}^{\mathcal{C}}HOM(P,N)_x$$

is exact for every $x \in G$; i.e.,

$$0 \to {}^{\mathcal{C}}HOM(P,L) \to {}^{\mathcal{C}}HOM(P,M) \to {}^{\mathcal{C}}HOM(P,N)$$

is an exact sequence. So the functor ${}^{\mathcal{C}}HOM(P,-)$ is left exact.

We say that an object P of ${}^{gr-\mathcal{C}}\mathcal{M}$ is projective if the functor ${}^{\mathcal{C}}HOM(P,-)_0$ is exact.

Lemma 1.6. Let C be a graded A-coring. An object P of ${}^{gr-C}\mathcal{M}$ is projective in ${}^{gr-C}\mathcal{M}$ if and only if the functor ${}^{C}HOM(P, -)$ is exact.

Proof. Assume that ${}^{\mathcal{C}}HOM(P,-)$ is exact in ${}^{gr-\mathcal{C}}\mathcal{M}$. Let $0 \to L \to M \to N \to 0$ be an exact sequence in ${}^{gr-\mathcal{C}}\mathcal{M}$. So the sequence $0 \to {}^{\mathcal{C}}HOM(P,L) \to {}^{\mathcal{C}}HOM(P,M) \to {}^{\mathcal{C}}HOM(P,N) \to 0$ is exact. It follows that the sequence $0 \to {}^{\mathcal{C}}HOM(P,L)_0 \to {}^{\mathcal{C}}HOM(P,M)_0 \to {}^{\mathcal{C}}HOM(P,N)_0 \to 0$ is exact. This means

that P is a projective object in ${}^{gr-\mathcal{C}}\mathcal{M}$. Assume that P is projective in ${}^{gr-\mathcal{C}}\mathcal{M}$. Let $0 \to L \to M \to N \to 0$ be an exact sequence in ${}^{gr-\mathcal{C}}\mathcal{M}$. Clearly, $0 \to L(x) \to M(x) \to N(x) \to 0$ is an exact sequence in ${}^{gr-\mathcal{C}}\mathcal{M}$ for every $x \in G$. By the projectivity of P, the sequence

$$0 \to {}^{\mathcal{C}}HOM(P, L(x))_0 \to {}^{\mathcal{C}}HOM(P, M(x))_0 \to {}^{\mathcal{C}}HOM(P, N(x))_0 \to 0$$

is exact for every $x \in G$. Using Lemma 1.4, we get that the sequence $0 \to {}^{\mathcal{C}}HOM(P,L) \to {}^{\mathcal{C}}HOM(P,M) \to {}^{\mathcal{C}}HOM(P,N) \to 0$ is exact. \Box

Let us consider A as a graded right A-module. By [13], $HOM_A(\mathcal{C}_A, A_A) =$ $\oplus_x HOM_A(\mathcal{C}_A, A_A)_x$ is a graded vector space: it is the largest graded vector space contained in $Hom_A(\mathcal{C}_A, A_A)$. We write $\mathcal{C}_x^* = HOM_A(\mathcal{C}_A, A_A)_x$ and $\mathcal{C}^* =$ $HOM_A(\mathcal{C}_A, A_A)$. Then \mathcal{C}^* is a colour algebra called the graded right dual ring of \mathcal{C} (see [5, 17.8] for the ungraded case): the multiplication is defined by f # g = $(|f|, |g|)g \circ (f \otimes_A id_{\mathcal{C}}) \circ \Delta_{\mathcal{C}};$ i.e., $f \# g(c) = \sum_{|c|} (|f|, |g|)g(f(c_1)c_2)$ for all colour right A-linear maps $f, g: \mathcal{C} \to A$ and homogeneous element $c \in \mathcal{C}$; where $\Delta_{\mathcal{C}}(c) =$ $\sum_{|c|} c_1 \otimes_A c_2$. The unit of \mathcal{C}^* is $\epsilon_{\mathcal{C}}$ and there is a morphism of colour algebras $i: A^{op} \to \mathcal{C}^*$ defined by $i(a)(c) = (|a|, |c|)\epsilon_{\mathcal{C}}(c)a$. We will denote by $\mathcal{M}_{qr-\mathcal{C}^*}$ the category of graded right \mathcal{C}^* -modules. Any graded left \mathcal{C} -comodule M is a graded right C*-module: the action is defined by $m f = \sum_{|m|} (|m_{(-1)}|, |f|) f(m_{(-1)}) m_{(0)}$. If \mathcal{C} is projective as a right A-module, then ${}^{gr-\mathcal{C}}\mathcal{M}$ is a full subcategory of $\mathcal{M}_{gr-\mathcal{C}^*}$; i.e., ${}^{\mathcal{C}}HOM(M,N) = HOM_{\mathcal{C}^*}(M,N)$ for any $M, N \in {}^{gr-\mathcal{C}}\mathcal{M}$. As a consequence, an object of ${}^{gr-\mathcal{C}}\mathcal{M}$ that is projective in $\mathcal{M}_{gr-\mathcal{C}^*}$ is projective in ${}^{gr-\mathcal{C}}\mathcal{M}$. Another consequence is that if M and N are objects of ${}^{gr-\mathcal{C}}\mathcal{M}$ with M finitely generated as a right \mathcal{C}^* -module, then $^{\mathcal{C}}HOM(M, N) = HOM_{\mathcal{C}^*}(M, N) = Hom_{\mathcal{C}^*}(M, N).$ Given two graded left \mathcal{C} -comodules Λ and N, the graded vector space $^{\mathcal{C}}HOM(\Lambda)$, N) is a graded left module over the colour endomorphism ring $B = {}^{\mathcal{C}} END(\Lambda)$ of A: the action is given by $bf = (|b|, |f|)(f \circ b); \forall f \in {}^{\mathcal{C}}HOM(\Lambda, N), b \in B$. This defines a functor $F' = {}^{\mathcal{C}}HOM(\Lambda, -) : {}^{gr-\mathcal{C}}\mathcal{M} \to {}_{gr-B}\mathcal{M}$. Let us consider Λ as a

graded right *B*-module by $\lambda . b = (|\lambda|/|b|)b(\lambda)$. So Λ is a graded (A, B)-bimodule. For any $P \in {}_{gr-B}\mathcal{M}$, $\Lambda \otimes_B P$ is a graded left *C*-comodule with the coaction $\rho_{P,\mathcal{C}} = \rho_{\Lambda,\mathcal{C}} \otimes_B id_P$.

Lemma 1.7. Let Λ and N be graded left C-comodules and P be a graded left B-module. For every $x \in G$, the canonical linear map

$$\phi: {}^{\mathcal{C}}HOM(\Lambda \otimes_B P, N)_x \to {}^{\mathcal{B}}HOM(P, {}^{\mathcal{C}}HOM(\Lambda, N))_x$$

defined by $\phi(f)(p)(\lambda) = (|p|, |\lambda|)f(\lambda \otimes_B p)$ is an isomorphism.

Proof. The inverse of ϕ is defined by $\psi(q)(\lambda \otimes_B p) = (|\lambda|, |p|)g(p)(\lambda)$.

We deduce from Lemma 1.7 that ${}^{\mathcal{C}}HOM(\Lambda \otimes_B P, N)_0 \simeq {}_{B}HOM(P, {}^{\mathcal{C}}HOM(\Lambda, N))_0$, and this means that the functor F' has the left adjoint $F = \Lambda \otimes_B - :_{gr-B} \mathcal{M} \to {}^{gr-\mathcal{C}} \mathcal{M}$. The unit of the adjunction is given by the graded k-linear map

$$u_N: N \to {}^{\mathcal{C}}HOM(\Lambda, \Lambda \otimes_B N), n \mapsto [\lambda \mapsto (|n|, |\lambda|)(\lambda \otimes n)]$$

215

for $N \in {}_{gr-B}\mathcal{M}$, while the counit is given by the graded k-linear map (the evaluation map)

$$c_M : \Lambda \otimes_B {}^{\mathcal{C}}HOM(\Lambda, M) \to M; \lambda \otimes f \mapsto (|\lambda|, |f|)f(\lambda)$$

for $M \in {}^{gr-\mathcal{C}}\mathcal{M}$. The adjointness property means that we have

$$F'(c_M) \circ u_{F'(M)} = id_{F'(M)}, \ c_{F(N)} \circ F(u_N) = id_{F(N)}; \ M \in {}^{gr-\mathcal{C}}\mathcal{M}, \ N \in {}_{gr-B}\mathcal{M}.$$
(*)

2. The main results

Let A be a colour algebra and C a graded A-coring. We keep the notations of the preceding sections.

Lemma 2.1. Let Λ and N be graded left C-comodules. Set $B = {}^{\mathcal{C}}END(\Lambda)$. For every $x \in G$, we have

(1) $^{\mathcal{C}}HOM(\Lambda, N(x)) = ^{\mathcal{C}}HOM(\Lambda, N)(x)$ (2) $\Lambda \otimes_B B(x) = \Lambda(x).$

An object $\Lambda \in {}^{gr-\mathcal{C}}\mathcal{M}$ is called semi-quasiprojective if the functor ${}^{\mathcal{C}}HOM(\Lambda, -)$: ${}^{gr-\mathcal{C}}\mathcal{M} \to {}_{gr-k}\mathcal{M}$ sends an exact sequence of the form $\oplus_{I}\Lambda(x_{i}) \to \oplus_{J}\Lambda(x_{j}) \to N \to 0$ to an exact sequence (see [15]). A projective object in ${}^{gr-\mathcal{C}}\mathcal{M}$ is semiquasiprojective in ${}^{gr-\mathcal{C}}\mathcal{M}$.

Lemma 2.2. Assume that C is projective as a right A-module. Let Λ be a graded left C-comodule and set $B = {}^{C}END(\Lambda)$. Then the functor ${}^{C}HOM(\Lambda, -)$ commutes with

- (1) direct sums if Λ is finitely generated as a graded right \mathcal{C}^* -module,
- (2) direct limits if Λ is finitely presented as a graded right \mathcal{C}^* -module.

Proof. (2) We know that ${}^{gr-\mathcal{C}}\mathcal{M}$ is a Grothendieck category so the functor ${}^{\mathcal{C}}HOM(\Lambda, -)_0$ preserves direct limits. We also know from Lemma 1.4 that $HOM_{\mathcal{C}^*}(\Lambda, N)_x = HOM_{\mathcal{C}^*}(\Lambda, N(x))_0$ for every $x \in G$. Let $(N_i)_{i \in I}$ be a directed system of right graded \mathcal{C}^* -modules. It is easy to show that $(\varinjlim N_i)(x) = \varinjlim (N_i(x))$ for every $x \in G$. Now the result follows from the fact direct limit commutes with direct sum.

Lemma 2.3. Assume that C is projective as a right A-module. Let Λ be a graded left C-comodule that is finitely generated as a graded right C^* -module, and let $B = {}^{c}END(\Lambda)$. For every index set I,

- (1) $c_{\oplus_I \Lambda(x_i)}$ is an isomorphism for every $x_i \in G$;
- (2) $u_{\oplus_I B(x_i)}$ is an isomorphism for every $x_i \in G$;
- (3) if Λ is semi-quasiprojective in ${}^{gr-\mathcal{C}}\mathcal{M}$, then u is a natural isomorphism; in other words, the induction functor $F = \Lambda \otimes_B (-)$ is fully faithful.

Proof. (1) By Lemma 2.1(1), ${}^{\mathcal{C}}HOM(\Lambda,\Lambda)(x_i) = {}^{\mathcal{C}}HOM(\Lambda,\Lambda(x_i))$ for every $i \in I$. This implies that $\oplus_I B(x_i) = \oplus_I {}^{\mathcal{C}}HOM(\Lambda,\Lambda(x_i))$. By Lemma 2.2(1), the natural map $\kappa : \oplus_I B(x_i) \to {}^{\mathcal{C}}HOM(\Lambda, \oplus_I \Lambda(x_i))$ is an isomorphism. Lemma 2.1(2) implies that $\Lambda \otimes_B (\oplus_I B(x_i)) \simeq \oplus_I \Lambda(x_i)$. It is easy to see that this isomorphism is just $c_{\oplus_I \Lambda(x_i)} \circ (id_{\Lambda} \otimes \kappa)$. So $c_{\oplus_I \Lambda(x_i)}$ is an isomorphism since κ is an isomorphism.

(2) Putting $M = \bigoplus_{I} \Lambda(x_i)$ in (\star) and using (1), we find

$${}^{\mathcal{C}}HOM(\Lambda, c_{\oplus_{I}\Lambda(x_{i})}) \circ uc_{HOM(\Lambda, \oplus_{I}\Lambda(x_{i}))} = idc_{HOM(\Lambda, \oplus_{I}\Lambda(x_{i}))}; i.e.,$$
$${}^{\mathcal{C}}HOM(\Lambda, c_{\oplus_{I}\Lambda(x_{i})}) \circ u_{\oplus_{I}B(x_{i})} = id_{\oplus_{I}B(x_{i})}.$$

From (1), ${}^{\mathcal{C}}HOM(\Lambda, c_{\oplus_{I}\Lambda(x_{i})})$ is an isomorphism, hence $u_{\oplus_{I}B(x_{i})}$ is an isomorphism. (3) Take a graded free resolution $\oplus_{J}B(x_{j}) \to \oplus_{I}B(x_{i}) \to N \to 0$ of a graded left *B*-module *N*. Since *u* is natural, we have a commutative diagram

The top row is exact; the bottom row is exact, since

$$F'F(\oplus_I B(x_i)) = {}^{\mathcal{C}}HOM(\Lambda, \Lambda \otimes_B \oplus_I B(x_i)) = {}^{\mathcal{C}}HOM(\Lambda, \oplus_I \Lambda(x_i))$$

and Λ is semi-quasiprojective. By (2), $u_{\oplus_I B(x_i)}$ and $u_{\oplus_J B(x_j)}$ are isomorphisms; and it follows from the five lemma that u_N is an isomorphism. \Box

We can now give equivalent conditions for the projectivity and flatness of $P \in {}_{gr-B}\mathcal{M}$.

Theorem 2.4. Assume that C is projective as a right A-module. Let Λ be a graded left C-comodule that is finitely generated as a graded right C^* -module, and let $B = {}^{C}END(\Lambda)$. For $P \in {}_{gr-B}\mathcal{M}$, we consider the following statements.

- (1) $\Lambda \otimes_B P$ is projective in ${}^{gr-\mathcal{C}}\mathcal{M}$ and u_P is injective;
- (2) P is projective as a graded left B-module;
- (3) $\Lambda \otimes_B P$ is a direct summand in ${}^{gr-\mathcal{C}}\mathcal{M}$ of some $\oplus_I \Lambda(x_i)$, and u_P is bijective;
- (4) there exists $Q \in {}^{gr-\mathcal{C}}\mathcal{M}$ such that Q is a direct summand of some $\oplus_{I}\Lambda(x_{i})$, and $P \cong {}^{\mathcal{C}}HOM(\Lambda, Q)$ in ${}_{gr-B}\mathcal{M}$;
- (5) $\Lambda \otimes_B P$ is a direct summand in ${}^{gr-\mathcal{C}}\mathcal{M}$ of some $\oplus_I \Lambda(x_i)$.

Then $(1) \Rightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4) \Rightarrow (5)$.

If Λ is semi-quasiprojective in ${}^{gr-\mathcal{C}}\mathcal{M}$, then (5) \Rightarrow (3); if Λ is projective in ${}^{gr-\mathcal{C}}\mathcal{M}$, then (3) \Rightarrow (1).

Proof. (2) \Rightarrow (3): If P is projective as a graded left *B*-module, then we can find an index set *I* and $P' \in {}_{gr-B}\mathcal{M}$ such that $\oplus_I B(x_i) \cong P \oplus P'$. Then obviously

$$\oplus_I \Lambda(x_i) \cong \Lambda \otimes_B (\oplus_I B(x_i)) \cong (\Lambda \otimes_B P) \oplus (\Lambda \otimes_B P')$$

Since u is a natural transformation, we have a commutative diagram:

 ${}^{\mathcal{C}}HOM(\Lambda,\oplus_{I}\Lambda(\mathbf{x}_{i})) \quad \xrightarrow{}{\simeq} \quad {}^{\mathcal{C}}HOM(\Lambda,\Lambda\otimes_{\mathbf{B}}\mathbf{P}) \oplus {}^{\mathcal{C}}HOM(\Lambda,\Lambda\otimes_{\mathbf{B}}\mathbf{P}')$

From the fact that $u_{\oplus_I B(x_i)}$ is an isomorphism, it follows that u_P (and $u_{P'}$) are isomorphisms.

(3) \Rightarrow (4): Take $Q = \Lambda \otimes_B P$. (4) \Rightarrow (2): Let $f : \bigoplus_I \Lambda(x_i) \to Q$ be a split epimorphism in ${}^{gr-\mathcal{C}}\mathcal{M}$. Then ${}^{\mathcal{C}}HOM(\Lambda, f) : {}^{\mathcal{C}}HOM(\Lambda, \bigoplus_I \Lambda(x_i)) \cong \bigoplus_I B(x_i) \to {}^{\mathcal{C}}HOM(\Lambda, Q) \cong P$

is also split surjective, hence P is projective as a graded left B-module. (4) \Rightarrow (5): If (4) is true, we know from the proof of (4) \Rightarrow (2) that P is a direct summand of some $\oplus_I B(x_i)$ in ${}_{gr-B}\mathcal{M}$. So $\Lambda \otimes_B P$ is a direct summand of $\oplus_I \Lambda(x_i)$. (1) \Rightarrow (2): Take an epimorphism $f : \oplus_I B(x_i) \to P$ in ${}_{gr-B}\mathcal{M}$. Then

$$F(f) = id_{\Lambda} \otimes_B f : \Lambda \otimes_B (\oplus_I B(x_i)) \cong \oplus_I \Lambda(x_i) \to \Lambda \otimes_B P$$

is an epimorphism in ${}^{gr-\mathcal{C}}\mathcal{M}$, and it splits since $\Lambda \otimes_B P$ is projective in ${}^{gr-\mathcal{C}}\mathcal{M}$. Consider the commutative diagram:

The bottom row is split exact, since any functor, in particular, ${}^{\mathcal{C}}HOM(\Lambda, -)$ preserves split exact sequences. By Lemma 2.3(2), $u_{\oplus_I B(x_i)}$ is an isomorphism. A diagram chasing tells us that u_P is surjective. By assumption, u_P is injective, so u_P is bijective. We deduce that the top row is isomorphic to the bottom row, and therefore splits. Thus P is projective in $\in_{gr-B}\mathcal{M}$.

Under the assumption that Λ is semi-quasiprojective in ${}^{gr-\mathcal{C}}\mathcal{M}$, (5) \Rightarrow (3) follows from Lemma 2.3(3).

 $(3) \Rightarrow (1)$: By (3), $\Lambda \otimes_B P$ is a direct summand of some $\bigoplus_I \Lambda(x_i)$. If Λ is projective in ${}^{gr-\mathcal{C}}\mathcal{M}$, then $\bigoplus_I \Lambda(x_i)$ is projective in ${}^{gr-\mathcal{C}}\mathcal{M}$. So $\Lambda \otimes_B P$ being a direct summand of a projective object of ${}^{gr-\mathcal{C}}\mathcal{M}$ is projective in ${}^{gr-\mathcal{C}}\mathcal{M}$.

Theorem 2.5. Assume that C is projective as a right A-module. Let Λ be a graded left C-comodule that is finitely presented as a graded right C^* -module, and let $B = {}^{\mathcal{C}}END(\Lambda)$. For $P \in {}_{gr-B}\mathcal{M}$, the following assertions are equivalent.

- (1) P is flat as a graded left B-module;
- (2) $\Lambda \otimes_B P = \underline{\lim} Q_i$, where $Q_i \cong \bigoplus_{j \le n_i} B(x_{ij})$ in ${}^{gr-\mathcal{C}}\mathcal{M}$ for some positive integer n_i , and u_P is bijective;
- (3) $\Lambda \otimes_B P = \varinjlim_{Q_i} Q_i$, where $Q_i \in {}^{gr-\mathcal{C}}\mathcal{M}$ is a direct summand of some $\bigoplus_{j \in I_i} \Lambda$ (x_{ij}) in ${}^{gr-\mathcal{C}}\mathcal{M}$, and u_P is bijective;
- (4) there exists $Q = \varinjlim Q_i \in {}^{gr-\mathcal{C}}\mathcal{M}$, such that $Q_i \cong \bigoplus_{j \le n_i} \Lambda(x_{ij})$ for some positive integer n_i and ${}^{\mathcal{C}}HOM(\Lambda, Q) \cong P$ in ${}_{gr-B}\mathcal{M}$;
- (5) there exists $Q = \underset{i \neq I_i}{\lim} Q_i \in {}^{gr-\mathcal{C}}\mathcal{M}$, such that Q_i is a direct summand of some $\bigoplus_{i \in I_i} \Lambda(x_{ij})$ in ${}^{gr-\mathcal{C}}\mathcal{M}$, and ${}^{\mathcal{C}}HOM(\Lambda, Q) \cong P$ in ${}_{gr-B}\mathcal{M}$.

If Λ is semi-quasiprojective in ${}^{gr-\mathcal{C}}\mathcal{M}$, these conditions are also equivalent to conditions (2) and (3), without the assumption that u_P is bijective.

Proof. (1) \Rightarrow (2): $P = \varinjlim N_i$, with $N_i = \bigoplus_{j \le n_i} B(x_{ij})$ for some positive integer n_i . Take $Q_i = \bigoplus_{j \le n_i} \Lambda(x_{ij})$, then

$$\underline{\lim} Q_i \cong \underline{\lim} (\Lambda \otimes_B N_i) \cong \Lambda \otimes_B \underline{\lim} N_i \cong \Lambda \otimes_B P.$$

Consider the following commutative diagram:

By Lemma 2.3(2), the u_{N_i} are isomorphisms; by Lemma 2.2, the natural homomorphism f is an isomorphism. Hence u_P is an isomorphism. (2) \Rightarrow (3) and (4) \Rightarrow (5) are obvious. (2) \Rightarrow (4) and (3) \Rightarrow (5): Put $Q = \Lambda \otimes_B P$. Then $u_P : P \to {}^{\mathcal{C}}HOM(\Lambda, \Lambda \otimes_B P)$ is the required isomorphism. (5) \Rightarrow (1): We have a split exact sequence $0 \to N_i \to P_i = \bigoplus_{j \in I_i} \Lambda(x_{ij}) \to Q_i \to 0$

in ${}^{gr-\mathcal{C}}\mathcal{M}$. Consider the following commutative diagram:

We know from Lemma 2.3(1) that c_{P_i} is an isomorphism. Both rows in the diagram are split exact, so it follows that c_{N_i} and c_{Q_i} are also isomorphisms. Next consider the commutative diagram:

$$\begin{array}{ccc} \mathbf{\Lambda} \otimes_{\mathbf{B}} \varinjlim^{\mathcal{C}} \mathbf{HOM}(\mathbf{\Lambda}, \mathbf{Q}_{\mathbf{i}}) & \xrightarrow{id_{\mathbf{\Lambda}} \otimes f} & \mathbf{\Lambda} \otimes_{\mathbf{B}} {}^{\mathcal{C}} \mathbf{HOM}(\mathbf{\Lambda}, \mathbf{Q}) \\ \\ & & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\$$

where h and f are the natural homomorphisms. h is an isomorphism, because $\Lambda \otimes_B (-)$ preserves inductive limits; by Lemma 2.2, f is an isomorphism; and $limc_{Q_i}$ is an isomorphism because every c_{Q_i} is an isomorphism. It follows that c_Q is an isomorphism, hence ${}^{\mathcal{C}}HOM(\Lambda, c_Q)$ is an isomorphism. From (\star) , we get

$$^{\mathsf{c}}HOM(\Lambda, c_Q) \circ uc_{HOM(\Lambda,Q)} = idc_{HOM(\Lambda,Q)}.$$

It follows that $u_{\mathcal{C}HOM(\Lambda,Q)}$ is also an isomorphism. Since $\mathcal{C}HOM(\Lambda,Q) \cong P$, u_P is an isomorphism. Consider the isomorphisms

$$P \cong {}^{\mathcal{C}}HOM(\Lambda, \Lambda \otimes_B P) \cong {}^{\mathcal{C}}HOM(\Lambda, \Lambda \otimes_B {}^{\mathcal{C}}HOM(\Lambda, Q)) \cong {}^{\mathcal{C}}HOM(\Lambda, Q) \cong \varinjlim {}^{\mathcal{C}}HOM(\Lambda, Q_i);$$

where the first isomorphism is u_P , the third is ${}^{\mathcal{C}}HOM(\Lambda, c_Q)$ and the last one is f. It follows from Lemmas 2.1(1) and 2.2 that ${}^{\mathcal{C}}HOM(\Lambda, P_i) \cong \bigoplus_{j \in I_i} B(x_{ij})$ is projective as a graded left B-module, hence ${}^{\mathcal{C}}HOM(\Lambda, Q_i)$ is also projective as a graded left B-module, and we conclude that P is flat in $\in_{gr-B}\mathcal{M}$. The final statement is an immediate consequence of Lemma 2.3(3).

3. Applications

3.1. C contains a grouplike element

A grouplike element of \mathcal{C} is an element $X \in \mathcal{C}_0$ such that $\Delta_{\mathcal{C}}(X) = X \otimes_A X$ and $\epsilon_{\mathcal{C}}(X) = 1_A$ (see [14]). If \mathcal{C} contains a grouplike element X, then A is an object of ${}^{gr-\mathcal{C}}\mathcal{M}$: the \mathcal{C} -coaction is defined by $\rho_{A,\mathcal{C}}(a) = aX = aX \otimes_A 1_A$; $\forall a \in A$. Conversely, if A is an object of ${}^{gr-\mathcal{C}}\mathcal{M}$, then $\rho_{A,\mathcal{C}}(1_A) = X$ is a grouplike element of \mathcal{C} .

Assume that C contains a grouplike element X. Then A is an object of \mathcal{M}_{gr-C^*} and $a.\epsilon_{\mathcal{C}} = a$, that is, A is generated as a right \mathcal{C}^* -module by the homogeneous element $\epsilon_{\mathcal{C}}$ of degree 0. Lemma 1.2 implies that A is finitely generated in \mathcal{M}_{gr-C^*} . For any graded left C-comodule M, we call ${}^{co\mathcal{C},X}M = \{m \in M, \rho_{M,\mathcal{C}}(m) = X \otimes_A m\}$ the vector space of (\mathcal{C}, X) -coinvariants of M. Clearly, ${}^{co\mathcal{C},X}A = \{a \in A, Xa = aX\}$ is a colour subalgebra of A: the colour subalgebra of (\mathcal{C}, X) -coinvariants. For every $f \in {}^{\mathcal{C}}HOM(A, M)$, $f(1) \in {}^{co\mathcal{C},X}M$. The graded k-linear map $f \mapsto f(1)$ establishes an isomorphism ${}^{\mathcal{C}}HOM(A, M) \to {}^{co\mathcal{C},X}M$ with inverse the graded klinear map ψ defined by $\psi(m)(a) = (|m|, |a|)am$. We have ${}^{\mathcal{C}}END(A) = {}^{co\mathcal{C},X}A$. Set $B = {}^{co\mathcal{C},X}A$. Then we get from Theorems 2.4 and 2.5 necessary and sufficient conditions for projectivity and flatness over the colour algebra $B = {}^{co\mathcal{C},X}A$.

3.2. A colour algebra as a trivial coring

A colour algebra A is a graded A-bimodule. Let us define $\Delta_A(a) = a \otimes_A 1_A$ and $\epsilon_A(a) = a$. Then A is an A-coring. A graded left A-comodule is just a graded left A-module. The product on A^* is defined by $f \# g(a) = \sum_{|a|} (|f|, |g|)g(f(a)1_A) = \sum_{|a|} (|f|, |g|)g(1_A)(f(a))$. It is easy to show that the algebra A^* is isomorphic to A^{op} , the opposite algebra of A: this isomorphism is defined by $f \mapsto f(1_A)$. For graded left A-modules M and N, we have ${}^AHOM(M, N) = {}_AHOM(M, N)$. Then Theorems 2.4 and 2.5 give necessary and sufficient conditions for projectivity and flatness over $B =_A END(\Lambda)$, where Λ is a finitely generated graded left A-module. When the gradation is trivial we recover [11]. In many examples, Λ will be a colour algebra and A will be a graded Λ -ring with a graded left grouplike character.

Definition 3.1. (see [6], Section 2) Let A and Λ be two colour algebras and $i : \Lambda \to A$ a graded ring morphism. A graded k-linear map $\chi : A \to \Lambda$ is called a graded left grouplike character on A if χ is graded left Λ -linear and

$$\chi(a\chi(a')) = \chi(aa')$$
 and $\chi(1_A) = 1_\Lambda \quad \forall \quad a, a' \in A.$

We then say that A is a graded Λ -ring with a graded left grouplike character χ .

Let A be a graded Λ -ring with a graded left grouplike character χ . Then Λ is a graded left A-module: the action is given by $a \rightarrow \lambda = \chi(a\lambda)$. Furthermore, Λ is cyclic as a left A-module, since $\lambda = (\lambda 1_A) \rightarrow 1_{\Lambda}$. But 1_{Λ} is homogeneous of degree 0, so Λ is a finitely generated as a graded left A-module (Lemma 1.2). So

we get necessary and sufficient conditions for projectivity and flatness over the colour endomorphism ring $_{A}END(\Lambda)$ of Λ .

Now we will give two examples of this situation. There are other examples in the literature.

• Let H be a colour algebra, the colour tensor product $H \otimes H$ is the G-graded vector space $H \otimes H = \bigoplus_{x \in G} (\bigoplus_{y+z=x} H_y \otimes H_z)$ with multiplication $(h \otimes l)(h' \otimes l') = (|l|/|h'|)hh' \otimes ll'$ for homogeneous elements $h, h', l, l' \in H$. By [9, Lemma 3.2], $H \otimes H$ is a colour algebra. A Hopf colour algebra is a colour algebra and a graded coalgebra such that Δ_H and ϵ_H are morphisms of colour algebras and there exists a graded k-linear map $S_H : H \to H$ (called antipode) such that $(S_H \otimes id_H) \circ \Delta_H = \epsilon_H = (id_H \otimes S_H) \circ \Delta_H$ or equivalently, $\sum_{|h|} \epsilon(h_1)h_2 = h = \sum_{|h|} h_1 \epsilon(h_2)$ and $\sum_{|h|} S(h_1)h_2 = \epsilon(h) = \sum_{|h|} h_1 S(h_2)$.

Let H be a Hopf colour algebra over k with comultiplication Δ_H , counit ϵ_H and antipode S_H . A colour algebra Λ which is a graded left H-module such that $h.(\lambda\lambda') = \sum_{|h|}(|h_2|/|\lambda|)(h_1.\lambda)(h_2.\lambda')$ for all $h \in H$ and $\lambda, \lambda' \in \Lambda$ will be called a graded left H-module algebra. We denote by $A = \Lambda \# H$ the associated smash product; i.e., the colour algebra generated by Λ and H whose multiplication is defined by $(\lambda h)(\lambda' h') = \sum_{|h|}(|h_2|/|\lambda'|)\lambda(h_1.\lambda')(h_2h')$ (see [12]). A graded vector space M is a graded left A-module if and only if it is a graded left Λ -module and a graded left H-module such that $h.(\lambda m) = \sum_{|h|}(|h_2|/|\lambda|)(h_1.\lambda)(h_2m)$. Define a k-linear map $\chi : A \to \Lambda$ by $\chi(\lambda h) = \epsilon_H(h)\lambda$. Since $\epsilon_H(h) = 0$ for $|h| \neq 0, \chi$ is homogeneous of degree 0. Clearly, χ is left Λ -linear. It follows that $\Lambda \# H$ is a graded Λ -ring with a graded left grouplike character χ . Note that $_{\Lambda\# H} END(\Lambda)$ is exactly the colour subring of invariants of Λ ; i.e., $_{\Lambda\# H} END(\Lambda) = \{\lambda \in \Lambda; h.\lambda = \epsilon_H(h)\lambda\}$.

• Assume that \mathcal{C} contains a grouplike element X. The linear map $i : A \to \mathcal{C}^*$ defined by $i(a)(c) = a\epsilon_c(c)$ is a morphism of colour algebras. Define $\chi : \mathcal{C}^* \to A$ by $\chi(f) = f(X)$. Then χ is a graded left grouplike character on \mathcal{C}^* . So \mathcal{C}^* is a graded A-ring.

3.3. C comes from a graded entwining structure

In this section, A is a colour algebra with multiplication μ and unit ι , and C is a graded coalgebra with comultiplication Δ_C and counit ϵ_C . We denote by $\tau : A \otimes C \to C \otimes A$ the twist map; that is $\tau(a \otimes c) = (|a|/|c|)c \otimes a$. If M is a left (resp. right C-comodule, we write $\rho_{M,C}(m) = m_{-1} \otimes m_0$ (resp. $\rho_{M,C}(m) = m_0 \otimes m_1$). We remind that C is a graded k-coring. Interesting examples of graded corings come from graded entwining structures. We will often refer to [5] for the ungraded case.

• Graded left-left entwined modules.

A graded left-left entwining structure over k is a triple (A, C, ψ) with a graded k-linear map $\psi : A \otimes C \to C \otimes A$; $a \otimes c \mapsto (|a_{\alpha}|/|c|)c^{\alpha} \otimes a_{\alpha}$ satisfying the following conditions [5, 32.1]:

$$\psi \circ (\mu \otimes id_C) = (id_C \otimes \mu) \circ (\psi \otimes id_A) \circ (id_A \otimes \psi)$$

T. Guédénon: Projectivity and Flatness over the Colour ...

$$(\Delta_C \otimes id_A) \circ \psi = (id_C \otimes \psi) \circ (\psi \otimes id_C) \circ (id_A \otimes \Delta_C)$$
$$(\epsilon_C \otimes id_A) \circ \psi = id_A \otimes \epsilon_C$$
$$\psi \circ (id_C \otimes \iota) = \iota \otimes id_C.$$

These relations are respectively equivalent to

$$(|(aa')_{\alpha}|/|c|)(c^{\alpha} \otimes (aa')_{\alpha}) = (|a'_{\alpha}|/|c|)(|a_{\beta}|/|c^{\alpha}|)(c^{\alpha\beta} \otimes a_{\beta}a'_{\alpha})$$
$$(|a_{\alpha}|/|c|)(\Delta_{C}(c^{\alpha}) \otimes a_{\alpha}) = (|a_{\alpha}|/|c_{1}|)(|a_{\alpha\beta}|/|c_{2}|)(c_{1}^{\alpha} \otimes c_{2}^{\beta} \otimes a_{\alpha\beta})$$
$$(|a_{\alpha}|/|c|)(\epsilon_{C}(c^{\alpha})a_{\alpha}) = a\epsilon_{C}(c)$$
$$(|1_{\alpha}|/|c|)(c^{\alpha} \otimes 1_{\alpha}) = c \otimes 1.$$

The map ψ is called a graded entwining map, and A and C are said to be graded entwined by ψ . By [5, 32.1], $\mathcal{C} = C \otimes A$ is a graded A-coring with A-multiplications $a'(c \otimes a)a'' = \psi(a' \otimes c)aa''$, coproduct

$$\Delta_{\mathcal{C}}: C \otimes A \to C \otimes A \otimes_A C \otimes A \cong C \otimes C \otimes A; \quad c \otimes a \mapsto \Delta_C(c) \otimes a$$

and counit $\epsilon_{\mathcal{C}}(c \otimes a) = \epsilon_{\mathcal{C}}(c)a$.

Let M be a graded left A-module. Then $C \otimes M$ becomes a graded left Amodule if we set $a(c \otimes m) = (|a_{\alpha}|/|c)|)c^{\alpha} \otimes (a_{\alpha}m)$. We say that a vector space M is a graded left-left (A, C, ψ) -entwined module if M is a graded left A-module
and a graded left C-comodule such that $\rho_{M,C}$ is a graded left A-linear map; i.e.,

$$\rho_{M,C}(am) = (|a_{\alpha}|/|(m_{-1})|)(m_{-1})^{\alpha} \otimes (a_{\alpha}m_{0}).$$

We denote by ${}^{gr-C}_{gr-A}\mathcal{M}(\psi)$ the category of graded left-left (A, C, ψ) -entwined modules: its morphisms are the graded left A-linear maps and the graded left C-colinear maps. We can show that ${}^{gr-C}_{gr-A}\mathcal{M}(\psi)$ is isomorphic to ${}^{gr-C}\mathcal{M}$.

• Graded right-right entwined modules.

A graded right-right entwining structure over k is a triple (A, C, ψ) with a graded k-linear map $C \otimes A \to A \otimes C$; $c \otimes a \mapsto (|c|/|a_{\alpha}|)a_{\alpha} \otimes c^{\alpha}$ satisfying the following conditions [5, 32.1]:

$$\psi \circ (id_C \otimes \mu) = (\mu \otimes id_C) \circ (id_A \otimes \psi) \circ (\psi \otimes id_A)$$
$$(id_A \otimes \Delta_C) \circ \psi = (\psi \otimes id_C) \circ (id_C \otimes \psi) \circ (\Delta_C \otimes id_A)$$
$$(id_A \otimes \epsilon_C) \circ \psi = \epsilon_C \otimes id_A$$
$$\psi \circ (id_C \otimes \iota) = \iota \otimes id_C.$$

These relations are respectively equivalent to

$$(|c|/|(aa')_{\alpha}|)((aa')_{\alpha} \otimes c^{\alpha}) = (|c|/|a_{\alpha}|)(|c^{\alpha}|/|a'_{\beta}|)(a_{\alpha}a'_{\beta} \otimes c^{\alpha\beta})$$
$$(|c|/|a_{\alpha}|)(a_{\alpha} \otimes \Delta_{C}(c^{\alpha})) = (|(c_{2})|/|a_{\alpha}|)(|(c_{1})|/|a_{\alpha\beta}|)(a_{\alpha\beta} \otimes c_{1}^{\beta} \otimes c_{2}^{\alpha})$$
$$(|c|/|a_{\alpha}|)(a_{\alpha}\epsilon_{C}(c^{\alpha})) = \epsilon_{C}(c)a$$

222

$$(|c|/|1_{\alpha}|)(1_{\alpha} \otimes c^{\alpha}) = 1 \otimes c.$$

By [5, 32.1], $C = A \otimes C$ is a graded A-coring with A-multiplications $a'(a \otimes c)a'' = a'a\psi(c \otimes a'')$, coproduct

$$\Delta_{\mathcal{C}}: A \otimes C \to A \otimes C \otimes_A A \otimes C \cong A \otimes C \otimes C; \quad a \otimes c \mapsto a \otimes \Delta_C(c)$$

and counit $\epsilon_{\mathcal{C}}(a \otimes c) = a \epsilon_{C}(c)$.

Let M be a graded right A-module. Then $M \otimes C$ becomes a graded right A-module if we set $(m \otimes c)a = (|c|/|a_{\alpha}|)(ma_{\alpha}) \otimes c^{\alpha}$. A vector space M is a graded right-right (A, C, ψ) -entwined module if M is a graded right A-module and a graded right C-comodule via such that $\rho_{M,C}$ is a graded right A-linear map; i.e.,

$$\rho_{M,C}(ma) = (|(m_1)|/|a_{\alpha}|)(m_0a_{\alpha}) \otimes (m_1)^{\alpha}.$$

We denote by $\mathcal{M}(\psi)_{gr-A}^{gr-C}$ the category of graded right-right (A, C, ψ) -entwined modules: its morphisms are the graded right A-linear maps and the graded right *C*-colinear maps. We can show that this category is isomorphic to \mathcal{M}^{gr-C} .

• Graded left-right entwined modules.

A graded left-right entwining structure over k is a triple (A, C, ψ) with a graded k-linear map $A \otimes C \to A \otimes C$; $a \otimes c \mapsto a_{\alpha} \otimes c^{\alpha}$ satisfying the following conditions [5, 32.1]:

$$\psi \circ (\mu \otimes id_C) = (\mu \otimes id_C) \circ (id_A \otimes \tau^{-1}) \circ \circ (\psi \otimes id_A) \circ (id_A \otimes \tau) \circ (id_A \otimes \psi)$$
$$(id_A \otimes \Delta_C) \circ \psi = (\tau^{-1} \otimes id_C) \circ (id_C \otimes \psi) \circ (\tau \otimes id_C) \circ (\psi \otimes id_C) \circ (id_A \otimes \Delta_C)$$
$$(id_A \otimes \epsilon_C) \circ \psi = id_A \otimes \epsilon_C$$
$$\psi \circ (\iota \otimes id_C) = \iota \otimes id_C.$$

These relations are respectively equivalent to

$$(aa')_{\alpha} \otimes c^{\alpha} = (|a'_{\alpha}|/|c^{\alpha}|)(|c^{\alpha\beta}|/|a'_{\alpha}|)(a_{\beta}a'_{\alpha} \otimes c^{\alpha\beta})$$
$$a_{\alpha} \otimes \Delta_{C}(c^{\alpha}) = (|a_{\alpha}|/|c_{1}^{\alpha}|)(|c_{1}^{\alpha}|/|a_{\alpha\beta}|)(a_{\alpha\beta} \otimes c_{1}^{\alpha} \otimes c_{2}^{\beta})$$
$$a_{\alpha}\epsilon_{C}(c^{\alpha}) = a\epsilon_{C}(c)$$
$$1_{\alpha} \otimes c^{\alpha} = 1 \otimes c.$$

Let M be a graded left A-module. Then $M \otimes C$ becomes a graded left A-module if we set $a(m \otimes c) = (|m|/|c|)(|c^{\alpha}|/|m|)(a_{\alpha}m \otimes c^{\alpha})$. A vector space M is a graded left-right (A, C, ψ) -entwined module if M is a graded left A-module and a graded right C-comodule such that $\rho_{M,C}$ is a graded left A-linear map; i.e.,

$$\rho_{M,C}(am) = (|m_0|/|m_1|)(|(m_1)^{\alpha}|/|m_0|)(a_{\alpha}m_0 \otimes (m_1)^{\alpha}.$$

We denote by ${}_{gr-A}\mathcal{M}(\psi)^{gr-C}$ the category of graded left-right (A, C, ψ) -entwined modules: its morphisms are the graded left A-linear maps and the graded right C-colinear maps.

• Graded right-left entwined modules.

A graded right-left entwining structure over k is a triple (A, C, ψ) with a graded k-linear map $C \otimes A \to C \otimes A$; $c \otimes a \mapsto c^{\alpha} \otimes a_{\alpha}$ satisfying the following conditions [5, 32.1]:

$$\psi \circ (id_C \otimes \mu) = (id_C \otimes \mu) \circ (\tau \otimes id_A) \circ (id_A \otimes \psi) \circ (\tau^{-1} \otimes id_A) \circ (\psi \otimes id_A)$$
$$(\Delta_C \otimes id_A) \circ \psi = (id_C \otimes \tau) \circ (\psi \otimes id_C) \circ (id_C \otimes \tau^{-1}) \circ (id_C \otimes \psi) \circ (\Delta_C \otimes id_A)$$
$$(\epsilon_C \otimes id_A) \circ \psi = \epsilon_C \otimes id_A$$
$$\psi \circ (id_C \otimes \iota) = id_C \otimes \iota$$

where $\tau : C \otimes A \to A \otimes C$; $c \otimes a \mapsto (|c|/|a|)a \otimes c$. These relations are respectively equivalent to

$$c^{\alpha} \otimes (aa')_{\alpha} = (|c^{\alpha}|/|a_{\alpha}|)(|a_{\alpha}|/|c^{\alpha\beta}|)(c^{\alpha\beta} \otimes a_{\alpha}a'_{\beta})$$
$$\Delta_{C}(c^{\alpha}) \otimes a_{\alpha} = (|c_{2}^{\alpha}|/|a_{\alpha}|)(|a_{\alpha\beta}|/|c_{2}^{\alpha}|)(c_{1}^{\beta} \otimes c_{2}^{\alpha} \otimes a_{\alpha\beta})$$
$$\epsilon_{C}(c^{\alpha})a_{\alpha} = \epsilon_{C}(c)a$$
$$c_{\alpha} \otimes 1^{\alpha} = c \otimes 1.$$

Let M be a graded right A-module. Then $C \otimes M$ becomes a graded right Amodule if we set $(c \otimes m)a = (|c|/|m|)(|m|/|c^{\alpha}|)(c^{\alpha} \otimes ma_{\alpha})$. A vector space M is a graded right-left (A, C, ψ) -entwined module if M is a graded right A-module and a graded left C-comodule such that $\rho_{M,C}$ is a graded right A-linear map; i.e.,

$$\rho_{M,C}(ma) = (|m_{-1}|/|m_0|)(|m_0|/|(m_{-1})^{\alpha}|)(m_{-1})^{\alpha} \otimes (m_0 a_{\alpha}).$$

We denote by ${}^{gr-C}\mathcal{M}(\psi)_{gr-A}$ the category of graded right-left (A, C, ψ) -entwined modules: its morphisms are the graded right A-linear maps and the graded left C-colinear maps.

3.3.1. Graded Doi-Hopf modules

In this section, H is a Hopf colour algebra with a bijective antipode S_H , A is a colour algebra and C is a graded coalgebra.

We say that A is a graded left H-comodule algebra if it is a graded left H-comodule via $\rho_{A,H}(a) = a_{[-1]} \otimes a_{[0]}$ such that $\rho_{A,H}(aa') = (|a_{[0]}|/|a'_{[-1]}|)(a_{[-1]}a'_{[-1]}) \otimes a_{[0]} \otimes a'_{[0]}$ and $\rho_{A,H}(1_A) = 1_H \otimes 1_A$. This is equivalent to say that the multiplication and the unit are graded left H-collinear, where the left H-coaction on $A \otimes A$ is defined by $(a \otimes a')_{[-1]} \otimes (a \otimes a')_{[0]} = (|a_{[0]}|/|a'_{[-1]}|)(a_{[-1]}a'_{[-1]}) \otimes a_{[0]} \otimes a'_{[0]}$.

We say that A is a graded right H-comodule algebra if it is a graded right H-comodule via $\rho_{A,H}(a) = a_{[0]} \otimes a_{[1]}$ such that $\rho_{A,H}(aa') = (|a_{[1]}|/|a'_{[0]}|)a_{[0]} \otimes a'_{[0]} \otimes (a_{[1]}a'_{[1]})$ and $\rho_{A,H}(1_A) = 1_A \otimes 1_H$. This is equivalent to say that the multiplication and the unit are graded right H-colinear, where the right H-coaction on $A \otimes A$ is defined by $(a \otimes a')_{[0]} \otimes (a \otimes a')_{[1]} = (|a_{[1]}|/|a'_{[0]}|)a_{[0]} \otimes a'_{[0]} \otimes (a_{[1]}a'_{[1]})$. We say that C is a graded left H-module coalgebra if C is a graded left Hmodule such that $\Delta_C(h \rightarrow c) = (|h_2|/|c_1|)(h_1 \rightarrow c_1) \otimes (h_2 \rightarrow c_2)$ and $\epsilon_C(h \rightarrow c) = \epsilon_H(h)\epsilon_C(c)$. This is equivalent to say that Δ_C and ϵ_C are graded left H-linear, where the left H-action on $C \otimes C$ is defined by

$$h \rightharpoonup (c \otimes c') = (|h_2|/|c_1|)(h_1 \rightharpoonup c_1) \otimes (h_2 \rightharpoonup c_2).$$

We say that C is a graded right H-module coalgebra if C is a graded right Hmodule such that $\Delta_C(c \leftarrow h) = (|c_2|/|h_1|)(c_1 \leftarrow h_1) \otimes (c_2 \leftarrow h_2)$ and $\epsilon_C(c \leftarrow h) = \epsilon_H(h)\epsilon_C(c)$. This is equivalent to say that Δ_C and ϵ_C are graded right H-linear, where the right H-action on $C \otimes C$ is defined by

$$(c \otimes c') \leftarrow h = (|c_2|/|h_1|)(c_1 \leftarrow h_1) \otimes (c_2 \leftarrow h_2).$$

• Graded left-left Doi-Hopf modules.

Let A be a graded left H-comodule algebra and C a graded left H-module coalgebra. According to [5], we call the triple (H, A, C) a graded left-left Doi-Hopf datum.

The category ${}^{gr-C}_{gr-A}\mathcal{M}(H)$ of graded left-left Doi-Hopf modules is the category whose objects are the graded left A-modules and the graded left C-comodules M such that $\rho_{M,C}(am) = (|a_{[0]}|/|m_{-1}|)(a_{[-1]} \rightarrow m_{-1}) \otimes (a_{[0]}m_0)$. The morphisms of this category are the graded left A-linear maps and the graded left C-colinear maps. Any graded left-left Doi-Hopf datum (H, A, C) gives rise to a graded left-left entwining structure (A, C, ψ) : the map ψ is defined by $\psi(a \otimes c) = (|a_{[0]}|/|c|)(a_{[-1]} \rightarrow c) \otimes a_{[0]}$. The corresponding category of graded left-left entwined modules coincides with the category ${}^{gr-C}_{gr-A}\mathcal{M}(H)$.

• Graded right-right Doi-Hopf modules.

Let A be a graded right H-comodule algebra and C a graded right H-module coalgebra. According to [5], we call the triple (H, A, C) a graded right-right Doi-Hopf datum.

The category $\mathcal{M}(H)_{gr-A}^{gr-C}$ of graded right-right Doi-Hopf modules is the category whose objects are the graded right A-modules and the graded right Ccomodules M such that $\rho_{M,C}(ma) = (|m_1|/|a_{[0]}|)(m_0a_{[0]}) \otimes (m_1 \leftarrow a_{[1]})$. The morphisms of this category are the graded right A-linear maps and the graded right C-colinear maps. Any graded right-right Doi-Hopf datum (H, A, C) gives rise to a graded right-right entwining structure (A, C, ψ) : the map ψ is defined by $\psi(c \otimes a) = (|c|/|a_{[0]}|)a_{[0]} \otimes (c \leftarrow a_{[1]})$. The corresponding category of graded right-right entwined modules coincides with $\mathcal{M}(H)_{gr-A}^{gr-C}$.

• Graded left-right Doi-Hopf modules.

Let A be a graded right H-comodule algebra and C a graded left H-module coalgebra. According to [5], we call the triple (H, A, C) a graded left-right Doi-Hopf datum.

The category $_{gr-A}\mathcal{M}(H)^{gr-C}$ of graded left-right Doi-Hopf modules is the category whose objects are the graded left A-modules and the graded right C-comodules M such that $\rho_{M,C}(am) = (|a_{[1]}|/|m_0|)(a_{[0]}m_0) \otimes (a_{[1]} \rightharpoonup m_1)$. The

morphisms of this category are the graded left A-linear maps and the graded right C-colinear maps. Any graded left-right Doi-Hopf datum (H, A, C) gives rise to a graded left-right entwining structure (A, C, ψ) : the map ψ is defined by $\psi(a \otimes c) = a_{[0]} \otimes (a_{[1]} \rightharpoonup c)$. The corresponding category of graded left-right entwined modules coincides with ${}_{gr-A}\mathcal{M}(H)^{gr-C}$.

• Graded right-left Doi-Hopf modules.

Let A be a graded left H-comodule algebra and C a graded right H-module coalgebra. According to [5], we call the triple (H, A, C) a graded right-left Doi-Hopf datum.

The category ${}^{gr-C}\mathcal{M}(H)_{gr-A}$ of graded right-left Doi-Hopf modules is the category whose objects are the graded right A-modules and the graded left Ccomodules M such that $\rho_{M,C}(ma) = (|m_0|/|a_{[-1]}|)(m_{-1} \leftarrow a_{[-1]}) \otimes (m_0a_{[0]})$. The morphisms of this category are the graded right A-linear maps and the graded left C-colinear maps. Any graded right-left Doi-Hopf datum (H, A, C) gives rise to a graded right-left entwining structure (A, C, ψ) : the map ψ is defined by $\psi(c \otimes a) = (c \leftarrow a_{[-1]}) \otimes a_{[0]}$. The corresponding category of graded right-left entwined modules coincides with ${}^{gr-C}\mathcal{M}(H)_{gr-A}$.

References

[1] Brzeziński, T.: Galois comodules. J. Algebra **290** (2005), 505–535.

Zbl 1078.16039

- Brzeziński, T.: The structure of corings. Induction functors, Maschke-type theorem, and Frobenius and Galois properties. Algebr. Represent. Theory 5 (2002), 389–410.
- [3] Brzeziński, T.: The structure of corings with a grouplike element. In: P. M. Hajac (ed.) et al., Noncommutative Geometry and Quantum Groups, Banach Cent. Publ. 61, Polish Academy of Sciences, Warsaw (2003), 21–35.

Zbl 1066.16034

- Brzeziński, T.; Wisbauer, R.: Corings and Comodules. London Mathematical Society Lecture Note Series 309, Cambridge University Press, Cambridge 2003.
- [5] Caenepeel, S.; Militaru, G.; Zhu, S.: Frobenius and Separable Functors for Generalized Module Categories and Nonlinear Equations. Lecture Notes in Mathematics 1787, Springer Verlag, Berlin 2002.
- [6] Caenepeel, S.; Vercruysse, J.; Shuanhong Wang: Morita theory for corings and cleft entwining structures. J. Algebra 276 (2004), 210–235.

Zbl 1064.16037

- [7] Caenepeel, S.; Guédénon, T.: Projectivity and flatness over the endomorphism ring of a finitely generated module. Int. J. Math. Math. Sci. 29–32 (2004), 1581–1588.
 Zbl 1081.16003
- [8] Caenepeel, S.; Janssen, K.; Wang, S. H.: *Group corings*. Appl. Categ. Struct. 16 (2008), 65–96.
 Zbl 1145.16017

- [9] Feldvoss, J.: Representations of Lie colour algebras. Adv. Math. 157 (2001), 95–137.
 Zbl 0998.17032
- [10] García, J. J.; Del Río, A.: On flatness and projectivity of a ring as a module over a fixed subring. Math. Scand. 76 (1995), 179–192. Zbl 0842.16023
- [11] Guédénon, T.: Projectivity and flatness over the endomorphism ring of a finitely generated comodule. Beitr. Algebra Geom. 49(2) (2008), 399–408.
 Zbl pre05345496
- [12] Guédénon, T.: Semisimplicity of locally finite R#H-modules. Algebra Colloq.
 16(1) (2009), 109–122.
 Zbl 1170.16029
- [13] Năstăsescu, C.; Van Oystaeyen, F.: Graded ring theory. North-Holland,
Amsterdam-New York-Oxford 1982.Zbl 0494.16001
- [14] Palmieri, J. H.: Stable Homotopy over the Steenrod Algebra. Mem. Am. Math. Soc. 716 (2001).
 Zbl 0966.55013
- [15] Sato, M.: Fuller's theorem on equivalences. J. Algebra 52 (1978), 274–284. Zbl 0374.16024
- [16] Scheunert, M.; Zhang, R. B.: The general linear supergroup and its Hopf superalgebra of regular functions. J. Algebra 254 (2002), 44–83. Zbl 1047.17016
- Scheunert, M.: Introduction to the cohomology of Lie superalgebras and some applications. In: I. Bajo (ed.) et al., Recent advances in Lie theory, Res. Expo. Math. 25, Heldermann, Lemgo 2002, 77–107.

Received January 15, 2009