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Abstract. Let k be a field, G an abelian group with a bicharacter,
A a colour algebra; i.e., an associative graded k-algebra with identity,
C a graded A-coring that is projective as a right A-module, C∗ the
graded dual ring of C and Λ a left graded C-comodule that is finitely
generated as a graded right C∗-module. We give necessary and sufficient
conditions for projectivity and flatness of a graded module over the
colour endomorphism ring CEND(Λ).

0. Introduction

The notion of graded corings (except graded algebras and graded coalgebras)
rarely appears in the literature on corings. The only paper we know where this
notion appears is [8]. In the present paper we will give some conditions to test
projectivity or flatness over the colour endomorphism ring of a finitely generated
graded C-comodule, where C is a graded coring. Let k be a field, A a k-algebra,
C an A-coring, ∗C the left dual ring of C and Λ a right C-comodule that is finitely
generated as a left ∗C-module. In [11], we gave necessary and sufficient conditions
for projectivity and flatness over the endomorphism ring EndC(Λ) of Λ. In the
present paper, we will extend these results to a G-graded A-coring C, where G is an
abelian group with a bicharacter and A is a colour algebra; i.e., a graded associa-
tive k-algebra with identity. More precisely, let us denote by C∗ = HOMA(CA, AA)
the largest graded vector space contained in HomA(CA, AA). It has a colour alge-
bra structure. Let Λ be a graded left C-comodule that is finitely generated as a
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graded right C∗-module. We give necessary and sufficient conditions for projectiv-
ity and flatness over the colour endomorphism ring CEND(Λ) of Λ. The presence
of the bicharacter makes the difference with the classical gradation. These results
are interesting when C = A, or when C contains a grouplike element, or when C
comes from a graded entwining structure with respect to a bicharacter. If C = A
then gr−AM is the category of graded left A-modules and A∗ is isomorphic to
the opposite algebra Aop of A. If C contains a grouplike element X, then A is
a graded left C-comodule that is finitely generated as a graded right C∗-module.
In this case, CEND(A) is the colour subring of (C, X)-coinvariants of A. Our
techniques and methods are inspired from [10], [7] and [11].

1. Preliminary results

Throughout the paper, k is a field, G is an abelian group and (./.) is a bicharacter
on G; i.e., a map from G×G into k× satisfying:

(x/y) = (y/x)−1 and (x/y + z) = (x/y)(x/z).

These two relations imply that (x + y/z) = (x/z)(y/z). If M and N are vector
spaces Hom(M,N) is the vector space of k-linear maps from M to N .

A vector space A is G-graded or graded if A = ⊕x∈GAx, where the Ax are
vector subspaces of A. An algebra A (not necessarily associative with identity)
is said to be graded if A is a graded vector space as above and the Ax satisfy
AxAy ⊆ Ax+y. According to [8, Section 1], a colour algebra is an associative
graded algebra. In what follows we assume that all colour algebras are unital.
We will consider k as a colour algebra with the trivial gradation. Given colour
algebras A and B, a morphism of colour algebras A → B is a morphism of
algebras which is homogeneous of degree 0. Let m be an element of a graded
vector space M . If m is homogeneous, we denote by |m| its degree. If |m| occurs
in some expression, this means that we regard m as a homogeneous element and
that the expression extends to the other elements by linearity. Let M and N
be graded vector spaces. An element of Hom(M,N) is homogeneous of degree
x if f(My) ⊆ Nx+y for all y ∈ G. We denote by HOM(M,N)x the vector
subspace of Hom(M,N) whose elements are homogeneous of degree x and we
will set HOM(M,N) = ⊕x∈GHOM(M,N)x. Clearly, HOM(M,N) is the largest
graded vector space contained inHom(M,N). The spaceHOM(M,N) is denoted
Homk(M,N)G in [9]. By [13, Corollary 1.2.11], HOM(M,N) = Hom(M,N) if
G is finite or if M is finite-dimensional. By [9], HOM(M,M) is a colour algebra.
If M , N , M ′ and N ′ are graded vector spaces and if f : M →M ′ and g : N → N ′

are homogeneous linear maps then (f ⊗ g)(m ⊗ n) = (|g|/|m|)f(m) ⊗ g(n). We
will denote by gr−kM the category of graded k-vector spaces. The morphisms of

gr−kM are the homogeneous k-linear maps of degree 0; we call them the graded
k-linear maps. Let N be a graded vector space. For every x in G, the x-suspension
of N is the graded vector space N(x) obtained from N by a shift of the gradation
by x. As vector spaces, N and N(x) coincide but the gradations are related by
N(x)y = Nx+y for all y ∈ G.
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Let A be a colour algebra. A left A-module M is called a graded left A-module
if M admits a decomposition as a direct sum of vector spaces M = ⊕x∈GMx such
that AxMy ⊆Mx+y; ∀x, y ∈ G.

Definition 1.1. Let M , N be graded left A-modules. A homogeneous element f
of Hom(M,N) is colour left A-linear if f(am) = (|f |/|a|)af(m) for all a ∈ A.

If M , N are graded left A-modules, we let AHOM(M,N)x denote the vector sub-
space ofHom(M,N) whose elements are colour A-linear of degree x. So the colour
left A-linear maps of degree 0 are exactly the left A-linear maps of degree 0; i.e.,

AHOM(M,N)0 = AHom(M,N)∩HOM(M,N)0. We define AHOM(M,N) to be
the sum of these subspaces; the sum is direct: AHOM(M,N) = ⊕x∈G AHOM(M,
N)x. We call AHOM(M,N) the subspace of colour left A-linear maps of Hom(M,
N). Contrary to the classical gradation, if A 6= k and if the bicharacter is not
trivial, there is no comparison relation between AHOM(M,N) and AHom(M,N)
even if M is finitely generated as an A-module or if G is finite. If G = Z/2Z,
colour A-linear maps are called A-superlinear in [16]. We will denote by gr−AM
the category of graded left A-modules. The morphisms of gr−AM are the colour
left A-linear maps of degree 0; we call them the graded left A-linear maps. It is
well known that gr−AM is a Grothendieck category. We can define in a similar
way a graded right A-module and a graded A-bimodule. A colour right A-linear
map of degree x is just a homogeneous right A-linear map of degree x. To estab-
lish our main results we will need the following well-known results of graded ring
theory.

- If N is a graded left (right) A-module, N(x) is a graded left (right) A-module
which coincides with N as a graded left (right) A-module.

- An object of gr−AM is projective (resp. flat) in gr−AM if and only if it is
projective (resp. flat) in AM, the category of left A-modules.

- An object of gr−AM is free in gr−AM if it has an A-basis consisting of
homogeneous elements or equivalently, if it is isomorphic to some⊕i∈IA(xi), where
(xi, i ∈ I) is a family of elements of G.

- An object of gr−AM is called finitely generated if it is a quotient of a free
graded module of finite rank ⊕i≤mA(xi), where the xi ∈ G and m is a natural
integer.

- Any object of gr−AM is a quotient of a free object in gr−AM, and any
projective object in gr−AM is isomorphic in gr−AM to a direct summand of a free
object.

- An object of gr−AM is flat in gr−AM if and only if it is the inductive limit
of finitely generated free objects in gr−AM.

- An object Λ of gr−AM is called finitely presented if there is an exact sequence
⊕i≤mA(xi) → ⊕j≤nA(yj) → Λ → 0 for xi, yj ∈ G and some natural integers m
and n. A finitely presented graded module is finitely generated.

Lemma 1.2. Let A be a colour algebra and M a graded left A-module which is
generated as A-module by a homogeneous element m of degree 0. Then M is
finitely generated as a graded left A-module.
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Proof. We have M = Am. The k-linear map f : A → M ; a 7→ am is surjective,
homogeneous of degree 0 and left A-linear. So f is an epimorphism in gr−AM. �

An A-coring C is an A-bimodule together with two A-bimodule maps ∆C : C →
C⊗AC and εC : C → A such that the usual coassociativity and counit properties
hold. Let C be an A-coring. A left C-comodule is a left A-module M together
with a left A-linear map ρM,C : M → C ⊗A M such that

(εC ⊗A idM) ◦ ρM,C = idM , and (∆C ⊗A idM) ◦ ρM,C = (idC ⊗A ρM,C) ◦ ρM,C.

For more details on corings, we refer to [1], [2], [3], [4] and [5].
An A-coring C is called a graded A-coring if C admits a decomposition as a

direct sum of vector spaces C = ⊕xCx such that C is a graded A-bimodule, and
∆C and εC are graded left and right A-linear maps. Note that εC(c) = 0 if c is
homogeneous of degree |c| 6= 0. We use the notation-type of Sweedler-Heyneman
for ∆C but we will omit the parentheses on subscripts. So for every homogeneous
element c ∈ C we will write ∆C(c) =

∑
|c| c1 ⊗A c2; where

∑
|c| =

∑
|c1|+|c2|=|c|. We

have
∑

|c|
∑

|c1| c11 ⊗A c12 ⊗A c2 =
∑

|c|
∑

|c2| c1 ⊗A c21 ⊗A c22. Note that εC(c) = 0

if |c| 6= 0. A left C-comodule M is called a graded left C-comodule if M admits
a decomposition as a direct sum of vector spaces M = ⊕xMx such that ρM,C is
homogeneous of degree 0; i.e., ρM,C is a graded left A-linear map. We will write
ρM,C(m) =

∑
|m|m(−1) ⊗A m(0), where

∑
|m| =

∑
|m(−1)|+|m(0)|=|m|.

Any colour algebra A is a graded A-coring called the trivial A-coring, and a
graded k-coalgebra is a graded k-coring. A morphism of graded left C-comodules
f : M → N is a morphism in gr−AM such that

ρN,C ◦ f = (idC ⊗A f) ◦ ρM,C, that is∑
|m|

f(m)(−1) ⊗A f(m)(0) =
∑
|m|

m(−1) ⊗A f(m(0)) ∀m ∈M.

A morphism of graded left C-comodule will be called a graded left C-colinear map.
We denote by gr−CM the category of graded left C-comodules. The morphisms of
gr−CM are the graded left C-colinear maps. The category gr−CM has direct sums.
If C is projective as a right A-module, then gr−CM is a Grothendieck category ([4]
for the ungraded case).

Definition 1.3. Let C be a graded A-coring and M , N be objects of gr−CM. A
homogeneous element f ∈ Hom(M,N) is colour left C-colinear if f is colour left
A-linear and ρN,C ◦ f = (idC ⊗A f) ◦ ρM,C.

It follows from Definition 1.3 that a graded left C-colinear map is a colour left
C-colinear map of degree 0. If M and N are objects of gr−CM and x ∈ G, we will
denote by CHOM(M,N)x the vector subspace of Hom(M,N) whose elements are
colour left C-colinear of degree x. So we have

CHOM(M,N)x = {f ∈ AHOM(M,N)x,
∑
|m|

f(m)(−1) ⊗A f(m)(0) =
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|m|

(|f |, |m(−1)|)m(−1) ⊗A f(m(0))}.

We will set CHOM(M,N) = ⊕x∈G
CHOM(M,N)x. We call CHOM(M,N) the

subspace of colour left C-colinear maps of Hom(M,N). We can define in a similar
way a graded right C-comodule. A homogeneous colour right C-colinear map is
just a homogeneous right C-colinear.

If N is a graded left C-comodule, then for every x in G, the x-suspension N(x)
is a graded left C-comodule which coincides with N as a C-comodule. By [17],
the linear map i−x : N → N(x) defined by i−x(n) = (−x/|n|)n is bijective and
homogeneous of degree −x. It is obviously colour left C-colinear.

Lemma 1.4. Let C be a graded A-coring, and M , N be graded left C-comodules.
For every x ∈ G, the linear map CHOM(M,N)x → CHOM(M,N(x))0; f 7→
i−x ◦ f , where i−x is defined above is an isomorphism of vector spaces.

Lemma 1.5. Let P be an object of gr−CM. Then the functor CHOM(P,−) :
gr−CM→gr−k M is left exact.

Proof. Let 0 → L → M → N → 0 be an exact sequence in gr−CM; so 0 →
L(x) →M(x) → N(x) → 0 is exact in gr−CM for every x ∈ G. By [13, Corollary
1.2.2], P is projective in gr−kM. So the sequence

0 → HOM(P,L(x))0 → HOM(P,M(x))0 → HOM(P,N(x))0 → 0

is exact for every x ∈ G. It follows from Lemma 1.4 that

0 → HOM(P,L)x → HOM(P,M)x → HOM(P,N)x → 0

is an exact sequence for every x ∈ G. We know that i ◦ f ∈ CHOM(P,M)x for
all f ∈ CHOM(P,L)x. This means that the sequence

0 → CHOM(P,L)x →
CHOM(P,M)x →

CHOM(P,N)x

is exact for every x ∈ G; i.e.,

0 → CHOM(P,L) → CHOM(P,M) → CHOM(P,N)

is an exact sequence. So the functor CHOM(P,−) is left exact. �

We say that an object P of gr−CM is projective if the functor CHOM(P,−)0 is
exact.

Lemma 1.6. Let C be a graded A-coring. An object P of gr−CM is projective in
gr−CM if and only if the functor CHOM(P,−) is exact.

Proof. Assume that CHOM(P,−) is exact in gr−CM. Let 0 → L → M →
N → 0 be an exact sequence in gr−CM. So the sequence 0 → CHOM(P,L) →
CHOM(P,M) → CHOM(P,N) → 0 is exact. It follows that the sequence 0 →
CHOM(P,L)0 → CHOM(P,M)0 → CHOM(P,N)0 → 0 is exact. This means
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that P is a projective object in gr−CM. Assume that P is projective in gr−CM.
Let 0 → L→M → N → 0 be an exact sequence in gr−CM. Clearly, 0 → L(x) →
M(x) → N(x) → 0 is an exact sequence in gr−CM for every x ∈ G. By the
projectivity of P , the sequence

0 → CHOM(P,L(x))0 →
CHOM(P,M(x))0 →

CHOM(P,N(x))0 → 0

is exact for every x ∈ G. Using Lemma 1.4, we get that the sequence 0 →
CHOM(P,L) → CHOM(P,M) → CHOM(P,N) → 0 is exact. �

Let us consider A as a graded right A-module. By [13], HOMA(CA, AA) =
⊕xHOMA(CA, AA)x is a graded vector space: it is the largest graded vector
space contained in HomA(CA, AA). We write C∗x = HOMA(CA, AA)x and C∗ =
HOMA(CA, AA). Then C∗ is a colour algebra called the graded right dual ring of
C (see [5, 17.8] for the ungraded case): the multiplication is defined by f#g =
(|f |, |g|)g ◦ (f ⊗A idC) ◦ ∆C; i.e., f#g(c) =

∑
|c|(|f |, |g|)g(f(c1)c2) for all colour

right A-linear maps f , g: C → A and homogeneous element c ∈ C; where ∆C(c) =∑
|c| c1 ⊗A c2. The unit of C∗ is εC and there is a morphism of colour algebras

i : Aop → C∗ defined by i(a)(c) = (|a|, |c|)εC(c)a. We will denote by Mgr−C∗ the
category of graded right C∗-modules. Any graded left C-comodule M is a graded
right C∗-module: the action is defined by m.f =

∑
|m|(|m(−1)|, |f |)f(m(−1))m(0).

If C is projective as a right A-module, then gr−CM is a full subcategory ofMgr−C∗ ;
i.e., CHOM(M,N) = HOMC∗(M,N) for any M,N ∈ gr−CM. As a consequence,
an object of gr−CM that is projective in Mgr−C∗ is projective in gr−CM. Another
consequence is that if M and N are objects of gr−CM with M finitely generated
as a right C∗-module, then CHOM(M,N) = HOMC∗(M,N) = HomC∗(M,N).

Given two graded left C-comodules Λ and N , the graded vector space CHOM(Λ,
N) is a graded left module over the colour endomorphism ring B = CEND(Λ) of
Λ: the action is given by bf = (|b|, |f |)(f ◦ b);∀f ∈ CHOM(Λ, N), b ∈ B. This
defines a functor F ′ = CHOM(Λ,−) : gr−CM→ gr−BM. Let us consider Λ as a
graded right B-module by λ.b = (|λ|/|b|)b(λ). So Λ is a graded (A,B)-bimodule.
For any P ∈ gr−BM, Λ ⊗B P is a graded left C-comodule with the coaction
ρP,C = ρΛ,C ⊗B idP .

Lemma 1.7. Let Λ and N be graded left C-comodules and P be a graded left
B-module. For every x ∈ G, the canonical linear map

φ : CHOM(Λ⊗B P,N)x → BHOM(P, CHOM(Λ, N))x

defined by φ(f)(p)(λ) = (|p|, |λ|)f(λ⊗B p) is an isomorphism.

Proof. The inverse of φ is defined by ψ(g)(λ⊗B p) = (|λ|, |p|)g(p)(λ). �

We deduce from Lemma 1.7 that CHOM(Λ ⊗B P,N)0 ' BHOM(P, CHOM(Λ,
N))0, and this means that the functor F ′ has the left adjoint F = Λ ⊗B − :gr−B

M→gr−C M. The unit of the adjunction is given by the graded k-linear map

uN : N → CHOM(Λ,Λ⊗B N), n 7→ [λ 7→ (|n|, |λ|)(λ⊗ n)]
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for N ∈ gr−BM, while the counit is given by the graded k-linear map (the evalu-
ation map)

cM : Λ⊗B
CHOM(Λ,M) →M ;λ⊗ f 7→ (|λ|, |f |)f(λ)

for M ∈ gr−CM. The adjointness property means that we have

F ′(cM) ◦ uF ′(M) = idF ′(M), cF (N) ◦ F (uN)= idF (N); M ∈ gr−CM, N ∈ gr−BM. (?)

2. The main results

Let A be a colour algebra and C a graded A-coring. We keep the notations of the
preceding sections.

Lemma 2.1. Let Λ and N be graded left C-comodules. Set B = CEND(Λ). For
every x ∈ G, we have

(1) CHOM(Λ, N(x)) = CHOM(Λ, N)(x)

(2) Λ⊗B B(x) = Λ(x).

An object Λ ∈ gr−CM is called semi-quasiprojective if the functor CHOM(Λ,−) :
gr−CM → gr−kM sends an exact sequence of the form ⊕IΛ(xi) → ⊕JΛ(xj) →
N → 0 to an exact sequence (see [15]). A projective object in gr−CM is semi-
quasiprojective in gr−CM.

Lemma 2.2. Assume that C is projective as a right A-module. Let Λ be a graded
left C-comodule and set B = CEND(Λ). Then the functor CHOM(Λ,−) com-
mutes with

(1) direct sums if Λ is finitely generated as a graded right C∗-module,

(2) direct limits if Λ is finitely presented as a graded right C∗-module.

Proof. (2) We know that gr−CM is a Grothendieck category so the functor
CHOM (Λ,−)0 preserves direct limits. We also know from Lemma 1.4 thatHOMC∗

(Λ, N)x = HOMC∗(Λ, N(x))0 for every x ∈ G. Let (Ni)i∈I be a directed system
of right graded C∗-modules. It is easy to show that (lim−→Ni)(x) = lim−→(Ni(x)) for
every x ∈ G. Now the result follows from the fact direct limit commutes with
direct sum. �

Lemma 2.3. Assume that C is projective as a right A-module. Let Λ be a graded
left C-comodule that is finitely generated as a graded right C∗-module, and let
B = CEND(Λ). For every index set I,

(1) c⊕IΛ(xi) is an isomorphism for every xi ∈ G;

(2) u⊕IB(xi) is an isomorphism for every xi ∈ G;

(3) if Λ is semi-quasiprojective in gr−CM, then u is a natural isomorphism; in
other words, the induction functor F = Λ⊗B (−) is fully faithful.
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Proof. (1) By Lemma 2.1(1), CHOM(Λ,Λ)(xi) = CHOM(Λ,Λ(xi)) for every
i ∈ I. This implies that ⊕IB(xi) = ⊕I

CHOM(Λ,Λ(xi)). By Lemma 2.2(1),
the natural map κ : ⊕IB(xi) → CHOM(Λ,⊕IΛ(xi)) is an isomorphism. Lemma
2.1(2) implies that Λ ⊗B (⊕IB(xi)) ' ⊕IΛ(xi). It is easy to see that this iso-
morphism is just c⊕IΛ(xi) ◦ (idΛ ⊗ κ). So c⊕IΛ(xi) is an isomorphism since κ is an
isomorphism.

(2) Putting M = ⊕IΛ(xi) in (?) and using (1), we find

CHOM(Λ, c⊕IΛ(xi)) ◦ uCHOM(Λ,⊕IΛ(xi)) = idCHOM(Λ,⊕IΛ(xi)); i.e.,

CHOM(Λ, c⊕IΛ(xi)) ◦ u⊕IB(xi) = id⊕IB(xi).

From (1), CHOM(Λ, c⊕IΛ(xi)) is an isomorphism, hence u⊕IB(xi) is an isomorphism.

(3) Take a graded free resolution ⊕JB(xj) → ⊕IB(xi) → N → 0 of a graded left
B-module N . Since u is natural, we have a commutative diagram

⊕J B(xj) −−−→ ⊕IB(xi) −−−→ N −−−→ 0

u⊕JB(xj)

y u⊕IB(xi)

y uN

y
F′F(⊕JB(xj)) −−−→ F′F(⊕IB(xi)) −−−→ F′F(N) −−−→ 0 .

The top row is exact; the bottom row is exact, since

F ′F (⊕IB(xi)) = CHOM(Λ,Λ⊗B ⊕IB(xi)) = CHOM(Λ,⊕IΛ(xi))

and Λ is semi-quasiprojective. By (2), u⊕IB(xi) and u⊕JB(xj) are isomorphisms;
and it follows from the five lemma that uN is an isomorphism. �

We can now give equivalent conditions for the projectivity and flatness of P ∈
gr−BM.

Theorem 2.4. Assume that C is projective as a right A-module. Let Λ be a
graded left C-comodule that is finitely generated as a graded right C∗-module, and
let B = CEND(Λ). For P ∈ gr−BM, we consider the following statements.

(1) Λ⊗B P is projective in gr−CM and uP is injective;

(2) P is projective as a graded left B-module;

(3) Λ⊗BP is a direct summand in gr−CM of some ⊕IΛ(xi), and uP is bijective;

(4) there exists Q ∈ gr−CM such that Q is a direct summand of some ⊕IΛ(xi),
and P ∼= CHOM(Λ, Q) in gr−BM;

(5) Λ⊗B P is a direct summand in gr−CM of some ⊕IΛ(xi).
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Then (1) ⇒ (2) ⇔ (3) ⇔ (4) ⇒ (5).
If Λ is semi-quasiprojective in gr−CM, then (5) ⇒ (3); if Λ is projective in

gr−CM, then (3) ⇒ (1).

Proof. (2) ⇒ (3): If P is projective as a graded left B-module, then we can find
an index set I and P ′ ∈ gr−BM such that ⊕IB(xi) ∼= P ⊕ P ′. Then obviously

⊕IΛ(xi) ∼= Λ⊗B (⊕IB(xi)) ∼= (Λ⊗B P )⊕ (Λ⊗B P
′).

Since u is a natural transformation, we have a commutative diagram:

⊕IB(xi)
∼=−−−→ P⊕P′

u⊕IB(xi)

y
y uP⊕uP ′

CHOM(Λ,⊕IΛ(xi)) −−−→∼=
CHOM(Λ,Λ⊗B P)⊕ CHOM(Λ,Λ⊗B P′)

From the fact that u⊕IB(xi) is an isomorphism, it follows that uP (and uP ′) are
isomorphisms.

(3) ⇒ (4): Take Q = Λ⊗B P .

(4) ⇒ (2): Let f : ⊕IΛ(xi) → Q be a split epimorphism in gr−CM. Then

CHOM(Λ, f) : CHOM(Λ,⊕IΛ(xi)) ∼= ⊕IB(xi) → CHOM(Λ, Q) ∼= P

is also split surjective, hence P is projective as a graded left B-module.

(4) ⇒ (5): If (4) is true, we know from the proof of (4) ⇒ (2) that P is a direct
summand of some ⊕IB(xi) in gr−BM. So Λ⊗BP is a direct summand of ⊕IΛ(xi).

(1) ⇒ (2): Take an epimorphism f : ⊕IB(xi) → P in gr−BM. Then

F (f) = idΛ ⊗B f : Λ⊗B (⊕IB(xi)) ∼= ⊕IΛ(xi) → Λ⊗B P

is an epimorphism in gr−CM, and it splits since Λ⊗B P is projective in gr−CM .
Consider the commutative diagram:

⊕IB(xi)
f−−−→ P −−−→ 0

u⊕IB(xi)

y uP

y
CHOM(Λ,⊕IΛ(xi)) −−−→

F ′F (f)

CHOM(Λ,Λ⊗B P) −−−→ 0 .
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The bottom row is split exact, since any functor, in particular, CHOM(Λ,−)
preserves split exact sequences. By Lemma 2.3(2), u⊕IB(xi) is an isomorphism. A
diagram chasing tells us that uP is surjective. By assumption, uP is injective, so
uP is bijective. We deduce that the top row is isomorphic to the bottom row, and
therefore splits. Thus P is projective in ∈ gr−BM.

Under the assumption that Λ is semi-quasiprojective in gr−CM, (5) ⇒ (3) follows
from Lemma 2.3(3).

(3)⇒ (1): By (3), Λ⊗BP is a direct summand of some ⊕IΛ(xi). If Λ is projective
in gr−CM, then⊕IΛ(xi) is projective in gr−CM. So Λ⊗BP being a direct summand
of a projective object of gr−CM is projective in gr−CM. �

Theorem 2.5. Assume that C is projective as a right A-module. Let Λ be a
graded left C-comodule that is finitely presented as a graded right C∗-module, and
let B = CEND(Λ). For P ∈ gr−BM, the following assertions are equivalent.

(1) P is flat as a graded left B-module;

(2) Λ ⊗B P = lim−→Qi, where Qi
∼= ⊕j≤ni

B(xij) in gr−CM for some positive
integer ni, and uP is bijective;

(3) Λ ⊗B P = lim−→Qi, where Qi ∈ gr−CM is a direct summand of some ⊕j∈Ii
Λ

(xij) in gr−CM, and uP is bijective;

(4) there exists Q = lim−→Qi ∈ gr−CM, such that Qi
∼= ⊕j≤ni

Λ(xij) for some

positive integer ni and CHOM(Λ, Q) ∼= P in gr−BM;

(5) there exists Q = lim−→Qi ∈ gr−CM, such that Qi is a direct summand of some

⊕j∈Ii
Λ(xij) in gr−CM, and CHOM(Λ, Q) ∼= P in gr−BM.

If Λ is semi-quasiprojective in gr−CM, these conditions are also equivalent to con-
ditions (2) and (3), without the assumption that uP is bijective.

Proof. (1) ⇒ (2): P = lim−→Ni, with Ni = ⊕j≤ni
B(xij) for some positive integer

ni. Take Qi = ⊕j≤ni
Λ(xij) , then

lim−→Qi
∼= lim−→(Λ⊗B Ni) ∼= Λ⊗B lim−→Ni

∼= Λ⊗B P.

Consider the following commutative diagram:

P = lim−→Ni

lim(uNi
)

−−−−→ lim−→
CHOM(Λ,Λ⊗B Ni)

uP

y
y f

CHOM(Λ,Λ⊗B (lim−→Ni)) −−−→∼=
CHOM(Λ, lim−→(Λ⊗B Ni)) .

By Lemma 2.3(2), the uNi
are isomorphisms; by Lemma 2.2, the natural homo-

morphism f is an isomorphism. Hence uP is an isomorphism.
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(2) ⇒ (3) and (4) ⇒ (5) are obvious.

(2) ⇒ (4) and (3) ⇒ (5): Put Q = Λ⊗B P . Then uP : P → CHOM(Λ,Λ⊗B P )
is the required isomorphism.

(5) ⇒ (1): We have a split exact sequence 0 → Ni → Pi = ⊕j∈Ii
Λ(xij) → Qi → 0

in gr−CM. Consider the following commutative diagram:

0 −−−→ FF′(Ni) −−−→ FF′(Pi) −−−→ FF′(Qi) −−−→ 0

cNi

y cPi

y cQi

y
0 −−−→ Ni −−−→ Pi −−−→ Qi −−−→ 0 .

We know from Lemma 2.3(1) that cPi
is an isomorphism. Both rows in the diagram

are split exact, so it follows that cNi
and cQi

are also isomorphisms. Next consider
the commutative diagram:

Λ⊗B lim−→
CHOM(Λ,Qi)

idΛ⊗f−−−→ Λ⊗B
CHOM(Λ,Q)

h

x cQ

y
lim−→(Λ⊗B

CHOM(Λ,Qi)) −−−→
lim cQi

Q

where h and f are the natural homomorphisms. h is an isomorphism, because
Λ ⊗B (−) preserves inductive limits; by Lemma 2.2, f is an isomorphism; and
limcQi

is an isomorphism because every cQi
is an isomorphism. It follows that cQ

is an isomorphism, hence CHOM(Λ, cQ) is an isomorphism. From (?), we get

CHOM(Λ, cQ) ◦ uCHOM(Λ,Q) = idCHOM(Λ,Q).

It follows that uCHOM(Λ,Q) is also an isomorphism. Since CHOM(Λ, Q) ∼= P , uP

is an isomorphism. Consider the isomorphisms

P ∼= CHOM(Λ,Λ⊗B P ) ∼= CHOM(Λ,Λ⊗B
CHOM(Λ, Q)) ∼=

CHOM(Λ, Q) ∼= lim−→
CHOM(Λ, Qi);

where the first isomorphism is uP , the third is CHOM(Λ, cQ) and the last one
is f . It follows from Lemmas 2.1(1)and 2.2 that CHOM(Λ, Pi) ∼= ⊕j∈Ii

B(xij) is
projective as a graded left B-module, hence CHOM(Λ, Qi) is also projective as
a graded left B-module, and we conclude that P is flat in ∈ gr−BM. The final
statement is an immediate consequence of Lemma 2.3(3). �



220 T. Guédénon: Projectivity and Flatness over the Colour . . .

3. Applications

3.1. C contains a grouplike element

A grouplike element of C is an element X ∈ C0 such that ∆C(X) = X ⊗A X
and εC(X) = 1A (see [14]). If C contains a grouplike element X, then A is an
object of gr−CM: the C-coaction is defined by ρA,C(a) = aX = aX ⊗A 1A;∀a ∈ A.
Conversely, if A is an object of gr−CM, then ρA,C(1A) = X is a grouplike element
of C.

Assume that C contains a grouplike element X. Then A is an object ofMgr−C∗

and a.εC = a, that is, A is generated as a right C∗-module by the homogeneous ele-
ment εC of degree 0. Lemma 1.2 implies that A is finitely generated inMgr−C∗ . For
any graded left C-comodule M , we call coC,XM = {m ∈M, ρM,C(m) = X⊗Am}
the vector space of (C, X)-coinvariants of M . Clearly, coC,XA = {a ∈ A, Xa =
aX} is a colour subalgebra of A: the colour subalgebra of (C, X)-coinvariants.
For every f ∈ CHOM(A,M), f(1) ∈ coC,XM . The graded k-linear map f 7→ f(1)
establishes an isomorphism CHOM(A,M) → coC,XM with inverse the graded k-
linear map ψ defined by ψ(m)(a) = (|m|, |a|)am. We have CEND(A) = coC,XA.
Set B = coC,XA. Then we get from Theorems 2.4 and 2.5 necessary and sufficient
conditions for projectivity and flatness over the colour algebra B = coC,XA.

3.2. A colour algebra as a trivial coring

A colour algebra A is a graded A-bimodule. Let us define ∆A(a) = a ⊗A 1A and
εA(a) = a. Then A is an A-coring. A graded left A-comodule is just a graded left
A-module. The product on A∗ is defined by f#g(a) =

∑
|a|(|f |, |g|)g(f(a)1A) =∑

|a|(|f |, |g|)g(1A)(f(a)). It is easy to show that the algebra A∗ is isomorphic

to Aop, the opposite algebra of A: this isomorphism is defined by f 7→ f(1A).
For graded left A-modules M and N , we have AHOM(M,N) = AHOM(M,N).
Then Theorems 2.4 and 2.5 give necessary and sufficient conditions for projectivity
and flatness over B =A END(Λ), where Λ is a finitely generated graded left A-
module. When the gradation is trivial we recover [11]. In many examples, Λ will
be a colour algebra and A will be a graded Λ-ring with a graded left grouplike
character.

Definition 3.1. (see [6], Section 2) Let A and Λ be two colour algebras and i :
Λ → A a graded ring morphism. A graded k-linear map χ : A → Λ is called a
graded left grouplike character on A if χ is graded left Λ-linear and

χ(aχ(a′)) = χ(aa′) and χ(1A) = 1Λ ∀ a, a′ ∈ A.

We then say that A is a graded Λ-ring with a graded left grouplike character χ.

Let A be a graded Λ-ring with a graded left grouplike character χ. Then Λ is a
graded left A-module: the action is given by a ⇀ λ = χ(aλ). Furthermore, Λ
is cyclic as a left A-module, since λ = (λ1A) ⇀ 1Λ. But 1Λ is homogeneous of
degree 0, so Λ is a finitely generated as a graded left A-module (Lemma 1.2). So
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we get necessary and sufficient conditions for projectivity and flatness over the
colour endomorphism ring AEND(Λ) of Λ.

Now we will give two examples of this situation. There are other examples in
the literature.

• Let H be a colour algebra, the colour tensor product H⊗H is the G-graded
vector space H⊗H = ⊕x∈G(⊕y+z=xHy⊗Hz) with multiplication (h⊗ l)(h′⊗ l′) =
(|l|/|h′|)hh′ ⊗ ll′ for homogeneous elements h, h′, l, l′ ∈ H. By [9, Lemma 3.2],
H⊗H is a colour algebra. A Hopf colour algebra is a colour algebra and a graded
coalgebra such that ∆H and εH are morphisms of colour algebras and there exists a
graded k-linear map SH : H → H (called antipode) such that (SH ⊗ idH) ◦∆H =
εH = (idH ⊗ SH) ◦ ∆H or equivalently,

∑
|h| ε(h1)h2 = h =

∑
|h| h1ε(h2) and∑

|h| S(h1)h2 = ε(h) =
∑

|h| h1S(h2).
Let H be a Hopf colour algebra over k with comultiplication ∆H , counit εH

and antipode SH . A colour algebra Λ which is a graded left H-module such that
h.(λλ′) =

∑
|h|(|h2|/|λ|)(h1.λ)(h2.λ

′) for all h ∈ H and λ, λ′ ∈ Λ will be called
a graded left H-module algebra. We denote by A = Λ#H the associated smash
product; i.e., the colour algebra generated by Λ and H whose multiplication is
defined by (λh)(λ′h′) =

∑
|h|(|h2|/|λ′|)λ(h1.λ

′)(h2h
′) (see [12]). A graded vector

space M is a graded left A-module if and only if it is a graded left Λ-module and
a graded left H-module such that h.(λm) =

∑
|h|(|h2|/|λ|)(h1.λ)(h2m). Define a

k-linear map χ : A → Λ by χ(λh) = εH(h)λ. Since εH(h) = 0 for |h| 6= 0, χ is
homogeneous of degree 0. Clearly, χ is left Λ-linear. It follows that Λ#H is a
graded Λ-ring with a graded left grouplike character χ. Note that Λ#HEND(Λ) is
exactly the colour subring of invariants of Λ; i.e., Λ#HEND(Λ) = {λ ∈ Λ;h.λ =
εH(h)λ}.

• Assume that C contains a grouplike element X. The linear map i : A→ C∗
defined by i(a)(c) = aεC(c) is a morphism of colour algebras. Define χ : C∗ → A
by χ(f) = f(X). Then χ is a graded left grouplike character on C∗. So C∗ is a
graded A-ring.

3.3. C comes from a graded entwining structure

In this section, A is a colour algebra with multiplication µ and unit ι, and C
is a graded coalgebra with comultiplication ∆C and counit εC . We denote by
τ : A⊗C → C⊗A the twist map; that is τ(a⊗c) = (|a|/|c|)c⊗a. IfM is a left (resp.
right C-comodule, we write ρM,C(m) = m−1 ⊗m0 (resp. ρM,C(m) = m0 ⊗m1).
We remind that C is a graded k-coring. Interesting examples of graded corings
come from graded entwining structures. We will often refer to [5] for the ungraded
case.

• Graded left-left entwined modules.

A graded left-left entwining structure over k is a triple (A,C, ψ) with a graded
k-linear map ψ : A⊗C → C⊗A; a⊗c 7→ (|aα|/|c|)cα⊗aα satisfying the following
conditions [5, 32.1]:

ψ ◦ (µ⊗ idC) = (idC ⊗ µ) ◦ (ψ ⊗ idA) ◦ (idA ⊗ ψ)
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(∆C ⊗ idA) ◦ ψ = (idC ⊗ ψ) ◦ (ψ ⊗ idC) ◦ (idA ⊗∆C)

(εC ⊗ idA) ◦ ψ = idA ⊗ εC

ψ ◦ (idC ⊗ ι) = ι⊗ idC .

These relations are respectively equivalent to

(|(aa′)α|/|c|)(cα ⊗ (aa′)α) = (|a′α|/|c|)(|aβ|/|cα|)(cαβ ⊗ aβa
′
α)

(|aα|/|c|)(∆C(cα)⊗ aα) = (|aα|/|c1|)(|aαβ|/|c2|)(c1α ⊗ c2
β ⊗ aαβ)

(|aα|/|c|)(εC(cα)aα) = aεC(c)

(|1α|/|c|)(cα ⊗ 1α) = c⊗ 1.

The map ψ is called a graded entwining map, and A and C are said to be graded
entwined by ψ. By [5, 32.1], C = C⊗A is a graded A-coring with A-multiplications
a′(c⊗ a)a′′ = ψ(a′ ⊗ c)aa′′, coproduct

∆C : C ⊗ A→ C ⊗ A⊗A C ⊗ A ∼= C ⊗ C ⊗ A; c⊗ a 7→ ∆C(c)⊗ a

and counit εC(c⊗ a) = εC(c)a.
Let M be a graded left A-module. Then C ⊗M becomes a graded left A-

module if we set a(c ⊗ m) = (|aα|/|c)|)cα ⊗ (aαm). We say that a vector space
M is a graded left-left (A,C, ψ)-entwined module if M is a graded left A-module
and a graded left C-comodule such that ρM,C is a graded left A-linear map; i.e.,

ρM,C(am) = (|aα|/|(m−1)|)(m−1)
α ⊗ (aαm0).

We denote by gr−C
gr−AM(ψ) the category of graded left-left (A,C, ψ)-entwined mod-

ules: its morphisms are the graded left A-linear maps and the graded left C-
colinear maps. We can show that gr−C

gr−AM(ψ) is isomorphic to gr−CM.

• Graded right-right entwined modules.

A graded right-right entwining structure over k is a triple (A,C, ψ) with a graded
k-linear map C ⊗ A → A ⊗ C; c ⊗ a 7→ (|c|/|aα|)aα ⊗ cα satisfying the following
conditions [5, 32.1]:

ψ ◦ (idC ⊗ µ) = (µ⊗ idC) ◦ (idA ⊗ ψ) ◦ (ψ ⊗ idA)

(idA ⊗∆C) ◦ ψ = (ψ ⊗ idC) ◦ (idC ⊗ ψ) ◦ (∆C ⊗ idA)

(idA ⊗ εC) ◦ ψ = εC ⊗ idA

ψ ◦ (idC ⊗ ι) = ι⊗ idC .

These relations are respectively equivalent to

(|c|/|(aa′)α|)((aa′)α ⊗ cα) = (|c|/|aα|)(|cα|/|a′β|)(aαa
′
β ⊗ cαβ)

(|c|/|aα|)(aα ⊗∆C(cα)) = (|(c2)|/|aα|)(|(c1)|/|aαβ|)(aαβ ⊗ c1
β ⊗ c2

α)

(|c|/|aα|)(aαεC(cα)) = εC(c)a
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(|c|/|1α|)(1α ⊗ cα) = 1⊗ c.

By [5, 32.1], C = A⊗C is a graded A-coring with A-multiplications a′(a⊗ c)a′′ =
a′aψ(c⊗ a′′), coproduct

∆C : A⊗ C → A⊗ C ⊗A A⊗ C ∼= A⊗ C ⊗ C; a⊗ c 7→ a⊗∆C(c)

and counit εC(a⊗ c) = aεC(c).
Let M be a graded right A-module. Then M ⊗ C becomes a graded right

A-module if we set (m ⊗ c)a = (|c|/|aα|)(maα) ⊗ cα. A vector space M is a
graded right-right (A,C, ψ)-entwined module if M is a graded right A-module
and a graded right C-comodule via such that ρM,C is a graded right A-linear map;
i.e.,

ρM,C(ma) = (|(m1)|/|aα|)(m0aα)⊗ (m1)
α.

We denote by M(ψ)gr−C
gr−A the category of graded right-right (A,C, ψ)-entwined

modules: its morphisms are the graded right A-linear maps and the graded right
C-colinear maps. We can show that this category is isomorphic to Mgr−C.

• Graded left-right entwined modules.

A graded left-right entwining structure over k is a triple (A,C, ψ) with a graded
k-linear map A⊗C → A⊗C; a⊗ c 7→ aα⊗ cα satisfying the following conditions
[5, 32.1]:

ψ ◦ (µ⊗ idC) = (µ⊗ idC) ◦ (idA ⊗ τ−1) ◦ ◦(ψ ⊗ idA) ◦ (idA ⊗ τ) ◦ (idA ⊗ ψ)

(idA ⊗∆C) ◦ ψ = (τ−1 ⊗ idC) ◦ (idC ⊗ ψ) ◦ (τ ⊗ idC) ◦ (ψ ⊗ idC) ◦ (idA ⊗∆C)

(idA ⊗ εC) ◦ ψ = idA ⊗ εC

ψ ◦ (ι⊗ idC) = ι⊗ idC .

These relations are respectively equivalent to

(aa′)α ⊗ cα = (|a′α|/|cα|)(|cαβ|/|a′α|)(aβa
′
α ⊗ cαβ)

aα ⊗∆C(cα) = (|aα|/|c1α|)(|c1α|/|aαβ|)(aαβ ⊗ c1
α ⊗ c2

β)

aαεC(cα) = aεC(c)

1α ⊗ cα = 1⊗ c.

Let M be a graded left A-module. Then M ⊗C becomes a graded left A-module
if we set a(m⊗ c) = (|m|/|c|)(|cα|/|m|)(aαm⊗ cα). A vector space M is a graded
left-right (A,C, ψ)-entwined module if M is a graded left A-module and a graded
right C-comodule such that ρM,C is a graded left A-linear map; i.e.,

ρM,C(am) = (|m0|/|m1|)(|(m1)
α|/|m0|)(aαm0 ⊗ (m1)

α.

We denote by gr−AM(ψ)gr−C the category of graded left-right (A,C, ψ)-entwined
modules: its morphisms are the graded left A-linear maps and the graded right
C-colinear maps.
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• Graded right-left entwined modules.

A graded right-left entwining structure over k is a triple (A,C, ψ) with a graded
k-linear map C ⊗A→ C ⊗A; c⊗ a 7→ cα⊗ aα satisfying the following conditions
[5, 32.1]:

ψ ◦ (idC ⊗ µ) = (idC ⊗ µ) ◦ (τ ⊗ idA) ◦ (idA ⊗ ψ) ◦ (τ−1 ⊗ idA) ◦ (ψ ⊗ idA)

(∆C ⊗ idA) ◦ ψ = (idC ⊗ τ) ◦ (ψ ⊗ idC) ◦ (idC ⊗ τ−1) ◦ (idC ⊗ ψ) ◦ (∆C ⊗ idA)

(εC ⊗ idA) ◦ ψ = εC ⊗ idA

ψ ◦ (idC ⊗ ι) = idC ⊗ ι

where τ : C ⊗A→ A⊗C; c⊗ a 7→ (|c|/|a|)a⊗ c. These relations are respectively
equivalent to

cα ⊗ (aa′)α = (|cα|/|aα|)(|aα|/|cαβ|)(cαβ ⊗ aαa
′
β)

∆C(cα)⊗ aα = (|c2α|/|aα|)(|aαβ|/|c2α|)(c1β ⊗ c2
α ⊗ aαβ)

εC(cα)aα = εC(c)a

cα ⊗ 1α = c⊗ 1.

Let M be a graded right A-module. Then C ⊗ M becomes a graded right A-
module if we set (c⊗m)a = (|c|/|m|)(|m|/|cα|)(cα⊗maα). A vector space M is a
graded right-left (A,C, ψ)-entwined module if M is a graded right A-module and
a graded left C-comodule such that ρM,C is a graded right A-linear map; i.e.,

ρM,C(ma) = (|m−1|/|m0|)(|m0|/|(m−1)
α|)(m−1)

α ⊗ (m0aα).

We denote by gr−CM(ψ)gr−A the category of graded right-left (A,C, ψ)-entwined
modules: its morphisms are the graded right A-linear maps and the graded left
C-colinear maps.

3.3.1. Graded Doi-Hopf modules

In this section, H is a Hopf colour algebra with a bijective antipode SH , A is a
colour algebra and C is a graded coalgebra.

We say that A is a graded left H-comodule algebra if it is a graded left H-
comodule via ρA,H(a) = a[−1]⊗a[0] such that ρA,H(aa′) = (|a[0]|/|a′[−1]|)(a[−1]a

′
[−1])⊗

a[0]⊗a′[0] and ρA,H(1A) = 1H⊗1A. This is equivalent to say that the multiplication
and the unit are graded left H-colinear, where the left H-coaction on A ⊗ A is
defined by (a⊗ a′)[−1] ⊗ (a⊗ a′)[0] = (|a[0]|/|a′[−1]|)(a[−1]a

′
[−1])⊗ a[0] ⊗ a′[0].

We say that A is a graded right H-comodule algebra if it is a graded right
H-comodule via ρA,H(a) = a[0]⊗a[1] such that ρA,H(aa′) = (|a[1]|/|a′[0]|)a[0]⊗a′[0]⊗
(a[1]a

′
[1]) and ρA,H(1A) = 1A⊗1H . This is equivalent to say that the multiplication

and the unit are graded right H-colinear, where the right H-coaction on A⊗A is
defined by (a⊗ a′)[0] ⊗ (a⊗ a′)[1] = (|a[1]|/|a′[0]|)a[0] ⊗ a′[0] ⊗ (a[1]a

′
[1]).
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We say that C is a graded left H-module coalgebra if C is a graded left H-
module such that ∆C(h ⇀ c) = (|h2|/|c1|)(h1 ⇀ c1)⊗ (h2 ⇀ c2) and εC(h ⇀ c) =
εH(h)εC(c). This is equivalent to say that ∆C and εC are graded left H-linear,
where the left H-action on C ⊗ C is defined by

h ⇀ (c⊗ c′) = (|h2|/|c1|)(h1 ⇀ c1)⊗ (h2 ⇀ c2).

We say that C is a graded right H-module coalgebra if C is a graded right H-
module such that ∆C(c ↼ h) = (|c2|/|h1|)(c1 ↼ h1)⊗ (c2 ↼ h2) and εC(c ↼ h) =
εH(h)εC(c). This is equivalent to say that ∆C and εC are graded right H-linear,
where the right H-action on C ⊗ C is defined by

(c⊗ c′) ↼ h = (|c2|/|h1|)(c1 ↼ h1)⊗ (c2 ↼ h2).

• Graded left-left Doi-Hopf modules.

Let A be a graded left H-comodule algebra and C a graded left H-module coal-
gebra. According to [5], we call the triple (H,A,C) a graded left-left Doi-Hopf
datum.

The category gr−C
gr−AM(H) of graded left-left Doi-Hopf modules is the category

whose objects are the graded left A-modules and the graded left C-comodules
M such that ρM,C(am) = (|a[0]|/|m−1|)(a[−1] ⇀ m−1) ⊗ (a[0]m0). The mor-
phisms of this category are the graded left A-linear maps and the graded left
C-colinear maps. Any graded left-left Doi-Hopf datum (H,A,C) gives rise to a
graded left-left entwining structure (A,C, ψ): the map ψ is defined by ψ(a⊗ c) =
(|a[0]|/|c|)(a[−1] ⇀ c) ⊗ a[0]. The corresponding category of graded left-left en-

twined modules coincides with the category gr−C
gr−AM(H).

• Graded right-right Doi-Hopf modules.

Let A be a graded right H-comodule algebra and C a graded right H-module
coalgebra. According to [5], we call the triple (H,A,C) a graded right-right Doi-
Hopf datum.

The category M(H)gr−C
gr−A of graded right-right Doi-Hopf modules is the cat-

egory whose objects are the graded right A-modules and the graded right C-
comodules M such that ρM,C(ma) = (|m1|/|a[0]|)(m0a[0]) ⊗ (m1 ↼ a[1]). The
morphisms of this category are the graded right A-linear maps and the graded
right C-colinear maps. Any graded right-right Doi-Hopf datum (H,A,C) gives
rise to a graded right-right entwining structure (A,C, ψ): the map ψ is defined
by ψ(c ⊗ a) = (|c|/|a[0]|)a[0] ⊗ (c ↼ a[1]). The corresponding category of graded

right-right entwined modules coincides with M(H)gr−C
gr−A.

• Graded left-right Doi-Hopf modules.

Let A be a graded right H-comodule algebra and C a graded left H-module
coalgebra. According to [5], we call the triple (H,A,C) a graded left-right Doi-
Hopf datum.

The category gr−AM(H)gr−C of graded left-right Doi-Hopf modules is the
category whose objects are the graded left A-modules and the graded right C-
comodules M such that ρM,C(am) = (|a[1]|/|m0|)(a[0]m0) ⊗ (a[1] ⇀ m1). The
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morphisms of this category are the graded left A-linear maps and the graded
right C-colinear maps. Any graded left-right Doi-Hopf datum (H,A,C) gives
rise to a graded left-right entwining structure (A,C, ψ): the map ψ is defined
by ψ(a ⊗ c) = a[0] ⊗ (a[1] ⇀ c). The corresponding category of graded left-right

entwined modules coincides with gr−AM(H)gr−C .

• Graded right-left Doi-Hopf modules.

Let A be a graded left H-comodule algebra and C a graded right H-module
coalgebra. According to [5], we call the triple (H,A,C) a graded right-left Doi-
Hopf datum.

The category gr−CM(H)gr−A of graded right-left Doi-Hopf modules is the
category whose objects are the graded right A-modules and the graded left C-
comodules M such that ρM,C(ma) = (|m0|/|a[−1]|)(m−1 ↼ a[−1]) ⊗ (m0a[0]). The
morphisms of this category are the graded right A-linear maps and the graded
left C-colinear maps. Any graded right-left Doi-Hopf datum (H,A,C) gives rise
to a graded right-left entwining structure (A,C, ψ): the map ψ is defined by
ψ(c ⊗ a) = (c ↼ a[−1]) ⊗ a[0]. The corresponding category of graded right-left
entwined modules coincides with gr−CM(H)gr−A.
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