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Abstract. In this article, we show that the depths of the associated
graded ring and fiber cone of a lex-segment ideal in K[x, y] are equal.

Keywords: lex-segment ideals, associated graded ring, fiber cone, Rees
algebra, Cohen-Macaulay

1. Introduction

Let K be a field of characteristic zero and R = K[x1, . . . , xn] be the polynomial
ring in n variables over K. Let Ri denote the K-vector subspace of all monomials
of degree i. We fix the ordering of variables as x1 > x2 > · · · > xn. For monomials
u = xa1

1 · · ·xan
n and v = xb1

1 · · ·xbn
n , we say that u <Lex v if deg u ≤ deg v or

deg u = deg v and bi − ai > 0 for the first time when it is nonzero. An initial lex-
segment in degree d is the set of all monomials of the form {m ∈ Rd : m ≥ u},
where u ∈ Rd. A graded ideal I is said to be a lex-segment ideal if Id is generated
by initial lex-segments for each d with Id 6= 0. Lex-segment ideals are important
due to many reasons. It is well known that among ideals with a given Hilbert
function, the lex-segment ideal has the largest number of generators. A. M. Bigatti
[1] and H. A. Hulett [7] in characteristic zero and K. Pardue [10] in positive
characteristic generalized this to all Betti numbers. They proved that the lex-
segment ideals have the largest Betti numbers among all ideals with a given Hilbert
function. Lex-segment ideals are of interest also due to classical reasons. O. Zariski
used the theory of contracted ideals to study complete ideals in 2-dimensional
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regular local rings (R,m). In the graded setting, when K is algebraically closed,
Zariski’s factorization theorem for homogeneous contracted ideals asserts that any
homogeneous contracted ideal I can be written as I = mcL1 · · ·Lt, where each Li

is a lex-segment ideal with respect to an appropriate system of coordinates xi, yi

which depends on i. [13, Theorem 1, Appendix 5], [3, Theorem 3.8].
In this article, we study the blowup algebras, namely, the associated graded

ring and the fiber cone of lex-segment ideals in a two dimensional polynomial
ring. Let R be a ring, I any ideal of R and m a maximal ideal. Then the
associated graded ring and the fiber cone of I are respectively defined as grI(R) =
⊕n≥0I

n/In+1 and F (I) = ⊕n≥0I
n/mIn. In [6], Huckaba and Marley showed that in

a regular local ring (R,m), depth grI(R) = depth R(I)−1 for any m-primary ideal
I, where R(I) = ⊕n≥0I

ntn denotes the Rees algebra of I. It is interesting to ask if
there is a similar relation between the depths of the fiber cone and the associated
graded ring. It is well known that this is not the case in general (cf. Example 11,
Example 12). In this article, we prove that the depths of these algebras are equal
for lex-segment ideals in K[x, y], where K is a field of characteristic zero.

Acknowledgements. The author would like to thank Aldo Conca, M. E. Rossi,
G. Valla, J. K. Verma and S. Goto for useful discussions regarding the contents
of the paper.

2. Equality of depths

Let R = K[x, y], where K is a field of characteristic zero and M = (x, y). In
this case, the lex-segment ideals are easy to describe. If I is a lex-segment ideal
in K[x, y], then I = (xd, xd−1ya1 , . . . , xd−kyak) for some 0 ≤ k ≤ d and 1 ≤ a1 <
a2 < · · · < ak. Note that if I is a lex-segment ideal, then In is also a lex-segment
ideal for all n ≥ 1.

Remark 1. Let S = K[[x, y]] and m = (x, y). Then for any ideal I ⊂ m, S/IS ∼=
R/I and S/mS ∼= R/m. Therefore grIS(S) ∼= grI(R) and F (IS) ∼= F (I) [3,
Lemma 2.1]. Hence, we may use the local techniques to prove the results for
grI S(S) and F (IS) and derive the same for grI(R) and F (I).

We first show that the Cohen-Macaulay property of the associated graded ring
and the fiber cone are equivalent. The dimension of the fiber cone, denoted by
s(I), is called the analytic spread. It is well known that h(I) ≤ s(I), where
h(I) denotes the height of the ideal I. The difference, s(I) − h(I), is called
the analytic deviation. Let I = (xd, xd−1ya1 , . . . , xd−kyak). If k = d, then I
is an M-primary homogeneous contracted ideal. Because of Remark 1, we can
use local theory of M-primary contracted ideals in 2-dimensional regular local
rings to study the blowup algebras. If 0 < k < d, then I is a non-M-primary
ideal of analytic deviation one. Here we note that if 0 < k < d, then I =
xd−k(xk, xk−1ya1 , . . . , xyak−1 , yak), which is of the form I = zL, where z is an R-
regular element and L an M-primary homogeneous contracted ideal. We show
that the depth of grI(R) is at most the depth of grL(R). In particular, when
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grI(R) is Cohen-Macaulay, so is grL(R). For an element a ∈ I, let a∗ denote its
initial form in grI(R) and ao denote its initial form in F (I).

Let I be an ideal of a ring R. An ideal J ⊆ I is said to be reduction of
I if In+1 = JIn for some n ≥ 0. A reduction which is minimal with respect
to inclusion is called a minimal reduction. For a reduction J of I, the number
rJ(I) = min{n | In+1 = JIn}, is called the reduction number of I with respect to
J .

Proposition 2. Let (R,m) be a Noetherian local ring and L an m-primary ideal
of R. Let x be a regular element in R and I = xL. Then depth grI(R) ≤
depth grL(R). In particular, if grI(R) is Cohen-Macaulay, then so is grL(R).

Proof. Let depth grI(R) = t. Let a1, . . . , at ∈ L \ L2 and bi = xai be such
that b∗1, . . . , b∗t ∈ grI(R) is a regular sequence. Then by Valabrega-Valla [12],
(b1, . . . , bt)∩ In = (b1, . . . , bt)I

n−1 for all n ≥ 1. We show that (a1, . . . , at)∩Ln =
(a1, . . . , at)L

n−1 for all n ≥ 1.
Let p ∈ (a1, . . . , at) ∩ Ln for some n ≥ 1. Then xnp ∈ (b1, . . . , bt) ∩

In = (b1, . . . , bt)I
n−1 = xn(a1, . . . , at)L

n−1. Therefore xnp = xnq for some
q ∈ (a1, . . . , at)L

n−1. Since x is regular in R, p = q which implies that p ∈
(a1, . . . , at)L

n−1. Therefore, by Valabrega-Valla condition, a∗1, . . . , a∗t ∈ grL(R) is
a regular sequence. �

Remark 3. In the above proposition, we have shown that if b∗1, . . . , b∗t is a regular
sequence in grI(R), then a∗1, . . . , a∗t is a regular sequence in grL(R). The following
example shows that the converse is not true in general.

Example 4. Let R = K[x, y]. Let L = M = (x, y) and I = (x3, x2y). Then
x∗, y∗ is a regular sequence in grL(R). It can be easily seen that I2 : x3 =
(x3, x2y, xy2) 6= I. Therefore (x3)∗ ∈ grI(R) is not regular. However, this does
not imply that the depth grI(R) < 2. In fact, in this case, it can be seen (using
any of the computational commutative algebra packages) that grI(R) is indeed
Cohen-Macaulay.

The following result follows directly from Theorem 2.1 of [4].

Proposition 5. Let (R,m) be a Cohen-Macaulay local ring and I be an ideal of
R with s(I) = r and

H(F (I), t) =
a + bt

(1− t)r
.

If F (I) is Cohen-Macaulay, then rJ(I) ≤ 1 for any minimal reduction J of I.

We show that the Cohen-Macaulay property of the associated graded ring and
the fiber cone are equivalent:

Theorem 6. Let I be a lex-segment ideal in K[x, y]. Then F (I) is Cohen-
Macaulay if and only if grI(R) is Cohen-Macaulay.
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Proof. Let I = (xd, xd−1ya1 , . . . , xd−kyak) for some 0 ≤ k ≤ d and 1 ≤ a1 < a2 <
· · · < ak. If k = 0, then I = (xd) and both grI(R) and F (I) are Cohen-Macaulay.
We deal the cases k = d and 0 < k < d separately. Note that because of Remark 1,
we may assume that I is an ideal in a two dimensional regular local ring (R,M).

Let k = d. In this case, I isM-primary. Suppose grI(R) is Cohen-Macaulay. Since
I is contracted, by Theorem 5.1 of [8], for any minimal reduction J ⊂ I, I2 = JI.
By [11], F (I) is Cohen-Macaulay.

Conversely, suppose that F (I) is Cohen-Macaulay. Note that for all n ≥ 0,
µ(In) = nd + 1 so that the Hilbert series of F (I) is given by

H(F (I), t) =
1 + (d− 1)t

(1− t)2
.

Since F (I) is Cohen-Macaulay, by Proposition 5, rJ(I) ≤ 1 for any minimal
reduction J of I. Therefore, grI(R) is Cohen-Macaulay [12].

Now let 0 < k < d. In this case, I = xd−kL, where L = (xk, xk−1ya1 , . . . , yak).
Suppose grI(R) is Cohen-Macaulay. Then by Proposition 2, grL(R) is Cohen-
Macaulay. By Proposition 2.6 of [6], R(L) is Cohen-Macaulay. Hence the re-
duction number r(L) is at most one, by Goto-Shimoda theorem [5]. Therefore
r(I) ≤ 1. Therefore by [11], F (I) is Cohen-Macaulay.

Suppose now that F (I) is Cohen-Macaulay. Since µ(In) = nk + 1,

H(F (I), t) =
1 + (k − 1)t

(1− t)2
.

Therefore by Proposition 5, I2 = JI for any minimal reduction J of I. Hence,
Valabrega-Valla condition implies that depth grI(R) ≥ s(I) = 2 so that grI(R) is
Cohen-Macaulay. �

Using Proposition 2, we give a simple proof of the fact that for lex-segment ideals
the Cohen-Macaulayness of the Rees algebra and the associated graded rings are
equivalent. This has been proved for m-primary ideals in a regular local ring
(R,m). Since we could not find a generalization of this result for the non-m-
primary ideals, we use this opportunity to present a simple proof in the case of
lex-segment ideals.

Theorem 7. Let R = K[x, y] and I a lex-segment ideal. Then R(I) is Cohen-
Macaulay if and only if grI(R) is Cohen-Macaulay.

Proof. Let I = (xd, xd−1ya1 , . . . , xd−kyak). If k = d, then I is M-primary and
hence it follows from Proposition 2.6 of [6]. If k = 0, then I is a parameter ideal
and hence both the graded algebras are Cohen-Macaulay. Suppose 0 < k < d.
Then I = xd−kL, where L = (xk, xk−1ya1 , . . . , yak). If grI(R) is Cohen-Macaulay,
then by Proposition 2 grL(R) is Cohen-Macaulay. Since L is M-primary by
Proposition 2.6 of [6], R(L) is Cohen-Macaulay. Since xd−k is a regular element,
R(L) ∼= R(I) and hence R(I) is Cohen-Macaulay.
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Conversely, suppose R(I) is Cohen-Macaulay. Hence R(L) is Cohen-Macaulay.
By Goto-Shimoda theorem, r(L) ≤ 1. Therefore r(I) ≤ 1 and hence grI(R) is
Cohen-Macaulay. �

Remark 8. The above result together with Theorem 3.4 of [9] implies that for
any lex-segment ideal I in K[x, y], depth grI(R) = depth R(I)− 1.

Now we proceed to prove that the fiber cone has positive depth if and only if
the associated graded ring has positive depth. We begin with some properties of
lex-segment ideals.

Lemma 9. Let I = (xd, xd−1ya1 , . . . , xd−kyak) be a lex-segment ideal in R =
K[x, y] and M = (x, y). Then,

1. MIn : y = In for all n ≥ 0;

2. MIn+1 : I = M(In+1 : I) for all n ≥ 0.

Proof. (1) Note that MIn = (xnd+1) + yIn for all n ≥ 0. Since MIn : y is
a monomial ideal, it is enough to show that the monomials in MIn : y are in
In. For a polynomial p ∈ K[x, y], let degx p denote the degree of the polynomial
with respect to x, considering it as a polynomial in x with coefficients in K[y] and
degy p denote the degree of the polynomial p with respect to y, considering it as a
polynomial in y with coefficients in K[x]. Let p ∈ MIn : y. If degx p ≥ nd, then
clearly p ∈ In. Therefore, we may assume that degx p < nd. Set p = xnd−rys for
some r, s ≥ 1. Since In is also a lex-segment ideal, for each nd − nk ≤ t ≤ nd,
there exists a unique minimal generator pt such that degx pt = t. Let u = xnd−ryb

be the minimal generator of In with degx u = nd − r. Then, py ∈ MIn implies
that s + 1 ≥ b + 1. Hence s ≥ b. Therefore, p = xnd−rys ∈ In.

(2) Let p ∈MIn+1 : I. If p = xr for some r, then xr.xd ∈MIn+1. Since any term
which is a pure power in x in MIn+1 has degree at least (n + 1)d + 1, we get that
r + d ≥ (n + 1)d + 1. Therefore r ≥ nd + 1 so that xr ∈ MIn ⊆ M(In+1 : I).
Now assume that y divides p. Write p = yp′. Then yp′f ∈ MIn+1 for all f ∈ I.
Therefore p′f ∈ MIn+1 : y = In+1 for all f ∈ I. Hence p′ ∈ In+1 : I so that
p ∈M(In+1 : I). �

Theorem 10. Let I be a lex-segment ideal in R. Then depth grI(R) > 0 if and
only if depth F (I) > 0.

Proof. Let depth grI(R) > 0. Then, In+1 : I = In for all n ≥ 0. Therefore,
MIn+1 : I = M(In+1 : I) = MIn for all n ≥ 0. Hence depth F (I) > 0.

Conversely, assume that depth F (I) > 0. Then, (MIn+1 : I) ∩ In = MIn for
all n ≥ 0. We need to prove that In+1 : I = In for all n ≥ 0. Suppose that
there exists an n such that In  In+1 : I. Since I is a monomial ideal, In+1 : I
is generated by monomials and hence there exists a monomial generator p of
In+1 : I such that p /∈ In. Since In+1 : I is also a lex-segment ideal, we can write
p = xnd−tys for some s. Let q ∈ In be the minimal generator of In such that
degx q = nd − t. Then degy q > s, since p /∈ In. Therefore qI ⊆ MIn+1. Hence
q ∈ (MIn+1 : I) ∩ In = MIn. This contradicts the fact that q is a minimal
generator of In. Therefore In+1 : I = In for all n ≥ 0. Hence depth grI(R) > 0. �
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3. Examples

In this section we give some examples to show that depths of fiber cone and the
associated graded rings are not related in general.

Example 11. Let I = (x5, x3y3, xy7, y9) ⊂ R = K[x, y]. Then it can be seen
that x2y6 ∈ I2 : I, but not in I. Therefore depth grI(R) = 0. It can also be seen
that MIn+1 : I = MIn for all n ≥ 1. Therefore depth F (I) > 0.

Example 12. Let A = K[[t6, t11, t15, t31]], I = (t6, t11, t31) and J = (t6). Then, it
can easily be verified that `(I2/JI) = 1 and I3 = JI2. Since I2 ∩ J = JI, G(I) is
Cohen-Macaulay. It can also be seen that t37 ∈ MI2, but t37 /∈ MJI. Therefore
F (I) is not Cohen-Macaulay.
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