Remarks on Numerically Positive Line Bundles on Normal Surfaces

Erika Emura Hideo Kojima*

Niigata High School, Niigata, Japan

Department of Information Engineering, Faculty of Engineering Niigata University, Niigata 950-2181, Japan e-mail: kojima@ie.niigata-u.ac.jp

Abstract. Let L be a numerically positive Cartier divisor on a normal complete algebraic surface X. We prove that L is ample if $g(L) \leq 1$. MSC 2000: 14C20 (primary), 14J26 (secondary)

1. Introduction

Let k be an algebraically closed field of char $(k) \ge 0$, which we fix as the ground field throughout the present article. Let X be a normal complete algebraic surface and L a Cartier divisor on X. Then the sectional genus g(L) of L defined by $g(L) = 1 + L(K_X + L)/2$, where K_X is the canonical divisor of X. Since L is Cartier, g(L) is an integer.

A Cartier divisor L on a normal complete algebraic surface X is said to be numerically positive or nup for shortness if LC > 0 for any irreducible curve Con X. It is clear that an ample Cartier divisor is nup. Examples of nup nonample divisors on smooth projective surfaces were constructed by Mumford (see [3, p. 56]) and by Lanteri-Rondena (see [7, §3]). Nevertheless, it seems that nup non-ample Cartier divisors are very rare. In fact, Lanteri-Rondena [7] proved that a nup divisor L on a smooth complex projective surface with $g(L) \leq 1$ is ample and

0138-4821/93 \$ 2.50 © 2010 Heldermann Verlag

^{*}The second author is supported by Grant-in-Aid for Scientific Research (No. 20740006) from JSPS.

gave some necessarily conditions that surfaces containing nup non-ample Cartier divisors.

In the present article, we study nup Cartier divisors on normal complete algebraic surfaces and attempt to generalize some results of Lanteri-Rondena [7]. In Section 3, we prove the following result which is the main result of the present article.

Theorem 1.1. Let L be a nup Cartier divisor on a normal complete algebraic surface. Then we have:

(1)
$$g(L) \ge 0$$
.

(2) If $g(L) \leq 1$, then L is ample.

As easy consequences of Theorem 1.1, we obtain the following corollaries. Corollary 1.2 is a special case of [5, Theorem] (see also [8]).

Corollary 1.2. Let X be a normal complete \mathbb{Q} -Gorenstein algebraic surface. Then $-K_X$ is ample if and only if it is nup.

Corollary 1.3. Let L be a nef Cartier divisor on a normal complete \mathbb{Q} -Gorenstein algebraic surface X. Then $K_X + L$ is ample if and only if it is nup.

Throughout the present article, we employ the following notations:

- $\kappa(X)$: The Kodaira dimension of a smooth projective variety X,
 - \sim : the linear equivalence of Cartier divisors,
 - \equiv : the numerically equivalence of \mathbb{Q} -divisors.

2. Preliminaries

A semipolarized normal surface is, by definition, a pair (X, L) of a normal complete algebraic surface X and a nef Cartier divisor L on X. A semipolarized normal surface (X, L) is said to be a *scroll* over a smooth curve B if X is a \mathbb{P}^1 -bundle over B and $L\ell = 1$ for a fiber ℓ of the ruling $p: X \to B$.

Lemma 2.1. Let (X, L) be a scroll over a smooth curve B of genus g. Then g(L) = g.

Proof. See [9, Lemma 3.2].

Now, let X be a normal complete algebraic surface and $\pi: Y \to X$ the minimal resolution of X. Let L be a nup Cartier divisor on X and set $M := \pi^* L$. Then M is nef.

Lemma 2.2. Let C be an irreducible curve on Y. Then MC = 0 if and only if C is π -exceptional.

Proof. Since L is nup, we have $MC = L\pi_*C > 0$ provided C is not π -exceptional. Hence the assertion follows.

The following lemma is a special case of [9, Theorem 1].

- (1) $K_Y + M$ is nef.
- (2) $(Y, M) \cong (X, L) \cong (\mathbb{P}^2, \mathcal{O}(r)), r = 1 \text{ or } 2.$
- (3) (Y, M) is a scroll over a smooth curve.

Proof. By Lemma 2.2, $(K_Y + M)\ell \ge 0$ for any (-1)-curve ℓ on Y. Hence, by using the same argument as in [9, §2], we know that one of the assertions (2) and (3) holds true if $K_Y + M$ is not nef.

3. Proofs

In this section, we prove the results stated in the introduction.

Let L be a nup Cartier divisor on a normal complete algebraic surface X. Let $\pi: Y \to X$ be the minimal resolution of X and set $M := \pi^* L$. Then g(L) = g(M). In Lemmas 3.1–3.3 below, we retain this situation.

Lemma 3.1. If $g(L) \leq 0$, then g(L) = 0 and L is ample.

Proof. Assume that $g(L)(=g(M)) \leq 0$. Then $M(K_Y + M) = 2g(M) - 2 \leq -2$, so that $K_Y + M$ is not nef because M is nef. Hence one of the cases (2) and (3) in Lemma 1.4 takes place. In the case (2), we can easily see that L = M is ample and g(L) = 0.

We consider the case (3). If (Y, M) is a scroll over a smooth curve B of genus g, then $0 \leq g = g(M)$ by Lemma 2.1. So $B \cong \mathbb{P}^1$ and g(M) = 0. In particular, Y is the Hirzebruch surface \mathbb{F}_n of degree $n(\geq 0)$. Let ℓ be a fiber of the fixed ruling on \mathbb{F}_n and M_n a minimal section of \mathbb{F}_n . Then $M \sim M_n + b\ell$ for some integer b. If X is smooth, then $0 < LM_n = b - n$. So b > n and hence L is ample by [4, Proposition V.2.20]. We assume that X is not smooth. Then X is the rational cone obtained from \mathbb{F}_n $(n \geq 2)$ by contracting the minimal section M_n . Since $MM_n = 0, b = n$ and so $L^2 = M^2 = (M_n + n\ell)^2 = n > 0$. Hence L is ample by the Nakai-Moishezon criterion.

Lemma 3.2. If g(L) = 1 and $K_Y + M$ is not nef, then L is ample.

Proof. By Lemmas 2.1 and 2.3, (Y, M) is a scroll over a smooth elliptic curve B. Then $Y \cong \mathbb{P}_B(\mathcal{E})$, where \mathcal{E} is a normalized rank two vector bundle on B. Set $e := -\deg(\det \mathcal{E})$. Then $e \ge -1$ by [4, p. 384]. Let ℓ be a fiber of the ruling $p: Y \to B$ and C_0 a minimal section. Then $M \equiv C_0 + b\ell$ for some integer b. Since M is nef, it follows from [9, Lemmas 1.4 and 1.5] that $b \ge e$ (resp. $b \ge 0$) if $e \ge 0$ (resp. e = -1). So, if e = -1 then $M \equiv C_0 + b\ell$ is ample by [4, Proposition V.2.21].

Assume that $e \ge 0$. If b > e, then $M \equiv C_0 + b\ell$ is ample by [4, Proposition V.2.20]. So we may assume that b = e. If e = 0 then $MC_0 = (C_0)^2 = 0$, which contradicts Lemma 2.2. So, e > 0. Then $L^2 = M^2 = (C_0 + e\ell)^2 = e > 0$ and hence L is ample by the Nakai-Moishezon criterion.

Lemma 3.3. If g(L) = 1 and $K_Y + M$ is nef, then L is ample.

Proof. By the Nakai-Moishezon criterion, it suffices to show that $L^2 > 0$. Suppose that $L^2(=M^2) = 0$. Then $K_Y M = 0$ because g(L) = 1. Since $K_Y + M$ is nef, we have $0 \leq (K_Y + M)^2 = (K_Y)^2$. If $(K_Y)^2 > 0$, then $M \equiv 0$ by the Hodge index theorem. This contradicts the assumption that L is nup. Hence $(K_Y)^2 = 0$.

We consider the following two cases separately.

Case 1: K_Y is not nef. Since $(K_Y)^2 = 0$, one of the following holds by [11, Theorem 2.1].

- (i) Y is a \mathbb{P}^1 -bundle over a smooth elliptic curve B.
- (ii) Y contains (-1)-curves.

We shall consider the above two subcases separately.

Subcase 1-(i). There exists a normalized rank two vector bundle \mathcal{E} on B such that $Y \cong \mathbb{P}_B(\mathcal{E})$. Set $e := -\deg(\det \mathcal{E})$. Let C_0 be a minimal section and ℓ a fiber of the ruling $p: Y \to B$. Then $K_Y \equiv -2C_0 - e\ell$. Now we write $M \equiv aC_0 + b\ell$. Then $K_Y + M \equiv (a-2)C_0 + (b-e)\ell$. Since $K_Y + M$ is nef, we have $a \ge 2$ by [9, Lemmas 1.4 and 1.5]. Moreover, $0 = M^2 = a(2b - ae)$, and so 2b = ae. If $e \ge 0$, then $b \ge ae \ge 0$ because M is nef. Hence b = e = 0. However, this contradicts Lemma 2.2 because $MC_0 = (C_0)^2 = 0$. Assume that e = -1. By [10, Theorem 4], there exists an elliptic fibration $f: Y \to \mathbb{P}^1$ onto \mathbb{P}^1 . By [1, Theorem 2], we have $K_Y \equiv \alpha F$, where $\alpha < 0$ and F is a fiber of f. This also contradicts Lemma 2.2 because $MF = (1/\alpha)MK_Y = 0$ and $F^2 = 0$. Thus we know that Subcase 1-(i) does not take place.

Subcase 1-(ii). We prove the following claim.

Claim. Y is a rational surface.

Proof. Since $(K_Y)^2 = 0$ and Y is not relatively minimal, Y is either a rational surface or a surface of general type. If Y is of general type, then K_Y is numerically equivalent to an effective \mathbb{Q} -divisor H. Since $HM = K_YM = 0$, $(K_Y)^2 = H^2 < 0$ by Lemma 2.2. This is a contradiction.

Since $MK_Y = M^2 = (K_Y)^2 = 0$ and K_Y is not nef, it follows from Lemma 2.2 that $h^0(Y, mM) = h^2(Y, mM) = 0$ for any integer m > 0. So $\chi(mM) = -h^1(Y, mM) \leq 0$. On the other hand, by the Riemann-Roch theorem and the claim as above, we have

$$\chi(mM) = \frac{1}{2}mM(mM - K_Y) + \chi(\mathcal{O}_Y) = \chi(\mathcal{O}_Y) = 1.$$

This is a contradiction. Thus we know that Subcase 1-(ii) does not take place. Case 2: K_Y is nef. Since $(K_Y)^2 = 0$, Y is a minimal surface of $\kappa(Y) = 0$ or 1. Subcase 2-(i): $\kappa(Y) = 1$ (cf. Subcase 1-(i)). By the classification theory of smooth projective surfaces in any characteristic (cf. [12]), there exists an elliptic or quasielliptic fibration $f: Y \to B$ onto a smooth projective curve B. By [1, Theorem 2], we have $K_Y \equiv \alpha F$, where $\alpha > 0$ and F is a general fiber of f. Then MF = $(1/\alpha)MK_Y = 0$ and $F^2 = 0$. This contradicts Lemma 2.2. Thus we know that Subcase 2-(i) does not take place.

Subcase 2-(ii): $\kappa(Y) = 0$. By using the same argument as in Subcase 1-(ii) and by [1, p. 25], we may assume that $\chi(\mathcal{O}_Y) = 0$. Namely, Y is an abelian, hyperelliptic, or quasi-hyperelliptic surface (cf. [12], [1] and [2]). Then Y contains no irreducible curves with negative self-intersection number. So $X \cong Y$. However, this contradicts Lemma 3.4 below. Thus we know that Subcase 2-(ii) does not take place.

The following lemma is proved in [7, Lemma (2.2)] in the case char(k) = 0. Almost all the part of the proof of [7, Lemma (2.2)] works in arbitrary characteristic.

Lemma 3.4. Let S be a minimal smooth projective surface of $\kappa(S) = 0$. Then every nup divisor on S is ample.

Proof. If $\chi(\mathcal{O}_S) > 0$, then the assertion can be verified by using the same argument as Subcase 1-(ii) in the proof of Lemma 3.3. So we may assume further that $\chi(\mathcal{O}_S) = 0$, i.e., S is an abelian, hyperelliptic, or quasi-hyperelliptic surface.

If S is an abelian surface, then the assertion can be verified by using the same argument as in the proof of [14, Proposition 1.4]. For the reader's convenience, we reproduce the proof. Let L be a nup divisor on S. Given a point $x \in S$, $T_x: S \to S$ denotes translation by x according to the group law. Define

$$\phi_L: S \to \operatorname{Pic}(S)$$

as $\phi_L(x) := T_x^*(L) \otimes L^{-1}$, and write $K(L) = \text{Ker}\phi_L$. The connected component Z of K(L) passing through the origin is a subgroup scheme. Since L is nup, we know that dim Z = 0, K(L) is finite, and deg $\phi_L > 0$. Since $\chi(L) = (1/2)L^2$ by the Riemann-Roch theorem, and also $\chi(L)^2 = \text{deg }\phi_L$ (cf. [13, p. 150]), it follows that $L^2 \neq 0$. Hence L is ample.

We treat the case where S is a hyperelliptic or quasi-hyperelliptic surface. Then the Albanese variety Alb(S) of S is an elliptic curve and the Albanese map

$$f: S \to \operatorname{Alb}(S)$$

is an elliptic or quasi-elliptic fibration (see [1, Proposition]). Moreover, there exists a second structure $g: S \to \mathbb{P}^1$ of S as an elliptic surface over \mathbb{P}^1 by [1, Theorem 3]. Let F (resp. G) be a fiber of f (resp. g). Then FG > 0. Since $b_2(S) = 2$, $\{F, G\}$ is a basis of $NS(S) \otimes \mathbb{Q}$. Let L be a nup divisor on S. Then $L \equiv aF + bG$ for some $a, b \in \mathbb{Q}$. Since L is nup, we have a = LG/FG > 0 and b = LF/FG > 0. So, $L^2 = 2abFG > 0$ and hence L is ample. \Box

Theorem 1.1 is thus verified.

Proof of Corollary 1.2. Let n be a positive integer such that nK_X is Cartier. Assume that $-K_X$ is nup non-ample. Then $g(-nK_X) = 1$ since $(-K_X)^2 = 0$. This contradicts Theorem 1.1. Proof of Corollary 1.3. Assume that $K_X + L$ is nup non-ample. Then $(K_X + L)^2 = 0$. Since $(K_X + L)L \ge 0$, we have $(K_X + L)K_X \le 0$. Then,

$$g(K_X + L) = \frac{1}{2}(K_X + L)K_X + 1 \le 1.$$

This contradicts Theorem 1.1.

References

- Bombieri, E.; Mumford, D.: Enriques' classification of surfaces in char. p. II. In: Complex Analysis and Algebraic Geometry, Cambridge University Press, 1977, 23–42.
 Zbl 0348.14021
- Bombieri, E.; Mumford, D.: Enriques' classification of surfaces in char. p. III. Invent. Math. 35 (1976), 197–232.
 Zbl 0336.14010
- [3] Hartshorne, R.: Ample Subvarieties of Algebraic Varieties. Lect. Notes Math. 156, Springer, Berlin-Heidelberg-New York 1970. <u>Zbl 0208.48901</u>
- [4] Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics 52, Springer, New York-Heidelberg-Berlin 1977.
 Zbl 0367.14001
- Kojima, H.: On normal surfaces with strictly nef anticanonical divisors. Arch. Math. 77(6) (2001), 517–521.
 Zbl 1063.14046
- [6] Lanteri, A.; Palleschi, M.: About the adjunction process for polarized algebraic surfaces. J. Reine Angew. Math. 352 (1984), 15–23. Zbl 0535.14003
- [7] Lanteri, A.; Rondena, B.: Numerically positive divisors on algebraic surfaces. Geom. Dedicata 53(2) (1994), 145–154.
 Zbl 0841.14004
- [8] Maeda, H.: A criterion for a smooth surface to be Del Pezzo. Math. Proc. Camb. Philos. Soc. 113 (1993), 1–3.
 Zbl 0838.14034
- [9] Maeda, H.: Nef line bundles on algebraic surfaces. Kodai Math. J. 18(1) (1995), 187–197.
 Zbl 0854.14005
- [10] Maruyama, M.: On automorphism groups of ruled surfaces. J. Math. Kyoto Univ. 11 (1971), 89–112.
 Zbl 0213.47803
- [11] Mori, S.: Threefolds whose canonical bundles are not numerically effective. Ann. Math. (2) 116 (1982), 283–360.
 Zbl 0557.14021
- [12] Mumford, D.: Enriques' classification of surfaces in char. p. I. In: Global Analysis, Princeton University Press, 1969, 325–339.
 Zbl 0188.53201
- [13] Mumford, D.: Abelian Varieties. Tata Institute of Fundamental Research Studies in Mathematics. Oxford University Press, 1970. <u>Zbl 0223.14022</u>
- Serrano, F.: Strictly nef divisors and Fano threefolds. J. Reine Angew. Math.
 464 (1995), 187–206. Zbl 0826.14006

Received October 27, 2008