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1. Introduction

Let k be an algebraically closed field of char(k) ≥ 0, which we fix as the ground
field throughout the present article. Let X be a normal complete algebraic surface
and L a Cartier divisor on X. Then the sectional genus g(L) of L defined by
g(L) = 1 + L(KX + L)/2, where KX is the canonical divisor of X. Since L is
Cartier, g(L) is an integer.

A Cartier divisor L on a normal complete algebraic surface X is said to be
numerically positive or nup for shortness if LC > 0 for any irreducible curve C
on X. It is clear that an ample Cartier divisor is nup. Examples of nup non-
ample divisors on smooth projective surfaces were constructed by Mumford (see
[3, p. 56]) and by Lanteri-Rondena (see [7, §3]). Nevertheless, it seems that nup
non-ample Cartier divisors are very rare. In fact, Lanteri-Rondena [7] proved that
a nup divisor L on a smooth complex projective surface with g(L) ≤ 1 is ample and
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gave some necessarly conditions that surfaces containing nup non-ample Cartier
divisors.

In the present article, we study nup Cartier divisors on normal complete al-
gebraic surfaces and attempt to generalize some results of Lanteri-Rondena [7].
In Section 3, we prove the following result which is the main result of the present
article.

Theorem 1.1. Let L be a nup Cartier divisor on a normal complete algebraic
surface. Then we have:

(1) g(L) ≥ 0.

(2) If g(L) ≤ 1, then L is ample.

As easy consequences of Theorem 1.1, we obtain the following corollaries. Corol-
lary 1.2 is a special case of [5, Theorem] (see also [8]).

Corollary 1.2. Let X be a normal complete Q-Gorenstein algebraic surface.
Then −KX is ample if and only if it is nup.

Corollary 1.3. Let L be a nef Cartier divisor on a normal complete Q-Gorenstein
algebraic surface X. Then KX + L is ample if and only if it is nup.

Throughout the present article, we employ the following notations:

κ(X): The Kodaira dimension of a smooth projective variety X,

∼: the linear equivalence of Cartier divisors,

≡: the numerically equivalence of Q-divisors.

2. Preliminaries

A semipolarized normal surface is, by definition, a pair (X,L) of a normal complete
algebraic surface X and a nef Cartier divisor L on X. A semipolarized normal
surface (X, L) is said to be a scroll over a smooth curve B if X is a P1-bundle
over B and L` = 1 for a fiber ` of the ruling p : X → B.

Lemma 2.1. Let (X, L) be a scroll over a smooth curve B of genus g. Then
g(L) = g.

Proof. See [9, Lemma 3.2]. �

Now, let X be a normal complete algebraic surface and π : Y → X the minimal
resolution of X. Let L be a nup Cartier divisor on X and set M := π∗L. Then
M is nef.

Lemma 2.2. Let C be an irreducible curve on Y . Then MC = 0 if and only if
C is π-exceptional.

Proof. Since L is nup, we have MC = Lπ∗C > 0 provided C is not π-exceptional.
Hence the assertion follows. �

The following lemma is a special case of [9, Theorem 1].
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Lemma 2.3. With the same notation as above, the pair (Y, M) satisfies one of
the following:

(1) KY + M is nef.

(2) (Y,M) ∼= (X,L) ∼= (P2,O(r)), r = 1 or 2.

(3) (Y,M) is a scroll over a smooth curve.

Proof. By Lemma 2.2, (KY + M)` ≥ 0 for any (−1)-curve ` on Y . Hence, by
using the same argument as in [9, §2], we know that one of the assertions (2) and
(3) holds true if KY + M is not nef. �

3. Proofs

In this section, we prove the results stated in the introduction.
Let L be a nup Cartier divisor on a normal complete algebraic surface X. Let

π : Y → X be the minimal resolution of X and set M := π∗L. Then g(L) = g(M).
In Lemmas 3.1–3.3 below, we retain this situation.

Lemma 3.1. If g(L) ≤ 0, then g(L) = 0 and L is ample.

Proof. Assume that g(L)(= g(M)) ≤ 0. Then M(KY + M) = 2g(M)− 2 ≤ −2,
so that KY + M is not nef because M is nef. Hence one of the cases (2) and (3)
in Lemma 1.4 takes place. In the case (2), we can easily see that L = M is ample
and g(L) = 0.

We consider the case (3). If (Y, M) is a scroll over a smooth curve B of genus
g, then 0 ≤ g = g(M) by Lemma 2.1. So B ∼= P1 and g(M) = 0. In particular, Y
is the Hirzebruch surface Fn of degree n(≥ 0). Let ` be a fiber of the fixed ruling
on Fn and Mn a minimal section of Fn. Then M ∼ Mn + b` for some integer b.
If X is smooth, then 0 < LMn = b − n. So b > n and hence L is ample by [4,
Proposition V.2.20]. We assume that X is not smooth. Then X is the rational
cone obtained from Fn (n ≥ 2) by contracting the minimal section Mn. Since
MMn = 0, b = n and so L2 = M2 = (Mn + n`)2 = n > 0. Hence L is ample by
the Nakai-Moishezon criterion. �

Lemma 3.2. If g(L) = 1 and KY + M is not nef, then L is ample.

Proof. By Lemmas 2.1 and 2.3, (Y, M) is a scroll over a smooth elliptic curve
B. Then Y ∼= PB(E), where E is a normalized rank two vector bundle on B. Set
e := − deg(det E). Then e ≥ −1 by [4, p. 384]. Let ` be a fiber of the ruling
p : Y → B and C0 a minimal section. Then M ≡ C0 + b` for some integer b.
Since M is nef, it follows from [9, Lemmas 1.4 and 1.5] that b ≥ e (resp. b ≥ 0) if
e ≥ 0 (resp. e = −1). So, if e = −1 then M ≡ C0 + b` is ample by [4, Proposition
V.2.21].

Assume that e ≥ 0. If b > e, then M ≡ C0 + b` is ample by [4, Proposition
V.2.20]. So we may assume that b = e. If e = 0 then MC0 = (C0)

2 = 0, which
contradicts Lemma 2.2. So, e > 0. Then L2 = M2 = (C0 + e`)2 = e > 0 and
hence L is ample by the Nakai-Moishezon criterion. �
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Lemma 3.3. If g(L) = 1 and KY + M is nef, then L is ample.

Proof. By the Nakai-Moishezon criterion, it suffices to show that L2 > 0. Suppose
that L2(= M2) = 0. Then KY M = 0 because g(L) = 1. Since KY + M is nef, we
have 0 ≤ (KY + M)2 = (KY )2. If (KY )2 > 0, then M ≡ 0 by the Hodge index
theorem. This contradicts the assumption that L is nup. Hence (KY )2 = 0.

We consider the following two cases separately.

Case 1: KY is not nef. Since (KY )2 = 0, one of the following holds by [11,
Theorem 2.1].

(i) Y is a P1-bundle over a smooth elliptic curve B.

(ii) Y contains (−1)-curves.

We shall consider the above two subcases separately.

Subcase 1-(i). There exists a normalized rank two vector bundle E on B such that
Y ∼= PB(E). Set e := − deg(det E). Let C0 be a minimal section and ` a fiber of
the ruling p : Y → B. Then KY ≡ −2C0 − e`. Now we write M ≡ aC0 + b`.
Then KY + M ≡ (a− 2)C0 + (b− e)`. Since KY + M is nef, we have a ≥ 2 by [9,
Lemmas 1.4 and 1.5]. Moreover, 0 = M2 = a(2b− ae), and so 2b = ae. If e ≥ 0,
then b ≥ ae ≥ 0 because M is nef. Hence b = e = 0. However, this contradicts
Lemma 2.2 because MC0 = (C0)

2 = 0. Assume that e = −1. By [10, Theorem 4],
there exists an elliptic fibration f : Y → P1 onto P1. By [1, Theorem 2], we have
KY ≡ αF , where α < 0 and F is a fiber of f . This also contradicts Lemma 2.2
because MF = (1/α)MKY = 0 and F 2 = 0. Thus we know that Subcase 1-(i)
does not take place.

Subcase 1-(ii). We prove the following claim.

Claim. Y is a rational surface.

Proof. Since (KY )2 = 0 and Y is not relatively minimal, Y is either a rational
surface or a surface of general type. If Y is of general type, then KY is numerically
equivalent to an effective Q-divisor H. Since HM = KY M = 0, (KY )2 = H2 < 0
by Lemma 2.2. This is a contradiction. �

Since MKY = M2 = (KY )2 = 0 and KY is not nef, it follows from Lemma
2.2 that h0(Y, mM) = h2(Y,mM) = 0 for any integer m > 0. So χ(mM) =
−h1(Y, mM) ≤ 0. On the other hand, by the Riemann-Roch theorem and the
claim as above, we have

χ(mM) =
1

2
mM(mM −KY ) + χ(OY ) = χ(OY ) = 1.

This is a contradiction. Thus we know that Subcase 1-(ii) does not take place.

Case 2: KY is nef. Since (KY )2 = 0, Y is a minimal surface of κ(Y ) = 0 or 1.

Subcase 2-(i): κ(Y ) = 1 (cf. Subcase 1-(i)). By the classification theory of smooth
projective surfaces in any characteristic (cf. [12]), there exists an elliptic or quasi-
elliptic fibration f : Y → B onto a smooth projective curve B. By [1, Theorem
2], we have KY ≡ αF , where α > 0 and F is a general fiber of f . Then MF =
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(1/α)MKY = 0 and F 2 = 0. This contradicts Lemma 2.2. Thus we know that
Subcase 2-(i) does not take place.

Subcase 2-(ii): κ(Y ) = 0. By using the same argument as in Subcase 1-(ii)
and by [1, p. 25], we may assume that χ(OY ) = 0. Namely, Y is an abelian,
hyperelliptic, or quasi-hyperelliptic surface (cf. [12], [1] and [2]). Then Y contains
no irreducible curves with negative self-intersection number. So X ∼= Y . However,
this contradicts Lemma 3.4 below. Thus we know that Subcase 2-(ii) does not
take place. �

The following lemma is proved in [7, Lemma (2.2)] in the case char(k) = 0. Almost
all the part of the proof of [7, Lemma (2.2)] works in arbitrary characteristic.

Lemma 3.4. Let S be a minimal smooth projective surface of κ(S) = 0. Then
every nup divisor on S is ample.

Proof. If χ(OS) > 0, then the assertion can be verified by using the same
argument as Subcase 1-(ii) in the proof of Lemma 3.3. So we may assume further
that χ(OS) = 0, i.e., S is an abelian, hyperelliptic, or quasi-hyperelliptic surface.

If S is an abelian surface, then the assertion can be verified by using the same
argument as in the proof of [14, Proposition 1.4]. For the reader’s convenience,
we reproduce the proof. Let L be a nup divisor on S. Given a point x ∈ S,
Tx : S → S denotes translation by x according to the group law. Define

φL : S → Pic(S)

as φL(x) := T ∗
x (L) ⊗ L−1, and write K(L) = KerφL. The connected component

Z of K(L) passing through the origin is a subgroup scheme. Since L is nup, we
know that dim Z = 0, K(L) is finite, and deg φL > 0. Since χ(L) = (1/2)L2 by
the Riemann-Roch theorem, and also χ(L)2 = deg φL (cf. [13, p. 150]), it follows
that L2 6= 0. Hence L is ample.

We treat the case where S is a hyperelliptic or quasi-hyperelliptic surface.
Then the Albanese variety Alb(S) of S is an elliptic curve and the Albanese map

f : S → Alb(S)

is an elliptic or quasi-elliptic fibration (see [1, Proposition]). Moreover, there exists
a second structure g : S → P1 of S as an elliptic surface over P1 by [1, Theorem
3]. Let F (resp. G) be a fiber of f (resp. g). Then FG > 0. Since b2(S) = 2,
{F, G} is a basis of NS(S)⊗Q. Let L be a nup divisor on S. Then L ≡ aF + bG
for some a, b ∈ Q. Since L is nup, we have a = LG/FG > 0 and b = LF/FG > 0.
So, L2 = 2abFG > 0 and hence L is ample. �

Theorem 1.1 is thus verified.

Proof of Corollary 1.2. Let n be a positive integer such that nKX is Cartier.
Assume that −KX is nup non-ample. Then g(−nKX) = 1 since (−KX)2 = 0.
This contradicts Theorem 1.1. �
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Proof of Corollary 1.3. Assume that KX +L is nup non-ample. Then (KX +L)2 =
0. Since (KX + L)L ≥ 0, we have (KX + L)KX ≤ 0. Then,

g(KX + L) =
1

2
(KX + L)KX + 1 ≤ 1.

This contradicts Theorem 1.1. �
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