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Abstract. We investigate generalized quadrangles Γ that admit at least
two projective axes of symmetry. We show that if there are three such
axes incident with a common point x, then x is a translation point of
Γ. In case that Γ is moreover a compact connected quadrangle with
topological parameters (p, p), p ∈ N, then Γ is a topological translation
generalized quadrangle. We further investigate the case of two opposite
projective axes of symmetry and obtain a characterization of the dual
of the symplectic quadrangle over R or C among compact connected
quadrangles with equal topological parameters.

1. Introduction

Symmetries about a line L of a generalized quadrangle Γ, that is, collineations of
Γ that fix each line of Γ meeting L, play a prominent role in the investigation of
generalized quadrangles and other geometries and the structure of a quadrangle is
well understood if it admits sufficiently many symmetries. An axis of symmetry
of a generalized quadrangle Γ is a line L of Γ for which the group of all symmetries
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with axis L acts regularly on the set of points of any line meeting L minus its
common point with L. If all lines of a generalized quadrangle are axes of symmetry,
then the quadrangle is Moufang. In translation generalized quadrangles with
translation point x every line trough x is an axis of symmetry.

A projective line in a generalized quadrangle Γ is a regular line L for which
the associated dual net Γ∗L is a dual affine plane (see below for precise definitions).
In the finite and topological case, projectivity of a regular line is equivalent with
equality of the parameters. Hence, the assumption of projectivity of an axis
of symmetry in the general case is a way to study infinite quadrangles which
behave roughly like finite quadrangles of order (s, s), or topological quadrangles
with topological parameters (p, p). It is our intention to show that we can thus
generalize results from the finite case, obtain new results for the topological case,
via intermediate but weaker results in the general case.

In this paper we investigate generalized quadrangles Γ that admit at least two
projective axes of symmetry. Two axes of symmetry either have a point in com-
mon or are opposite. Since there are plentiful examples of generalized quadrangles
that are not translation generalized quadrangles but admit one or two concurrent
axes of symmetry we assume that in the case of concurrent axes of symmetry
there are at least three such lines. We show that, in fact, it suffices to require
that there are three concurrent projective axes of symmetry in order to obtain a
translation generalized quadrangle. For topological quadrangles the assumption
on projectivity of the axes involved can be replaced by the topological condition
that the two topological parameters of the compact quadrangle are equal. Using
the correspondence between antiregular compact connected generalized quadran-
gles and 2- and 4-dimensional Laguerre planes we translate this result into one
for 2- and 4-dimensional Laguerre planes, thus strengthening a description of one
of the possible types in Ruth Kleinewillinghöfer’s classification of Laguerre planes
with respect to G-translations.

In the finite case, the corresponding results can be found in [26].
The existence of two opposite projective axes of symmetry turns out to be

rather more restrictive. Under certain additional natural assumptions one only
obtains duals of symplectic quadrangles over fields of characteristic not equal to
2. In the topological situation the additional assumptions made in the general
case are guaranteed. This allows us to characterize the duals of the symplectic
quadrangles over R or C among all compact connected quadrangles with equal
topological parameters by the existence of two opposite projective axes of sym-
metry. This generalizes and extends a result of Koen Thas [25] in the finite case.

In Section 2 we review basic definitions of abstract generalized quadrangles
and associated Laguerre and Minkowski planes in a topological context. The next
section deals with three concurrent projective axes of symmetry and in Section 4
we investigate the case of two opposite projective axes of symmetry.

The authors wish to thank the referee for the careful reading of the manuscript
and his helpful comments.
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2. Preliminaries

2.1. Abstract generalized quadrangles

A generalized quadrangle Γ = (P ,L, I) consists of a point set P , a line set L
(disjoint from P) and a symmetric incidence relation I between P and L such
that

(PL) no pair of points is incident with a pair of lines and every element is incident
with at least two elements;

(GQ) for every point x and every line L not incident with x, there exists a unique
point y and a unique line M such that xIMIyIL.

If every element is incident with at least three elements, then the generalized
quadrangle is called thick. As a consequence, any two lines have the same car-
dinality and dually there is a constant number of lines through a point. In the
finite case we say that Γ has order (s, t) if there are s + 1 points on each line and
t + 1 lines through a point. Note that we adopt common linguistic expressions
such as points lie on a line, lines go through points to describe incidence. We will
also use the notions of collinear points and concurrent lines for points that are
incident with a common line and lines that go through a common point, respec-
tively. Non-collinear points and non-concurrent lines will also be called opposite.
If x ∈ P ∪ L is collinear or concurrent with y ∈ P ∪ L, then we write x ∼ y. An
incident point-line pair is called a flag.

Note that, if Γ = (P ,L, I) is a generalized quadrangle, then also (L,P , I) is
a generalized quadrangle. We will denote the latter by ΓD and call it the dual of
Γ. The duality principle states that in every definition and statement, one may
interchange the words ‘point’ and ‘line’ to obtain a new definition or statement.

Let Γ = (P ,L, I) be a generalized quadrangle and let x be an arbitrary
point. The set of points of Γ collinear with x will be denoted by x⊥. For a
set X ⊆ P , we denote by X⊥ the set of points collinear to all points of X, and
we abbreviate (X⊥)⊥ by X⊥⊥. If x 6= y are collinear points, then {x, y}⊥ is just
the point row of the line through x and y, which we will also denote by xy. If
y is a point opposite x, then {x, y}⊥ is called the trace of the pair (x, y). The
span of the pair (x, y) is the set {x, y}⊥⊥. If every span containing x is also
a trace (of a different pair of points, needless to say), then the point x is called
regular. Dually one defines regular lines. If x is a regular point, then the geometry
Γ∗x = (x⊥ \ {x}, {{x, y}⊥ : y 6∼ x},∈ or 3) is a dual net (associated to x), i.e., it
has the property that for every point z ∈ x⊥ \ {x} and every block B = {x, y}⊥,
with y opposite x not containing z, there is a unique point z′ ∈ B not collinear
with z (collinearity in Γ∗x). If Γ∗x is a dual affine plane (that is, a projective plane
with one point deleted), then we call x a projective point. The motivation for this
terminology is that the geometry Γx = (x⊥, {{x, y}⊥ : y ∈ P},∈ or 3) is then a
projective plane, called the perp-plane in x. Projective points have nice properties.
For instance, one can easily check that x is a projective point if and only if the
geometry (P \ x⊥, (L \ {xy : y ∈ x⊥, y 6= x}) ∪ {{x, y}⊥⊥ : y 6∼ x}, I or ∈ or 3)
is a generalized quadrangle if and only if every pair of distinct traces contained in
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x⊥ meet in a unique point.
Projective points can also be approached with triads. A triad is a triplet of

pairwise opposite points. A centre of a triad {x, y, z} is an element of {x, y, z}⊥.
A triad is called (uni)centric if it has a (unique) centre. Now, a regular point x
is projective if and only if every triad containing x is centric. If every triad is
centric, then the quadrangle is called centric.

A point x of a generalized quadrangle Γ is called antiregular, if the centre of
every triad containing x either is empty or contains precisely two points. A point
p is called strongly antiregular if each triad containing p or contained in p⊥ \ {p}
is antiregular. Finally, a generalized quadrangle is antiregular, if every point is
antiregular, that is, |T⊥| ∈ {0, 2} for every triad. If x is a strongly antiregular
point of Γ, then the geometry (x⊥ \ {x}, {x, y}⊥ : y 6∼ x},∼) is a Laguerre plane;
see [5], Theorem 3.1. More generally, a Laguerre plane ∆ = (P, C, ‖) is a geometry
consisting of a set P of points, a set C of at least two circles and an equivalence
relation ‖ on P , called parallelism, such that three mutually non-parallel points
can be uniquely joined by a circle (joining); such that to every circle C ∈ C and any
two non-parallel points p, q, where p ∈ C and q /∈ C, there is precisely one circle
L passing through q which touches C at p, i.e., C∩D = {p} (touching); such that
parallel classes and circles intersect in a unique point (parallel projection); and
such that each circle contains at least three points (richness); cf. [2, 14]. In fact,
if ∆ satisfies the so-called oval tangent condition at infinity, then its Lie geometry
is a thick generalized quadrangle that admits a strongly antiregular point, see
Theorem 3.4 in [20] and the remark following that theorem.

Finally we introduce some notions concerning symmetry in generalized quad-
rangles. In general, a collineation of a generalized quadrangle is a permutation of
the points and of the lines preserving the incidence relation. A point x of a gen-
eralized quadrangle is called a centre of symmetry if it is regular and if the group
of collineations fixing x⊥ pointwise acts transitively on the set {x, y}⊥⊥ \ {x}, for
some, and hence for every, point y opposite x. The dual notion is called an axis
of symmetry.

2.2. The symplectic quadrangles

The prototype class of examples of generalized quadrangles is the class of sym-
plectic quadrangles, which are defined as follows. Let ρ be a symplectic polarity
in a 3-dimensional projective space PG(3, K) over a field K. If P is the point set
of PG(3, K), if L is the set of lines of PG(3, K) fixed under ρ, and if I denotes the
incidence relation in PG(3, K), then W(K) = (P ,L, I) is a generalized quadrangle,
called the symplectic quadrangle (over K). All the points of W(K) are regular,
even projective.

If the characteristic of K is not equal to 2, then all lines of W(K) are antireg-
ular.

The symplectic quadrangle has a lot of symmetry. All points of W(K) are
centres of symmetry.
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2.3. Topology

In the symplectic quadrangles over R or C, the set of points and the set of lines
carry topologies that are induced from the surrounding 3-dimensional real or com-
plex (topological) projective space. Since the operations of joining two points of
the projective space by a line and intersecting a plane by a line are continuous, one
obtains the continuity of the geometric operations in the generalized quadrangle.
that is, one has a topological generalized quadrangle in the following sense. A
topological generalized quadrangle is a (thick) generalized quadrangle where the
point set and the set of lines carry Hausdorff topologies such that the mapping
that takes an anti-flag (x, L) to the unique flag (y, M) where x ∈ M and y ∈ L
becomes continuous.

One requires ‘good’ topologies in order to obtain better results on the geom-
etry of a generalized quadrangle. A topological generalized quadrangle is called
(locally) compact, connected, or finite-dimensional, if the point space has the re-
spective topological property where the dimension refers to the topological (cov-
ering) dimension of a space. A compact connected finite-dimensional generalized
quadrangle Γ has topological parameters (p, q) if each point row is p-dimensional
and each line pencil is q-dimensional. In this case, each point row is homotopy
equivalent to a p-sphere Sp and each line pencil is homotopy equivalent to a q-
sphere Sq. The point space, the line space, and the flag space are generalized
manifolds of dimension 2p + q, p + 2q and 2(p + q), respectively. Furthermore, if
p, q > 1, then p + q is odd or p = q ∈ {2, 4}; compare [8], [9] or [32], Section 9.5
and the references given there. The group of all continuous automorphisms of Γ,
endowed with the compact-open topology, is a locally compact, second countable
topological transformation group and a Lie group if p = q < 4.

In a similar fashion, a topological Laguerre plane is a Laguerre plane where
the set of points and the set of circles carry non-indiscrete topologies (hence there
are proper non-empty open subsets) such that the geometric operations of joining,
touching, parallel projection, and intersecting distinct circles are continuous on
their domains of definition, cf. [2, 14]. A topological Laguerre plane is called
(locally) compact, connected, or finite-dimensional, if the point space has the
respective topological property. For brevity, an n-dimensional Laguerre plane is
a locally compact topological Laguerre plane whose point space is n-dimensional.
Note that such a plane is connected if n is positive. A connected finite-dimensional
Laguerre plane is of dimension 2 or 4; see Rainer Löwen [12], 2.3. Circles in a
2n-dimensional Laguerre plane, n = 1, 2, are homeomorphic to Sn. There are no
disjoint circles in 4-dimensional planes.

For every 2n-dimensional Laguerre plane ∆, n = 1, 2, the associated Lie ge-
ometry (whose points are the points and circles of ∆ plus one additional point
at infinity, denoted by ∞, and whose lines are the extended parallel classes, that
is, the parallel classes of ∆ to which the point ∞ is added, and the extended
tangent pencils, that is, the collections of all circles that touch a given circle at
a point p together with p and incidence being the natural one) with respect to
a suitable topology on the point set and the topology on the line set induced by
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the Hausdorff metric is a compact antiregular topological generalized quadrangle
with topological parameters (n, n). Conversely, each derivation of a compact topo-
logical antiregular generalized quadrangle with topological parameters (n, n) is a
2n-dimensional Laguerre plane. A remarkable result of Andreas Schroth [20] even
shows that every compact topological generalized quadrangle with topological pa-
rameters (n, n) can be constructed from a 2n-dimensional Laguerre plane: either
the derivation at every point of the quadrangle, or the derivation at every point of
the dual quadrangle, yields a 2n-dimensional Laguerre plane. Equivalently, every
compact topological generalized quadrangle with topological parameters (n, n) is
antiregular up to duality.

2.4. Moufang sets and 2-transitive groups

Let X be a set and let (Ux)x∈X be a family of permutation groups acting on X
such that Ux fixes x, acts sharply transitively on X \ {x} and permutes the Uy,
y ∈ X, by conjugation. Then (X, (Ux)x∈X) is called a Moufang set and the groups
Ux are called root groups of the Moufang set. We will encounter Moufang sets in
the following way. Let G be a permutation group acting on a set X and suppose
the stabilizer Gx of x ∈ X has a normal subgroup Ux acting sharply transitively on
X \{x} such that, for x, y ∈ X, Ux and Uy are conjugate in G. Then (X, (Ux)x∈X)
is a Moufang set. The group generated by all Ux is called the little projective group
of the Moufang set.

It is easy to see that the little projective group of any Moufang set is a 2-
transitive group. In case of Lie groups, there is an explicit classification of 2-
transitive Lie groups, originally due to Jacques Tits [27], [28]. A more recent
proof by Linus Kramer [10] also includes the determination of the Moufang sets.
The next result follows directly from Theorem 3.3 and Lemmas 7.1 and 7.2 of [10].

Lemma 2.1. If G is the little projective group of a Moufang set and a connected
Lie group acting on a sphere of dimension 1, 2 or 4, then G ≡ PSL2(K), with K
one of the skew fields R, C or H. The dimensions of the groups are 3, 6 and 15,
respectively.

The dimensions of the groups are listed in Section 94.33 of [17].

3. Generalized quadrangles with three concurrent projective axes of
symmetry

We begin with some general assumptions and notations which we will keep through
this section. Let Γ = (P ,L, I) be a generalized quadrangle having three concurrent
projective axes of symmetry L1, L2, L3, all passing through the point x. Let Gi be
the symmetry group corresponding with Li, i = 1, 2, 3. Then [Gi, Gj] is trivial, for
i, j ∈ {1, 2, 3}, i 6= j. Hence the product G := G1G2G3 is a group of collineations
of Γ. Notice that the product map G1 × G2 × G3 −→ G : (g1, g2, g3) 7→ g1g2g3

is a surjective homomorphism of groups since Gi ∩Gj = {id}, for i, j ∈ {1, 2, 3},
i 6= j.
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Lemma 3.1. The group G acts sharply transitively on the set P \ x⊥ of points
opposite x.

Proof. Let z and z′ be two arbitrary points opposite x. Then there is a unique
subquadrangle Γ′ with parameters (p, 0) containing L1, L2 and z (denoting the
unique line through z concurrent with L1 by M1, Γ′ is defined by the line set
{L2, M1}⊥ ∪ {L2, M1}⊥⊥). Denote by M3 the unique line through z′ concurrent
with L3. Since L1 is a projective line, there is a line in the intersection {L1, M3}⊥∩
{L2, M1}⊥⊥ and hence we see that the line M3 meets Γ′ in a unique point z2. Let
z1 be the unique point incident with M1 and collinear with z2; compare Figure 1.
Then the line z1z2 belongs to Γ′ and meets L2. Hence there are unique collineations
gi ∈ Gi, i = 1, 2, 3, such that zg1 = z1, z1g2 = z2 and z2g3 = z′. The collineation
g := g1g2g3 belongs to G and maps z to z′.

L1 L3

L2

M1
M3

x

z

z1 z2

z′

Figure 1. Three concurrent axes of symmetry

Suppose h ∈ G fixes z. Put h = h1h2h3, with hi ∈ Gi, i = 1, 2, 3. Since h, h1, h2

preserve Γ′, so does h3, implying h3 = id. Since h and h1 fix M1, so does h2,
implying h2 = id.

The lemma is proved. �

Lemma 3.2. All the Gi, i = 1, 2, 3, are abelian. Hence G is abelian.

Proof. In the dual affine plane A∗
L3

corresponding to the projective line L3, the
symmetry groups G1 and G2 induce full elation groups with common axis (the
set of parallel points corresponding to the lines of Γ through x) and distinct
centres (the points corresponding to the lines L1 and L2, respectively). Hence
this common axis is a translation line of A∗

L3
and consequently, the translation

group is abelian. This translation group acts as a permutation group on L⊥
3 as

G1G2 restricted to L⊥
3 . Therefore, if g1, g

′
1 ∈ G1, then g1g

′
1 coincides with g′1g1

on L⊥
3 . Hence the commutator [g1, g

′
1] belongs to G1 ∩G3, implying [g1, g

′
1] = id.

This shows that G1 is abelian.
Similarly, also G2 and G3 are abelian. Thus G1 × G2 × G3 is abelian and so

is G as a homomorphic image. �

We can now prove our main general aim of this section.
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Theorem 3.3. If a generalized quadrangle has three concurrent projective axes of
symmetry, all incident with the point x, then every line incident with x is an axis
of symmetry and x is a translation point in Γ.

Proof. We use the above notation. Let L be any line incident with x and let z, z′

be two collinear points such that the line zz′ meets L. It suffices to show that
there exists some symmetry with axis L mapping z to z′.

Let g ∈ G be the unique element of G mapping z to z′. Since G fixes every
line through x, the line L is fixed by g. Furthermore, if zz′ ∩ L = {y}, then
y = L ∩ z⊥ = L ∩ (z′)⊥. Therefore yg = (L ∩ z⊥)g = Lg ∩ (zg)⊥ = L ∩ (z′)⊥ = y
so that y and thus zz′ is fixed by g. Since G is abelian, it centralizes g and thus
g fixes all lines in the orbit (zz′)G and all points in the orbit yG. Hence g fixes
all lines concurrent with zz′ using the transitivity of G implied by Lemma 3.1.
But G acts transitively on the points of L \ {x} so that g fixes L pointwise. This
shows that g is a symmetry with axis L. �

We now have the following corollaries.

Corollary 3.4. Let Γ = (P ,L, I) be a compact connected quadrangle with topo-
logical parameters (p, p), p ∈ N. Suppose that Γ has three concurrent axes of
symmetry, L1, L2, L3, all meeting in the point x. Then Γ is a topological transla-
tion generalized quadrangle with translation point x.

Proof. By the foregoing theorem, it suffices to show that each of L1, L2, L3 is
projective. But this follows directly from [19], see also [11]. �

An axis in a Laguerre plane ∆ is a parallel class A such that the collection of all
automorphisms in the kernel of ∆ (i.e., all automorphisms of ∆ that fix each par-
allel class globally) that fix precisely the points of A plus the identity is transitive
on the set of points of each parallel class different from A. An elation Laguerre
plane is a Laguerre plane that admits a subgroup in the kernel that acts sharply
transitively on the set of circles. In an elation Laguerre plane every parallel class
is an axis.

Corollary 3.5. Let ∆ = (P , C, ‖) be a locally compact connected finite-dimensio-
nal Laguerre plane with at least three axes, then all parallel classes are axes and
∆ is an elation Laguerre plane.

Proof. In the canonical construction of the associated quadrangle Γ as the Lie
geometry of ∆, an axis of the Laguerre plane is an axis of symmetry of the
quadrangle, and vice versa. Also, Γ has topological parameters (p, p), where
p ∈ {1, 2} is the dimension of a circle in ∆. The result now follows directly from
the previous corollary. Finally, the group generated by all the collineations to the
three axes is a subgroup in the kernel that acts sharply transitively on the set of
circles by Lemma 3.1 and thus ∆ is an elation Laguerre plane. �
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Ruth Kleinewillinghöfer [6] classified Laguerre planes with respect to central au-
tomorphisms. With respect to Laguerre translations Kleinewillinghöfer obtained
11 types of Laguerre planes; see [6] Satz 3.3, or [7] Satz 2. In type D the set
E ⊆ Π of all parallel classes G for which the automorphism group Γ of L is lin-
early transitive with respect to G-translations, that is, G is an axis, contains at
least 3 parallel classes. In the topological case we can say that E = Π, see also
[15], Lemma 4.4, for 2-dimensional Laguerre planes. In the 2-dimensional case
such a Laguerre plane is ovoidal, that is, embeddable into 3-dimensional projec-
tive space as the geometry of plane sections of a cone with base an oval (minus
the vertex of the cone). There are however examples of 2-dimensional Laguerre
planes in which E consists of precisely two parallel classes, see [15]. This then
yields 3-dimensional generalized quadrangles that are not translation generalized
quadrangles and admit two concurrent axes of symmetries.

4. Generalized quadrangles with two opposite projective axes of sym-
metry

Here, we let Γ = (P ,L, I) be a generalized quadrangle containing two opposite
projective axes of symmetry L1, L2. Let G1 and G2 be the corresponding symme-
try groups, and put G = 〈G1, G2〉, the group generated by G1 and G2. We first
prove a general transitivity result, and then apply it to the topological case. We
start with some lemmas.

Lemma 4.1. Every line of Γ not contained in {L1, L2}⊥ intersects some member
of {L1, L2}⊥.

Proof. Let L be an arbitrary line of Γ. Since L does not belong to {L1, L2}⊥ it
is opposite L1 or L2 (or both). Without loss of generality, we may assume that L
is opposite L1. If L belongs to {L1, L2}⊥⊥, then the assertion is trivial. If L does
not belong to {L1, L2}⊥⊥, then, since L1 is a projective line, the traces {L1, L}⊥
and {L1, L2}⊥ have a unique line M in common. Now L meets M and M belongs
to {L1, L2}⊥. �

Lemma 4.2. Let Ω be the subgeometry of Γ consisting of the points of Γ not
incident with a line of {L1, L2}⊥ and with line set L \ ({L1, L2}⊥ ∪ {L1, L2}⊥⊥).
Then Ω is a connected geometry (in the sense that the incidence graph of Ω is a
connected graph).

Proof. Let a, b be two distinct points of Ω, and let a′ and b′ be the unique points
incident with L1 and collinear with a and b, respectively. If a′ 6= b′, then the
unique point c collinear with a and incident with bb′ belongs to Ω and we have
the chain aIacIcIbb′Ib connecting a with b. If a′ = b′, then we choose a point d′

on L1 and a point d of Ω collinear with d′ in Γ. The foregoing implies that a is
connected with d and d is connected with b in Ω. Hence a is connected with b in
Ω. �
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Remark 4.3. More generally, one shows, with exactly the same arguments, that,
if a generalized quadrangle Γ1 contains a full subquadrangle Γ2 (i.e., every point
of Γ1 incident with a line of Γ2 belongs to Γ2), then the complement of Γ2 in Γ1

is a connected geometry.

We denote by ∆ the thin subquadrangle with line set {L1, L2}⊥ ∪{L1, L2}⊥⊥. Its
point set comprises precisely all point rows of lines in {L1, L2}⊥.

Lemma 4.4. The smallest subquadrangle of Γ containing all points of ∆ and at
least one point not in ∆ is Γ itself.

Proof. Let Γ′ be a subquadrangle containing ∆ and some point a not in ∆. By
Lemma 4.1, all lines of Γ incident with a belong to Γ′. This implies, by [32],
Proposition 1.8.1, that the subquadrangle Γ′ is ideal in Γ, that is, that every
pencil in Γ′ coincides with the corresponding pencil in Γ. Since also all points
on L1 belong to Γ′, the subquadrangle Γ′ is full in Γ by the dual statement of
Proposition 1.8.1 in [32]. Hence Γ′ coincides with Γ by [32], Proposition 1.8.2. �

We can now show:

Theorem 4.5. (i) The group G acts sharply transitively on the point set of Ω.

(ii) If Z is the (normal) subgroup of G fixing ∆ pointwise, then Z ≤ Z(G).

(iii) G/Z acts faithfully and 2-transitively on the span {L1, L2}⊥⊥, or, equiv-
alently, on the point row determined by any line in {L1, L2}⊥. Also, the
subgroups G1Z/Z and G2Z/Z are root groups of a Moufang set with little
projective group G/Z acting on the above mentioned sets.

(iv) If G1Z/Z ≤ [GL1/Z,G1Z/Z], then G is perfect.

Proof. (i): First we remark that, due to the transitivity properties of the symme-
try groups G1 and G2, every line of {L1, L2}⊥⊥ is an axis of symmetry, and all
corresponding symmetry groups are conjugate in G to G1 and to G2. In particular,
G1 is conjugate to G2.

Now let a, b be two distinct points of Ω. By Lemma 4.2, we may assume that
a and b are collinear in Ω, and hence in Γ. By Lemma 4.1 ab is incident with
a unique point y of ∆. Let L be the unique line of {L1, L2}⊥⊥ incident with y.
Then L is an axis of symmetry and so there is a symmetry g about L mapping a
onto b. Clearly g ∈ G and so G acts transitively on the point set of Ω.

Now suppose some g ∈ G fixes some point a of Ω. Since both G1 and G2 fix all
lines of {L1, L2}⊥, g also fixes all elements of {L1, L2}⊥. Now let M ∈ {L1, L2}⊥⊥,
and let a′ be the unique point incident with M and collinear with a. Then a′ is
incident with a unique member of {L1, L2}⊥, and since this member is fixed under
g, also a′, and hence M is fixed under g. We conclude that g fixes ∆ pointwise,
and also a, so it fixes the smallest subquadrangle containing ∆ and a pointwise.
By Lemma 4.4, g is the identity. This proves (i).
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(ii): If h ∈ Z and g ∈ G1, then clearly [g, h] belongs to G1, but also fixes L2;
hence [h,G1] = {id}. Similarly, [h,G2] = {id}. Hence Z ≤ Z(G).

(iii): Let X denote either the set {L1, L2}⊥⊥, or the set of points incident with
some arbitrary but fixed line M of {L1, L2}⊥. It is clear that Gi, and hence also
GiZ/Z, fixes a unique element xi of X and acts sharply transitively on X \ {xi},
i = 1, 2. Hence G acts 2-transitively on X. Since Z is precisely the kernel of that
action, G/Z still acts 2-transitively on X, but also faithfully. Moreover, since
Gi consists of all collineations fixing all lines concurrent with Li, it is normal in
GLi

, i = 1, 2, and G1 is conjugate to G2. So, in view of Section 2.4 the assertion
follows.

(iv): For g ∈ GL1 and g1 ∈ G1 arbitrary, the commutator [g, g1] belongs to G1.
Hence if g′1Z, with g′1 ∈ G1, is the product of commutators of the form [g, g1]Z,
say

g′1Z =
∏

i

[g(i), g
(i)
1 ]Z,

then the product
∏

i[g
(i), g

(i)
1 ] belongs to both g′1Z and G1, which is clearly g′1.

Hence if G1Z/Z ≤ [GL1/Z,G1Z/Z], then G1 ≤ [GL1 , G1] and by conjugation,
G2 ≤ [GL2 , G2], implying G1, G2 ≤ [G, G], i.e., 〈G1, G2〉 = G ≤ [G, G] and so G is
perfect. �

We now treat a rather special case.

Theorem 4.6. Assume that K is a field with char K 6= 2 such that a perfect
central extension of PSL2(K) with center of order 2 and in which every involution
is central, is isomorphic to SL2(K).

If G/Z ∼= PSL2(K) with its natural action on {L1, L2}⊥⊥, and if some point x
of Ω is antiregular in Γ, then Γ is isomorphic to the dual of W(K).

Proof. We denote the action of G on P by p.g for g ∈ G and p ∈ P. We start by
showing that |Z| = 2. If h ∈ Z, h 6= id, then x.h 6= x (as otherwise h would fix
a subquadrangle containing ∆ and x, contradicting Lemma 4.4). Since Z is the
subgroup of G fixing ∆ pointwise, Z fixes every line of {L1, L2}⊥ and {L1, L2}⊥⊥.
Hence, if x′ is collinear with x and belongs to the point set of ∆, then x′ is also
collinear with x.h. Hence, if x′1, x

′
2, x

′
3 are three points of ∆ collinear with x, then

{x′1, x′2, x′3}⊥ contains x.Z. By antiregularity, |Z| = |x.Z| ≤ 2.

But, again by the antiregularity of x, there exists a unique point y ∈ {x′1, x′2, x′3}⊥,
different from x. By transitivity of G, there exists g ∈ G such that x.g = y. Since
the three respective lines of {L1, L2}⊥ incident with x′1, x

′
2, x

′
3 are fixed under

g, also the points x′1, x
′
2, x

′
3 are fixed, and so are the unique respective lines of

{L1, L2}⊥⊥ incident with x′1, x
′
2, x

′
3. Since PSL2(K) acts Zassenhaus transitively

(i.e., 2-transitively, but the stabilizer of three distinct elements is trivial), g fixes
{L1, L2}⊥⊥ elementwise, and so g ∈ Z. Hence Z is non-trivial and is isomorphic
to the group of two elements.



202 G. F. Steinke, H. Van Maldeghem: Generalized Quadrangles and Projective . . .

We now claim that G/Z satisfies the condition stated in (iv) of Theorem 4.5.
Let a, t ∈ K× and consider the following commutator.(

1 −t
0 1

)
·
(

a 0
0 a−1

)
·
(

1 t
0 1

)
·
(

a−1 0
0 a

)
=

(
1 (a2 − 1)t
0 1

)
,

which implies the condition, if we can choose a /∈ {−1, 0, 1}, i.e., if |K| > 3. But
if |K| = 3, then Γ has order (3, 3) and the result follows from the uniqueness of
quadrangles with these orders, see [13]. Hence G is a perfect central extension of
PSL2(K) with center of order 2.

Now we claim that every involution in G is central in G (hence belongs to Z).
Let g ∈ G be an involution and suppose, by way of contradiction, that g does
not belong to Z. Then, by Theorem 4.5(ii), g induces a non-trivial permutation
g on {L1, L2}⊥⊥. Let M be an arbitrary line of {L1, L2}⊥. Then we know that
M.g = M and that M contains at least one point y with y.g 6= y (otherwise g fixes
all elements of {L1, L2}⊥⊥). Let N be any line incident with y, but not contained
in ∆. Then N.g is not concurrent with N , and so we can choose a line K meeting
both N and N.g, with K 6= M . The line K meets ∆ in a unique point u by
Lemma 4.1. Denote by L the unique line of ∆ incident with u and meeting M .
Since L is a projective line, there is a unique thin full subquadrangle containing L
and N , and since it contains K and M , it also contains N.g. Hence it is determined
by N and N.g, and consequently it is fixed under g (as (N.g).g = N). It follows
that g fixes L. Hence g fixes at least one element, and it is easy to see that,
in PSL2(K), any element fixing precisely one element of {L1, L2}⊥⊥ has order p,
when char K = p, or infinity, when char K = 0. Since we assume char K 6= 2, this
implies that g, and hence also g, fixes a second line L′ of {L1, L2}⊥⊥, with L′ 6= L.

M

N.gN

L1

L2

y y.g

uK

L L′

Figure 2.

Now suppose that g fixes some line J of Ω that, viewed as a line of Γ, meets L in
some point v. Let w be any point on J distinct from v, then by sharp transitivity
of G on the point set of Ω, g coincides with the symmetry about L mapping w to
w.g, contradicting char K 6= 2 again. In fact, the same argument shows that no
line outside ∆ can be fixed under g.

Now let J be a line concurrent with both L and M , but distinct from both
of them, and, likewise, let J ′ be a line concurrent with both L′ and M , but
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distinct from both of them. As before, there is a unique full thin subquadrangle
∆∗ containing J and J ′, and ∆∗ contains a unique line L∗ of {L1, L2}⊥⊥, with
L 6= L∗ 6= L′. Now let A be an arbitrary line distinct from M meeting both J.g and
J ′.g. Clearly, both A and J are mutually opposite, and also opposite L∗. Hence
this (dual) triad has at least one (dual) centre (since L∗ is a projective line), which
we denote by C. The line C meets A in a point a. Hence, this point a belongs to
the unique full thin subquadrangles determined by J and J ′, and by J.g and J ′.g,
respectively. Since both of these subquadrangles contain M , both of them also
contain the line B through a meeting M . Clearly, these subquadrangles only have
M and B in common, and they are mapped to each other under g. Consequently,
since M.g = M , we must have B.g = B. Since we showed above that g cannot
fix a line outside ∆, the line B must belong to ∆. Since B meets L∗, this implies
B = L∗. But this contradicts our assumption that g /∈ Z. Our claim is proved.

Therefore, by the assumption on K and perfect central extensions of PSL2(K)
we conclude that G ∼= SL2(K).

We now describe Γ in terms of SL2(K). To this end we note that the root
groups of PSL2(K) lift uniquely to isomorphic subgroups in SL2(K). Hence the
groups G1 and G2 and their conjugates are uniquely determined. We also call
them root groups of SL2(K).

Let x again be as before. By the sharp transitivity of SL2(K), we can identify
in a unique way every point y of Ω with the element g ∈ SL2(K) such that
x.g = y. The elements g, h are, as points of Γ, collinear if and only if x.g, x.h are
collinear if and only if x.gh−1, x are collinear if and only if gh−1 belongs to a root
group of SL2(K). Since Γ does not contain triangles, this is enough to uniquely
reconstruct Ω. Using a result of Harm Pralle [16], we can uniquely complete Ω to
a generalized quadrangle. Hence Γ is uniquely determined by SL2(K), and since
the dual of W(K) satisfies the assumptions, we conclude that Γ is isomorphic to
the dual of W(K).

We can also avoid Pralle’s result and proceed by direct construction. Let
us briefly sketch this approach. Since in the previous paragraph, we already
constructed the points and lines of Ω, it suffices to reconstruct the points of ∆,
the collinearity in ∆, and the collinearity between points of ∆ and points of Ω.
The points of ∆ are identified with the right cosets of the normalizers of the root
groups. Note that, since the root groups form a complete conjugacy class, this
set of right cosets of their normalizers is identical with the set of left cosets. A
coset N(R)g of the normalizer of the root group R is collinear with the point
of Ω determined by the element h if and only if h ∈ N(R)g. Furthermore two
cosets N(R)g and N(S)h of the normalizers of the respective root groups R,S
are collinear as points of ∆, and hence of Γ, if and only if either R = S (they are
right cosets of the normalizer of the same root group; the joining line corresponds
to a member of {L1, L2}⊥) or g−1N(R)g = h−1N(S)h (they are left coset of the
normalizer of the same root group; the joining line corresponds with a member of
{L1, L2}⊥⊥). This uniquely determines Γ and hence, once again, Γ is unique and
must be dual to W(K). �
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Remark 4.7. The argument in the previous proof that established the line B
inside the intersection of two full thin subquadrangles of Γ in fact shows that the
line M of Γ is a regular projective line. Another way of organizing the proof would
be to first use this argument to conclude that M is projective, and then to use
the fact that an involution in the perp-plane in M must fix all points on some line
of that perp-plane (since it cannot be a Baer-involution by the fact that it only
fixes L, L′ in ∆). Since this approach requires some more definitions and results,
as the reader can see, we chose to argue directly in Γ instead of in the perp-plane
in M .

Remark 4.8. We do not know of any perfect central 2-fold extension of PSL2(K),
K a field with char K 6= 2, in which every involution is central other than SL2(K);
compare [21] for a discussion for related universal central extensions of a perfect
group and [4], Satz 25.7, for the statement without the assumption on involutions
for finite fields K. In fact, it is conjectured that this is a characterisation of
SL2(K). In this case the assumptions made on perfect central 2-fold extensions
of PSL2(K) in Theorem 4.6 become redundant. Also in the topological setting of
the following theorem where G is a Lie group the only such extensions are SL2(K)
where K = R or C.

We now apply this to the topological case.

Theorem 4.9. Let Γ = (P ,L, I) be a compact connected generalized quadrangle
with topological parameters (p, p), p ∈ N. Suppose Γ has two opposite axes of
symmetry, say L1, L2. Then p ∈ {1, 2} and Γ is isomorphic to the dual of W(R)
(for p = 1) or to the dual of W(C) (for p = 2).

Proof. First we note that, as in the previous section, since Γ has equal topological
parameters, the axes L1, L2 of symmetry are projective lines. Furthermore, equal
topological parameters and [8] imply that p ∈ {1, 2, 4}.

The group G/Z acts 2-transitively and faithfully on the points of ∆ by (iii)
of Theorem 4.5 and thus is a Lie group by [17], 96.15. Hence G also is a Lie
group because Z has order 2 as seen in the proof of Theorem 4.6 and so G is
locally isomorphic to G/Z. Moreover, G/Z has dimension at most 3p, by (i) of
Theorem 4.5, and the set X of (iii) of the proof of Theorem 4.5 is a topological
sphere of dimension p. Hence G/Z is isomorphic to the little projective group of
a Moufang set acting on a sphere with topological dimension p ∈ {1, 2, 4} and
thus has dimension at most 3p ∈ {3, 6, 12}. From the list of groups in Lemma 2.1
and their dimensions we see that the only possibilities are G/Z ∼= PSL2(R) and
G/Z ∼= PSL2(C). Hence p ∈ {1, 2} and Γ is antiregular.

The connected Lie groups that are 2-fold covering groups of PSL2(R) or
PSL2(C) are well known, compare [30], Ch. IV. The unimodular group SL2(C)
is simply connected and thus G must be isomorphic to SL2(C) in case G/Z ∼=
PSL2(C). A 2-fold covering of PSL2(R) is obtained from the simply connected

covering P̃SL2(R) of PSL2(R) by factoring out a subgroup of index 2 in the centre
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of P̃SL2(R). Since the centre of P̃SL2(R) is isomorphic to Z, there is, up to iso-
morphism, only one 2-fold covering of PSL2(R), namely SL2(R). The result now
follows from Theorem 4.6. �

Note that for p ∈ {1, 2} the points of Ω induce the structure of a 2p-dimensional
Minkowski plane ∆∗ in ∆, see [18, 14] for the definition and basic properties of
Minkowski planes. Indeed, the centre Z of G has order 2 as seen in the first part
of the proof of Theorem 4.6. The non-identity collineation τ in Z fixes precisely
the points of ∆ and thus satisfies that assumptions made in Theorems 5.29 and
5.36 of [20] so that in case p = 2

M(Γ, τ) = (X, {X ∩ q⊥ : q ∈ P \X},X )

and in case p = 1

M(Γ, τ, ϕ) = (X, {X ∩ q⊥ : q ∈ P \X} ∪ {ϕ−1(X ∩ q⊥) : q ∈ P \X},X ),

with incidence given by inclusion, is a 4- or 2-dimensional Minkowski plane, re-
spectively, where X is the space of fixed points of τ and X is the space of fixed
lines of τ and where in the latter case ϕ : ∆ → ∆ is an isomorphism such that
|T⊥| + |ϕ(T )⊥| = 2 for any triad T in ∆. Note that by (2.15) of [20] a compact
antiregular generalized quadrangle with topological parameters (2, 2) is centric
and one with topological parameters (1, 1) is non-centric and that in the latter
case there exists such an isomorphism ϕ : ∆ → ∆ as above; see [20], Corollary
5.32.

Furthermore, the group G fixes all lines of one parallel class in ∆∗ so that G
is a group in one of the kernels of the Minkowski plane. Since G has dimension
3p by (i) of Theorem 4.5, we see that one kernel of ∆∗ has maximal dimension 3p.

If p = 2, a kernel of dimension 6 implies that ∆∗ must be the classical
Minkowski plane over the complex numbers; see [23], Proposition 3.2. (This is
the geometry of non-trivial plane sections of a ruled quadric in 3-dimensional pro-
jective space over C.) But then Γ is classical too. If p = 1, we know by Satz 5.9
of [18] (see also [14], Theorem 44.10) that ∆∗ consists of two halves of a classical
Minkowski plane over R. However, by (5.32) of [20], each generalized quadrangle
corresponding to these halves, in particular Γ, is classical.
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Zbl 0914.51005−−−−−−−−−−−−

Received November 4, 2008

http://www.emis.de/MATH-item?0768.51015
http://www.emis.de/MATH-item?1041.51003
http://www.emis.de/MATH-item?0998.51004
http://www.emis.de/MATH-item?1057.51002
http://www.emis.de/MATH-item?0047.26002
http://www.emis.de/MATH-item?0070.02505
http://www.emis.de/MATH-item?0295.20047
http://www.emis.de/MATH-item?506.22011
http://www.emis.de/MATH-item?0914.51005

