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Numerical solutions for a core–annular film fluid

within a circular tube

Rodolfo Gallo and Said Kas–Danouche

Abstract. The nonlinear partial differential equation that models
the evolution of the interface between two core–annular fluids within
a circular cylinder of radius a and length L, is numerically solved
using two finite difference schemes, one implicit and the other one ex-
plicit. Also, two pseudo–spectral schemes are used, one with Euler’s
method and the other one with Runge–Kutta’s method of fourth
order. The results of these methods are analized and compared con-
sidering the absolute error calculated with the infinite norm, the
relative error, and the execution time. We find that the pseudo–
spectral with Euler’s method produces a very good numerical so-
lution to the problem, considering the numerical solution obtained
from the pseudo–spectral with Runge Kutta’s method of fourth or-
der as the most accurate numerical solution of the problem.

Resumen. La ecuación no lineal en derivadas parciales que modela
la evolución de la interfaz entre dos fluidos núcleo–anulares den-
tro de un cilindro circular de radio a y de longitud L, es resuelto
numéricamente utilizando dos esquemas en diferencias finitas, una
impĺıcita y la otra expĺıcita. Además, se utilizan dos reǵımenes
seudo–espectrales, uno con el método de Euler y el otro con un
método de Runge–Kutta de cuarto orden. Los resultados de estos
métodos se analizaron y se compararon considerando el error abso-
luto calculado con la norma infinito, el error relativo, y el tiempo
de ejecución. Nos parece que el esquema pseudo–espectral con el
método de Euler produce una muy buena solución numérica al prob-
lema, teniendo en cuenta la solución numérica obtenida de el es-
quema pseudo–espectral con el método de Runge Kutta de cuarto
orden como la solución numérica más exacta del problema.
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1 Introduction

The interface between two core–annular fluids within a circular cylinder was
studied by Hammond [9]. He modeled the problem deducing the nonlinear
partial differential equation Ht = −

1

3
(H3(Hzzz +Hz))z .

In 1934, Taylor [25] proved that the thread of unconfined fluids are decom-
posed into spheres. A year later, Tomotika [26] studied the case of a cylindrical
thread of a viscous liquid suspended into another fluid, and Goren [7], in 1962,
analyzed the linear stability of this problem. Hammond, in his work [9], ex-
tended Goren’s study to a nonlinear regime. Also, he considered the dynamics
of the problem, which it was not done before. Gauglitz & Radke [6] developed
an alternative approximation based on Hammond’s analysis including the exact
expression of the curvature in the theory.

On the other hand, Chen, Bai, & Joseph [4] studied core–annular flows in
vertical tubes considering the gravity, and including all the effects of viscosity
stratification and interfacial tension. Renardy [21] studied core–annular flows of
two fluids considering non axisymmetric instability. Kouris & Tsamopoulos [17]
analized the dynamics of a flow of two phases of concentric immiscible fluids in a
cylindrical tube. Later, Kas–Danouche [12] and Kas–Danouche, Papageorgiou,
& Siegel [13], [15] studied the nonlinear interfacial stability of core–annular film
flows with a constant pressure gradient and adding surfactants at the inter-
face between the two fluids. In 2007, Kas–Danouche [14] considered the same
problem studied by Hammond in [9], but he added insoluble surfactants at
the interface between the two fluids, obtaining a new coupled system of two
nonlinear partial differencial equations.

In this paper, a sketch of the derivation of the interface equation made
by Hammond is presented. This equation is numerically solved using different
numerical schemes: finite difference methods, explicit and implicit; also pseudo–
spectral methods, one with Euler’s method and another one with Runge–Kutta’s
method of fourth order, which is the relevant part of this work. A comparative
analysis is made between the applied methods looking for the most convenient
one. In the second section of this paper, the governing equations and the mathe-
matical model developed by Hammond [9] are presented. This model consists in
a nonlinear partial differential evolution equation. The numerical schemes are
briefly introduced and the way how they are applied to the model is explained
in the third section. In the fourth section, the numerical solutions are obtained
when the methods previously proposed, are implemented. Several hundreds of
numerical experiments were performed. They were mainly analyzed making
use of the absolute and relative errors. Finally, we expose the conclusions. The
results of this work will be used, in future researches, to validate numerical
schemes that may be developed to solve the mathematical model obtained in
[14].
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2 Mathematical model and governing equations

We consider a film of an annular liquid surrounding a core fluid of length L, both
concentric within a circular tube of radius a. The fluid in the film is of viscosity
µ, while the core fluid has a viscosity λµ and initial unperturbed radius b. The
gravitational effects are neglected and we assume that no pressure gradients are
applied to the system. So, the only force present is due to the interface tension
γ which acts at the interface S(r, z, φ, t) between the two fluids.

The mathematical model that we present, in this article, was developed by
Hammond in [9]. We do not try in this article to redo all the derivation of the
model, since the reader interested in it can find it in [9]. However, we mention
some aspects oriented to the derivation of it.

2.1 Governing equations

Let us denote the velocity and the pressure in the annular fluid (film) as ~u and p,
respectively. In the core fluid, the velocity and the pressure will be denoted by
−→
U and P . We will use cylindrical coordinates (r, z, φ); the velocity components
associated to these coordinates will be (u,w, v) in the film, and (U,W, V ) in
the core. At the interface S(r, z, φ, t), the radial variable r will take the value

R(z, φ, t) = a − h(z, φ, t), (1)

where h is the thickness of the film.
The governing equations for this problem are the Navier–Stokes and conti-

nuity equations

λµ∇2−→U = ∇P (2)

∇ ·
−→
U = 0, (3)

in the core fluid, where R > r ≥ 0, and

µ∇2~u = ∇p (4)

∇ · ~u = 0, (5)

in the film, where a > r > R.

2.2 Boundary conditions

The imposed boundary conditions satisfy the physical problem to be modeled.
They are: No slip condition at the pipe wall

~u = 0 in r = a,
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continuity of velocity at the interface

~u =
−→
U in r = R,

normal stress balance

~n · σ · ~n − ~n · Σ · ~n = ~nγκ~n,

tangential stress balance

~t · σ · ~n − ~t · Σ · ~n = ~tγκ~n,

where γ is the interfacial tension coefficient, ~n is the normal vector to the
interface and pointing out the annular fluid, ~t is the tangential vector at the
interface, σ and Σ are the stress tensors given by

σ = −pI + µ(∇~u + ∇~uT ),

Σ = −PI + λµ(∇
−→
U + ∇

−→
U

T
),

with I as the identity matrix of order 3, .T denotes the transposed, and

κ = ∇ · n̂, (6)

is the mean curvature of the interface, where n̂ = ~n
|~n|

.

Also, the kinematic condition is required

u = −ht − ~u · ∇h = −ht − whz − v
hφ

r
,

which, rearranging terms, it takes the form,

ht = −u − whz − v
hφ

a − h
at S(r, z, φ, t). (7)

This way, the evolution equation for the interface will be completely deter-
mined by (7), if the components of the velocity are known.

In what follows, all independent and dependent variables are non–dimen-
sionalized, and asymptotic approximations are used to obtain the evolution
equation of the interface. The thickness of the unperturbed film is a − b. We
introduce the small non–dimensional parameter ǫ

ǫ =
a − b

a
.

Now, it is assumed that ǫ << 1 and ǫλ << 1, h(z, t)/ǫa = O(1) and
a∂/∂z = O(1). Taking into account certain estimations which Hammond, in
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[9], introduces; we define the following variables, denoting the non–dimensional
variables with asterisks. In the film we take the independent variables

z∗ =
z

a
; y∗ =

a − r

ǫa
; t∗ =

t

ǫ−3(aµ/γ)
.

So, from (1) the interface can be described by

y∗ =
h(z, t)

ǫa
= H∗(z∗, t∗),

with H∗ = O(1). Also, the radial and axial velocities, and the pressure are
expressed in non–dimensional form.

Considering the non–dimensional form of (4)–(5) and eliminating the aster-
isks from the notation, we obtain

wz − uy = −ǫu + O(ǫ2),

py = −ǫ2uyy + O(ǫ3),

pz − wyy = −ǫwy + O(ǫ2).

Similarly, the boundary conditions are non–dimensionalized. In this way,
the non–dimensional tangential stress balance takes the following form

ǫ2
(

(1 − ǫ2H2
z )(−wy + ǫ2uz) + 2ǫ2Hz(uy − wz)

)

= λǫ3
(

(1−ǫ2H2
z )(Uz+Wr)+2ǫHz(Wz−Ur)

)

, in S(r, z, t);

from which we obtain

wy(H,z) = −ǫλ(Uz + Wr) + O(ǫ2, ǫ2λ).

Now, we non–dimensionalize the normal stress balance, obtaining

| ~n |2−ǫ | ~n |2 p + 2
(

− ǫ3uy+ǫ5Hzuz−ǫ3Hzwy+ǫ5H2
zwz

)

− λǫ3
(

−| ~n |2 P + 2Ur + 2ǫHzUz + 2ǫHzWr + 2ǫ2H2
zWz

)

= |~n|2
(

(1+ǫ2H2
z )

−1
2 (1−ǫH)−1+ǫHzz(1+ǫ2H2

z )
−3

2

)

, in S

from which results

P (H(z, t), z) = −(H + Hzz) + O(ǫ2, ǫ2λ).

Next, we non–dimensionalize the equation (7), which is the kinematic con-
dition, to obtain:

Ht = −u − wHz. (8)
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At this point, Hammond [9] introduces asymptotic expansions into the whole
problem and consider only the high order terms (O(1)). From that we obtain w
and u, which when are substituted in (8) give as a result the nonlinear partial
differential evolution equation for the interface

Ht = −
1

3
(H3(Hz + Hzzz))z, (9)

which, in this paper, we call it the Hammond’s equation. In [14], Kas–Danouche
obtained a system of two coupled non linear partial differential equations, one
for the interface evolution and the other one for the evolution of the surfactant
concentration. When the surfactant concentration is set equal to zero, we obtain
the equation (9). So, the results of this paper will help us to validate the
numerical results of the system derived in [14], which it will be the core for
future researches.

2.3 The rescaled Hammond’s equation

With the goal of simplifying the numerical calculations, we rescale z from [0, L]
to the interval [0, 2π]. In order to do this, we consider the change of variables
z = 2π

L
z̃ and t = (2π

L
)2t̃, where z̃ ∈ [0, L], t̃ ≥ 0 and the variables with “˜”

represent the unscaled variables. Thus, we have z ∈ [0, 2π], t ≥ 0, and (9)
expressed in the new variables as

Ht = −
1

3
(H3(λ2Hzzz + Hz))z, (10)

where λ = 2π
L
.

The initial condition for the rescaled problem is

H(z, 0) = 1 + β cos z, 0 ≤ z ≤ 2π, (11)

where β > 0.
The numerical schemes to be developed in the next section will be applied

to the equation (10) with the initial condition (11), in the interval 0 ≤ z ≤ 2π,
at time t.

3 Numerical schemes

In this section, four schemes are developed to be applied to the interface equa-
tion (10). Two of them use finite differences for both spatial and temporal
variables, one explicit and the other one implicit. The other two schemes are
based on pseudo–spectral methods [2], making use of the Euler’s method, in
one of them, and the Runge Kutta’s method of fourth order in the other one.
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In order to numerically solve the partial differential equation for the evolu-
tion of the interface, certain initial and boundary conditions are imposed. The
boundary conditions that Hammond [9] considered are:

∂2j+1H

∂z2j+1
= 0, with j = 0, 1, 2, . . . ; z = 0,

1

2
L, (12)

which correspond to H even, with period L and reflectionally symmetric about
z = 1

2
L.

3.1 Finite differences

Here, we suppose that H is sufficiently smooth that admit Taylor’s expansions
for H(z + h, t) and H(z − h, t) at point (z, t) [1]. Therefore, we can write
the finite difference approximations for Hz, Hzz, Hzzz, and Hzzzz as follows

Hz ≈
H(z + h, t) − H(z − h, t)

2h
, (13)

Hzz ≈
H(z − h, t) − 2H(z, t) + H(z + h, t)

h2
. (14)

From the equations (13) and (14), we obtain

Hzzz = (Hz)zz ≈
1

2h3

(

H(z + 2h, t) − 2H(z + h, t) (15)

+ 2H(z − h, t) − H(z − 2h, t)

)

.

From the equation (14) we have

Hzzzz = (Hzz)zz ≈
1

h4

(

(H(z − 2h, t) − 4H(z − h, t) + 6H(z, t)

− 4H(z + h, t) + H(z + 2h, t)
)

. (16)

On the other hand, for all k 6= 0, at the point (z, t) we use finite differences
for the time derivative to obtain the expression

H(z, t + k) ≈ H(z, t) + kHt, (17)

to approximate Ht, where k is the time step.
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3.1.1 Explicit scheme In what follows we develop the explicit scheme [23] to
be applied to the interface evolution equation (10). We uniformly particionate
the intervals 0 ≤ z ≤ 2π and 0 ≤ t ≤ T , in n and m sub–intervals,
respectively. The stepsize in z will be denoted by ∆z, and the stepsize in t by
∆t.

The rescaled interface evolution equation (10) can be rewritten in an ex-
panded form as

Ht = −
1

3

(

3H2
Hz(λ

2
Hzzz + Hz) + H

3(λ2
Hzzzz + Hzz)

)

. (18)

Substituting the finite difference approximations (13)-(17) for the partial
derivatives in (18), we obtain

H (z, t + ∆t) ≈ −
∆tλ2

3(∆z)4
H

2(z, t)

[

3

4

(

H(z+ ∆z, t) − H(z − ∆z, t)
)

.

[

H(z+2∆z, t)−H(z−2∆z, t)+

(

(∆z)2

λ2
−2

)

(

H(z+∆z, t)−H(z−∆z, t)

)

]

+ H(z, t)
[

H(z−2∆z, t)+H(z+2∆z, t)+

(

(∆z)2

λ2
−4

)

(

H(z− ∆z, t)

+ H(z + ∆z, t)

)

+

(

6 − 2
(∆z)2

λ2

)

H(z, t)
]

]

+ H(z, t).

Re–writing the equation using the notation

Hi+ñ,j+m̃ = H(zi + ñ∆z, tj + m̃∆t)

, for ñ, m̃ = 0, 1, 2, we have

Hi,j+1 = L1H
2
i,j

(

3

4
(Hi+1,j−Hi−1,j)

(

Hi+2,j−Hi−2,j+L2(Hi+1,j−Hi−1,j)
)

+Hi,j

(

Hi−2,j+Hi+2,j+L3(Hi−1,j+Hi+1,j)+L4Hi,j

))

+Hi,j,(19)

where L1 = −
1
3

∆tλ2

(∆z)4
, L2 = (∆z)2

λ2 − 2, L3 = (∆z)2

λ2 − 4 and L4 = 6 − 2 (∆z)2

λ2 .

The equation (19) is the explicit representation in finite differences for the
interface evolution equation. In order to find the value of H at the point
(zi, tj+1), this scheme requires the values of H at five spatial points zi at time
tj , as is shown in the following diagram of points

Hi,j+1

•
• • • • •

Hi−2,j Hi−1,j Hi,j Hi+1,j Hi+2,j
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The initial condition (11) gives the values of Hi,0; i.e.,

Hi,0 = 1 + β cos(zi), i = 0, . . . , n − 1.

From the equation (19) we obtain the values of H at the nodes zi, i =
0, ..., n−1 and times tj+1, j = 0, 1.... The boundary conditions suggest that
H has to be periodic of period 2π (after rescaling z from [0, L] to [0, 2π]),
and symmetric with respect to z = 0. Therefore, at the nodes of the boundary
we have

H−2,j = H2,j, H−1,j = H1,j, j = 0, . . . ,m

Hn,j = H0,j, Hn+1,j = H1,j, Hn+2,j = H2,j, j = 0, . . . ,m.

3.1.2 Implicit scheme The implicit scheme that we develop here acts on the
nonlinear term of higher order of the interface evolution equation; i.e, Hzzzz

is considered to be found for times tj+ 1
2
and tj+1. For this, is convenient to

write the equation (10) in terms of the higher order derivative, as follows

Ht = −
1

3
λ2H3Hzzzz − f(H,Hz,Hzz,Hzzz),

where

f(H,Hz, Hzz, Hzzz) =
1

3
H3Hzz + λ2H2HzHzzz + H2H2

z .

The equation (10) will be solved numerically in the interval 0 ≤ z ≤ 2π,
under the initial condition

H(z, 0) = 1 + β cos(z), z ∈ [0, 2π], (20)

and the boundary conditions

H−1,j = Hn−1,j, H0,j = Hn,j, H1,j = Hn+1,j,

H2,j = Hn+2,j, H3,j = Hn+3,j, (21)

which guarantee the periodicity of the solution.
The implicit scheme in finite differences that we propose is based on the

implicit scheme proposed by Kas–Danouche in [14]:

Hj+ 1
2 − Hj

∆t
2

= −
1

3
λ2(Hj)3Hj+ 1

2
zzzz − fj(Hj,Hj

z ,H
j
zz, H

j
zzz) (22)

Hj+1−Hj

∆t
= −

1

3
λ2(Hj+ 1

2 )3
(Hj+1

zzzz + Hj
zzzz

2∆z

)

− fj+ 1
2 (Hj+1

2 ,Hj+ 1
2

z ,Hj+ 1
2

zz , Hj+1
2

zzz ). (23)
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It is a scheme of half step that uses forward finite differences for the time
integration, where (22) is the predictor and (23) is the corrector. Using (22) we
find H computed for time tj+ 1

2
. Using (23) we improve H computed in the

next half step after the predictor is used. It corresponds to H for time tj+1,
using Crank–Nicolson [18] for Hzzzz and centered finite differences for all the
spatial derivatives.

In the equations (22) and (23), the notation Hj+ 1
2 , j = 0, 1, means H

evaluated at (z, tj+ 1
2
). Now, we use the notation Hi,j+ 1

2
, to make reference

to H evaluated at (zi, tj+ 1
2
), j = 0, 1. Substituting (16) into (22), we obtain

Hi,j+1
2
− Hi,j

∆t
2

= −
λ2H3

i,j

3(∆z)4

(

Hi−2,j+1
2
− 4Hi−1,j+1

2
+ 6Hi,j+1

2

−4Hi+1,j+ 1
2
+ Hi+2,j+1

2

)

−fj
i (H

j,Hj
z, H

j
zz,H

j
zzz), (24)

where,

fj
i =

1

3
H3

i,jHzz(zi, tj)λ
2H2

i,jHz(zi, tj)Hzzz(zi, tj)

+H2
i,jH

2
z (zi, tj).

For each fixed j, we denote

Ci = −
(∆t)λ2H3

i,j

6(∆z)4
, i = 0, 1, . . . , n − 1,

so that (24) takes the form

−CiHi−2,j+1
2

+ 4CiHi−1,j+1
2
+ (1 − 6Ci)Hi,j+1

2
+ 4CiHi+1,j+ 1

2

−CiHi+2,j+1
2
= Hi,j −

∆t

2
fj
i (H

j, Hj
z,H

j
zz, H

j
zzz), (25)

for values of i = 0, . . . , n − 1. This equation along with the initial and
boundary conditions given by (20) and (21), respectively, can be expressed in
the matricial form

AjHj+ 1
2 = bj, j = 1, . . . ,M, (26)

where Aj is the coefficient matrix of the system of equations (25). Aj is of

order n, Hj+ 1
2 is the column vector of order n, corresponding to the solution

we want to calculate for time tj+ 1
2
, and bj is the vector corresponding to the

right hand side of the system of equations.
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In a similar way, substituting (16) in (23), we have

−c′iHi−2,j+1 +4c′iHi−1,j+1 + (1 − 6c′i)Hi,j+1

+4c′iHi+1,j+1 − c′iHi+2,j+1

= c′i(Hi−2,j − 4Hi−1,j + 6Hi,j − 4Hi+1,j + Hi+2,j)

−(∆t)f
j+ 1

2

i + Hi,j,

where

c′i = −
(∆t)λ2H3

i,j+1
2

6(∆z)4
, i = 0, . . . , n − 1.

This equation, along with the initial and boundary conditions (20) and (21),
respectively, produces the matricial system

Bj+ 1
2Hj+1 = a, j = 1, . . . ,M. (27)

For each fixed j, Bj+ 1
2 is the matrix of order n, which can be obtained

substituting Ci by c′i in the matrix Aj of the system (26). Hj+1 is the column
vector of order n, corresponding to the solution we want to calculate for time
tj+1, and a is the vector corresponding to the right hand side of the system of
equations.

For each j = 1, ...,M , the systems of equations (26) and (27) are solved
using the method of Woodbury [20], which transforms the almost pentadiagonal
matrices to pentadiagonal matrices.

3.2 Pseudo–spectral methods

These methods use the Fourier Transforms for the calculation of the spatial
derivatives. For the time derivative a different method, usually finite differences,
is used. This is why they are classified as pseudo–spectral methods [2]. The ap-
plication of these methods is justified, in the first place, because the solution of
the interface equation is a smooth function, periodic in the spatial variable and
it can be approximated using a finite sum as H(z, t) =

∑N
n=−N hn(t)e

inz .
In the second place, by the periodicity caracter of the initial condition. Com-
putations of the spatial derivatives involved in the nonlinear terms are made in
the spectral space. The connection between the spectral space and the physi-
cal space is made using the Fast Fourier Transform (FFT) and the Inverse Fast
Fourier Transform (IFFT). The errors of the spectral methods are exponentially
smalls [2], [8], and this is the main reason why we apply them to our problem.

In this section, two pseudo–spectral schemes are proposed for the integration
with respect to time. One scheme uses the Euler’s method and the other one
uses the Runge Kutta’s method of fourth order [1], [5].



30 Rodolfo Gallo and Said Kas–Danouche

In the rescaled Hammond equation (10), let us call

R(z, t) = −
1

3

(

H3(λ2Hzzz + Hz)
)

z

= −H2Hz(λ
2Hzzz + Hz) −

1

3
H3(λ2Hzzzz + Hzz). (28)

Suppose that both H(z, t) and R(z, t) admit each one a developing Fourier
series [11]

H(z, t) =

∞
∑

n=−∞

hn(t)e
inz (29)

R(z, t) =

∞
∑

n=−∞

rn(t)e
inz.

In the equation (29), the partial derivative ∂H
∂t

, is obtained deriving the
series term by term; then the equation (10) can be written in the form

∞
∑

n=−∞

∂hn

∂t
(t)einz =

∞
∑

n=−∞

rn(t)e
inz.

These series coincide if the coefficients of einz are both equal term by term.
Therefore, we obtain the system of ordinary differential equations

dhn

dt
(t) = rn(t). (30)

The system (30) is numerically solved for values of n = −N
2

+ 1, ..., N
2
,

with N a natural number, using the Euler’s method and the Runge Kutta’s
method of fourth order [1], [5].

3.2.1 Pseudo–spectral with Euler’s method For the Euler’s method we
write

hn(ti+1) = hn(ti) + (∆t)rn(ti), for i = 0, 1, ... (31)

The coefficients hn(t) of H(z, t), in (29), are calculated applying the Fast
Fourier Transform (FFT) to a set of values of H(z, t) in the interval [0, 2π] at
equidistant points zj = j(∆z), ∆z = 2π

N
, j = 0, ...,N − 1. The value of the

partial derivatives Hz,Hzz,Hzzz,Hzzzz, at the points zj , are obtained cal-

culating ∂
∂z

, . . . , ∂4

∂z4 at the right hand side of (29) term by term, and applying
later the Inverse Fast Fourier Transform (IFFT).

In order to obtain the initial condition, we apply FFT to the initial condition,
which is given by H0 = H(z, 0) = 1 + 1

2
cos z, to obtain the hn(0).
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3.2.2 Pseudo–spectral with Runge Kutta’s method of fourth order
Here we solve the system of equations (30) using the Runge–Kutta’s method of
fourth order (RK).

For an initial value problem as

y′ = f(t, y), y(t0) = y0,

the RK method is given by

yk+1 = yk +
1

6
(f1 + 2f2 + +2f3 + f4),

where

f1 = (∆t)f(tk, yk),

f2 = (∆t)f(tk +
∆t

2
, yk +

1

2
f1),

f3 = (∆t)f(tk +
∆t

2
, yk +

1

2
f2),

f4 = (∆t)f(tk + ∆t, yk + f3).

Thus, the following value yk+1 is determined by the current value yk plus
a weighted average of slopes. The RK method is a fourth order method which
means that the error at each step is of order (∆t)5, while the accumulated total
error has order (∆t)4.

In our case, as rn is a function obtained applying FFT to

R(H,Hz, Hzz,Hzzz,Hzzzz)

in (28), and H is obtained applying IFFT to h in (29), the equation (30) can
be written, eliminating n, as

h′ = f(h), (32)

where

f(h) = FFT (R(IFFT (h))).

Therefore, we apply RK to the equation (32), with the initial condition

h0 = FFT (H0).

4 Numerical solutions

All the methods used in this article were coded using MatLab. The code for the
explicit finite difference method is identified as EXPLI. We have called the code
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for the implicit finite difference method as IMPLI. We use the name SPEC EU
to identify the code for the pseudo–spectral with Euler’s method and SPEC RK
to represent the code for the pseudo–spectral with Runge Kutta’s method of
fourth order. The codes depend on certain parameters: a) the length L of the
tube, the variable z is rescaled from the interval [0, L] to the interval [0, 2π],
the graphs of the calculated solutions are shown in the interval [0, 2π], but
the solution in the interval [0, L] can be recovered multiplying z by L

2π
; b) the

final time T , the solutions were calculated for T = 0, 6, 18, 30, 60, observing
that for values of T > 60, the solutions do not change too much from that
for T = 60, c) N is another parameter, which represents the number of sub–
intervals, with the same length, in which the interval [0, 2π] is sub–divided.
For the case of the pseudo–spectral methods, N must be chosen as a power of
2; d) λ = 2π

L
is the parameter related to the length of the tube.

The verification of the codes is essential to trust the results obtained from
them. In many problems we try to consider cases with exact solutions and
compare the solutions computed using the codes with the exact solutions of
the problems. In our case, we do not know the exact solution, but we know
the solution found and computed by Hammond in [9]. So, we compare all our
results with the Hammond’s one.

In the subsection 4.2, we check the numerical results and statements that
we use in the subsection 4.1, related to the accuracy of the schemes, considering
the linear case Ht = −1

3
Hzzzz. This equation with the initial condition

H(z, 0) = 1 + β cos(z), has an exact solution expressed by H(z, t) = 1 +

β cos(z)e−
1
3 t.

4.1 Numerical experiments

In this section, we present the numerical experiments made using codes for the
different numerical schemes previously proposed. It is known that the ”FD
schemes are somewhat inferior in accuracy compared to spectral schemes” [19],
where FD stands for Finite Differences. This is clear from the fact that the
pseudospectral methods have exponencial convergence, which makes them by
far superior to the FD methods which expose algebraic convergence [10]. The
error between a solution and its N–th order truncated Fourier series decays
faster than algebraically in 1/N, when such solution is infinitely smooth and
periodic with all its derivatives. This is known as the spectral accuracy, or
infinite–order accuracy. In this case we say that the series has an infite–order
convergence [3].

So first, we numerically solve the nonlinear equation (10) using all the nu-
merical schemes considered in this work. We need to compute the relative
errors in order to decide what method gives the best approximation to the ex-
act solution; but we do not know the exact solution for this equation. However,
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Hammond [9] solved it numerically; so, it would be natural to compare all the
numerical solutions that we obtained, with the one already known and obtained
by Hammond. In what follows, we present the comparisons.

4.1.1 Comparisons with Hammonds results In this subsection, we present
all the numerical results obtained from the methods already explained in previ-
ous sections of this article, and we compare them with the numerical results ob-
tained by Hammond. Thus, we solve (10) and (11) for times T = 6, 18, 30, 60
and length L = 6π for the system, applying the pseudo–spectral methods, one
with Euler’s method and the other one with Runge–Kutta’s method of fourth
order. Also, we apply the finite difference methods, one explicit and the other
one implicit.

We performed several runs using all the codes (EXPLI, IMPLI, SPEC–EU,
and SPEC–RK) applied to Hammond’s equation and compared them with the
numerical solution obtained by Hammond [9].

In Figure 1, we present the graph corresponding to the modules of the dif-
ferences between the numerical results obtained by using the implicit finite
difference method and the Hammond’s solution. We observe that the results
are almost the same for all the times considered, except at the extremes where
we can note that the differences increase as T increases. Thus, when T = 60,
the absolute error is 0.03131 and the relative error is by the order of 0.87%
which is good.

For the methods of pseudo–spectral with Euler and pseudo–spectral with
Runge–Kutta of fourth order, we have found similar behaviors for the modules of
the differences between the numerical results obtained from one of our methods
and the Hammond’s solution. We have found that the worse case happens for
the explicit method when time increases.

In Table 1, we have the absolute and relative errors for the numerical results,
obtained from all the methods we study in this article, comparing them with
the Hammond’s solution. The results are given for final time T = 60, N = 27,
and ∆t = 10−4. It can be observed that the pseudo–spectral methods (with
Euler and Runge–Kutta of fourth order) produce solutions with relative errors
by the order of 3.5% (see rows 3 and 4), while the implicit FD method produces
a solution with relative error by the order of 0.87% (see row 2).

We can conclude that the implicit finite difference method gives the best
approximation to the numerical solution obtained by Hammond. But this is a
contradiction with the fact that the FD methods are inferior to the pseudospec-
tral methods [19]. So, what is it happening? Can we trust our results? Let us
analize the situation. Hammond used the method of lines to obtain the numer-
ical solutions [9], but the method of lines is based on FD methods. Therefore,
we can not trust the comparisons.

On the other hand, since the pseudo–spectral methods have infinite–order
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Figure 1: Profiles of the modules of the differences between the numerical results
obtained by using the implicit finite difference method and the Hammond’s
solution.

convergence [3], see section 4.1 for comments, we decide to choose one of the
pseudospectral methods considered in this article as the most accurate solution
to the problem. It is known that the method of Runge–Kutta of fourth order is
more accurate than the method of Euler, which is second order. So, from now on,
we take the solution obtained from pseudo–spectral with Runge–Kutta’s method
of fourth order as the most accurate solution for the initial value problem (10)
and (11) in this article, and do the comparisons.

4.1.2 Comparisons with results from pseudo–spectral with Runge–
Kutta of fourth order In this subsection, we compare the numerical solutions
obtained from our numerical methods, with the solution computed using the
pseudo–spectral method with Runge–Kutta of fourth order; for an explanation,
see subsection 4.1.1 and introduction to section 4.1.

In Figure 2 we present the profiles of the interface evolution obtained solving
(10) and (11) using the pseudo–spectral with Runge–Kutta’s method of fourth
order. The profiles correspond to times T = 6, 18, 30, 60, and L = 6π. Here,
the horizontal axis represents the tube wall. As we can observe in Figure 2,
as time increases, the interface perturbation becomes higher and higher. Thus,
the perturbed interface may eventually touch the tube wall; in this sense the
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Table 1: Comparisons of the numerical solutions obtained applying the methods:
explicit and implicit finite differences, pseudo–spectral with Euler and pseudo–
spectral with Runge–Kutta of fourth order, with the Hammond’s solution [9]
for N = 27, final time T = 60 and ∆t = 10−4.

Row Code Absolute error Relative error
1 EXPLI 1.019 x10−1 9.132 x10−1

2 IMPLI 3.131 x10−2 8.744 x10−3

3 SPEC-EU 8.554 x10−2 3.531 x10−2

4 SPEC-RK 8.482 x10−2 3.535 x10−2

system becomes more unstable. So, from the profile for T = 60, we may think
about the possibility, for some time T in the future, of a contact of the interface
with the tube wall. For this case, we could need to do another research and, of
course, consider other numerical schemes to be able to capture the rupture of
the interface.

In Figure 3, we present the graph corresponding to the modules of the dif-
ferences between the numerical results obtained by using the pseudo–spectral
methods studied in this article. We observe that the results are almost the same
for all the times considered, except when T = 60. In such a case, near the ex-
tremes the differences are by the order of 10−4, which it is still acceptable. In
Table 2, Row 3, we can see the precise values for the errors.

In the literature the implicit methods, in general, have been proved to be
more effective than the explicit ones [16] in the sense that convergence happens
with bigger steps than the ones required for the explicit methods. Thus, we com-
pare the results obtained from the implicit finite difference method with those
obtained by the pseudo–spectral with Runge–Kutta’s method of fourth order.
Therefore, we present in Figure 4, the graph corresponding to the modules of
the differences between the results from the implicit finite difference method and
those from the pseudo–spectral with Runge–Kutta’s method of fourth order. In
this graph we also can observe that bigger differences occur at the extremes,
but now by the order of 10−2. Also see Row 2 of Table 2 for details on the
errors calculated for T ime = 60.

In Figure 5, we plot the modules of the differences between the results from
the method of lines and those from the pseudo–spectral with Runge–Kutta’s
method of fourth order. Looking at this graph we can observe that it is very
similar to that in Figure 4, bigger differences occur at the extremes, and by the
order of 10−2 too. Check Row 4 of Table 2 to see the values of the errors.

In Figure 6, we present the relative error of the numerical solution obtained
from the pseudo–spectral with Euler’s method, considering the solution from
the pseudo–spectral with Runge Kutta’s method of fourth order as the most
accurate numerical solution of the problem, as was discussed in Section 4.1.1.
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Figure 2: Profiles of the evolution of the interface using the pseudo–spectral
with Runge Kutta’s method of fourth order.

It can be easily observed that the relative error is by the order of 10−4 which
is excellent. See Row 3 in Table 2. This tells us that the pseudo–spectral with
Euler’s method produces a very good numerical solution.

On the other hand, in Figure 7, we plot the relative error of the numerical
solution produced by the method of lines, considering, by the same reasons, that
the solution from the pseudo–spectral with Runge Kutta’s method of fourth
order is the most accurate solution. It can be noted that the relative error is by
the order of 10−2. Also, in Table 2, we can observe that the method of lines
(Row 4) and the implicit FD method (Row 2) produce very similar relative
errors. The errors are by the order of 10−2 which, even though it is also good,
it tells us that the pseudo–spectral with Euler’s method gives a better solution,
with errors by the order of 10−4, see Row 3.

All the results observed in Figures 3, 4, 5, 6, and 7, say that the numerical
solution produced using the pseudo–spectral with Euler’s method approximates
the best the solution of the pseudo–spectral with Runge Kutta’s method of
fourth order. In what follows, we want to check the methods used in this article
with some case in which we can have its exact solution. In order to do so,
we consider the linear case of the Hammond’s equation (10) which involves
the higher order derivative of H ; then we calculate the exact solution to this
linear equation. In the next step, we compute the numerical solutions using
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Figure 3: Module of the differences between the solutions from the pseudo–
spectral with Euler’s method and pseudo–spectral with Runge Kutta’s method
of fourth order.

all the methods proposed in this article that can be applied to this case, and
determine which one of them is the best approximation to the exact solution.
We also compare the numerical results with the one obtained by the method of
lines.

4.2 Linear case

The linear form of (10) is given by

Ht = −
1

3
Hzzzz. (33)

We apply the pseudo–spectral with Euler’s method (SPEC–EU) and the
pseudo–spectral with Runge–Kutta’s method of fourth order (SPEC–RK) to
(33). From the finite difference methods, we use only the explicit method (EX-
PLI). The implicit scheme can not be applied to this equation because it does
not have any nonlinear part, so the application of (22) and (23) is not possible.

The linear partial differential equation (33) is numerically solved for values
of z in the interval [0, 2π] and t in the interval [0, T ] under the initial condition

H(z, 0) = 1 + β cos(z). (34)



38 Rodolfo Gallo and Said Kas–Danouche

0 1 2 3 4 5 6 7
0

0.01

0.02

0.03

0.04

0.05

0.06

Z

H

 

 

T=6
T=18
T=30
T=60

Figure 4: Module of the differences between the solutions from the implicit
finite difference method and the pseudo–spectral with Runge Kutta’s method
of fourth order.

Also, we have verified each one of the codes for each corresponding method,
applying them to the linear case. The codes were executed using several data
sets and the numerical results obtained were compared with the exact solution
of the initial value problem (33) and (34), which was determined using the
method of separation of variables. The exact solution is expressed as follows:

H(z, t) = 1 + β cos(z)e−
1
3 t. (35)

With the purpose of comparing the numerical solutions with the exact one,
we compute the absolute and relative errors. In order to calculate the absolute
error, we use the norm ‖ · ‖∞ of the difference between the exact solution
and the numerical solution calculated at each node. We compute the relative
errors dividing the absolute errors by the exact solution. We present in Table
3 several results from where it can be observed what method gives the best
approximation to the exact solution. This can be seen looking at the columns
for the ‖ · ‖∞ error and the relative error.

From several runs performed in this section, we chose only sixteen of them,
which are tabulated in Table 3. Here, we do not present comparative graphs
since the differences between the exact solution (35) and the numerical solutions
obtained from the pseudo–spectral methods, are undistinguishables. So, we
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Table 2: Comparisons of the numerical solutions obtained applying the meth-
ods: explicit and implicit finite differences, pseudo–spectral with Euler and the
method of lines, with the numerical solution from the method of pseudo–spectral
with Runge–Kutta of fourth order for N = 27, ∆t = 10−4, and final time
T = 60.

Row Code Absolute error Relative error
1 EXPLI 1.835 x10−1 9.335 x10−1

2 IMPLI 5.351 x10−2 3.632 x10−2

3 EXPEC-EU 7.207 x10−4 1.906 x10−4

4 LINE 8.482 x10−2 3.414 x10−2

limit the presentation of the results for this case to comparisons shown in Table
3.

Observing the Table 3, we can note that for the first four rows, which corre-
spond to results for final time T = 6, we have the relative errors: 9.919x10−3

for the explicit FD method, 7.360x10−4 for the method of lines, 4.838x10−6

for the pseudo–spectral method with Euler, and 2.419x10−6 for the pseudo–
spectral method with Runge–Kutta of fourth order. For the next four rows,
5, 6, 7, and 8, which correspond to results for T = 18, we can observe, once
more, that the smallest relative error is obtained from the results given by the
pseudo–spectral method with Runge–Kutta of fourth order. For time T = 30,
it is observed that the relative error using the method of lines is 7.416x10−6,
for the pseudospectral method with Euler, is 4.540x10−9, and for the pseu-
dospectral method with Runge–Kutta of fourth order, is 7.577x10−10, which
is the smallest relative error for this time too. When we run the codes for
all the methods, at final time T = 60, we obtain 1.544x10−3, 2.268x10−7,
3.440x10−12, and 0.000x10−15, for the explicit FD method, the method of
lines, the pseudospectral method with Euler, and the pseudospectral method
with Runge–Kutta of fourth order, respectively. For this time we can observe
the spectral accuracy of the pseudospectral method with Runge–Kutta of fourth
order.

On the other hand, for N = 25, ∆t = 10−3, and T = 60, the execution
times for the codes EXPLI, SPEC–EU, and SPEC–RK are 1.062, 3.04, and
25.89, respectively. This put the explicit and pseudo–spectral with Euler meth-
ods in advantage with respect to the pseudo–spetral method with Runge–Kutta
of fourth order. When N = 26, ∆t = 10−4, and T = 60, it is observed that
EXPLI continue having the smallest execution time, then SPEC–EU follows
with a bigger execution time, and finally SPEC–RK has the biggest one.

Thus, from our results we have checked that the pseudo–spectral with Runge–
Kutta’s method of fourth order produces the most accurate numerical solution,
even though there is a computational cost to pay; it is followed, in accuracy,
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Figure 5: Module of the differences between the solutions from the method of
lines and the pseudo–spectral with Runge Kutta’s method of fourth order.

by the pseudo–spectral with Euler’s method. This is in accordance with the
fact that the pseudospectral methods have exponencial convergence [3], which
makes them by far more accurate than the FD methods [10], [19], and with
the known fact that the method of Runge–Kutta of fourth order produces more
accurate solutions than the method of Euler. So, we have checked that there
is no problem to consider, in this article, the solution from the pseudo–spectral
method with Runge–Kutta of fourth order as the most accurate solution for the
problem (10) and (11).

5 Conclusions

Since the pseudo–spectral methods have infinite–order convergence [3], see Sec-
tion 4.1 for comments, and the method of Runge–Kutta of fourth order is more
accurate than the method of Euler, we decided to choose the pseudo–spectral
with Runge–Kutta’s method of fourth order as the most accurate solution for
the initial value problem (10) and (11), in this article.

The horizontal axis represents the tube wall. As we can observe in Figure 2,
as time increases, the interface perturbation becomes higher and higher. Thus,
the perturbed interface may eventually touch the tube wall; in this sense the
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Figure 6: Relative error of the solution obtained by the pseudo–spectral with
Euler’s method.

system becomes more unstable. Therefore, from the profile for T = 60, we
may think about the possibility, for some time T in the future, of a contact of
the interface with the tube wall. For this case, we could need to do another
research and, of course, consider other numerical schemes to be able to capture
the rupture of the interface.

We observe, see Figure 3, that the numerical results obtained by using the
two pseudo–spectral methods, used in this article, are almost the same for all
the times considered, except when T = 60. In such a case, near the extremes
the differences are by the order of 10−4, which it is very good.

In the literature the implicit methods, in general, have been proved to be
more effective than the explicit ones [16] in the sense that convergence happens
with bigger steps than the ones required for the explicit methods. Thus, we
compare the results obtained from the implicit finite difference method with
those obtained by the pseudo–spectral with Runge–Kutta’s method of fourth
order. Therefore, in Figure 4, we can observe that bigger differences occur at
the extremes, by the order of 10−2.

The differences between the results from the method of lines and those from
the pseudo–spectral with Runge–Kutta’s method of fourth order, see Figure 5,
are noted at the extremes, and by the order of 10−2 too.

In Figure 6, we present the relative error of the numerical solution obtained
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Figure 7: Relative error of the solution obtained by the method of lines.

from the pseudo–spectral with Euler’s method, considering the solution from
the pseudo–spectral with RungeKutta’s method of fourth order as the most
accurate numerical solution of the problem. It can be easily observed that the
relative error is by the order of 10−4 which is excellent. Thus, the pseudo–
spectral with Euler’s method produces a very good numerical solution.

On the other hand, the relative error of the numerical solution produced by
the method of lines is by the order of 10−2, considering, by the same reasons,
that the solution from the pseudo–spectral with RungeKutta’s method of fourth
order is the most accurate solution.

Considering the linear form of (10), we apply the pseudo–spectral with Eu-
ler’s method (SPEC–EU) and the pseudo–spectral with Runge–Kutta’s method
of fourth order (SPEC–RK) to (33). From the finite difference methods, we use
only the explicit method (EXPLI). The implicit finite difference scheme cannot
be applied to this equation because it does not have any nonlinear part, so the
application of our implicit scheme (22) and (23) is not possible here. We have
verified each one of the codes for each corresponding method, applying them to
the linear case. The codes were executed using several data sets and the numer-
ical results obtained were compared with the exact solution of the initial value
problem (33) and (34), which was determined using the method of separation
of variables. With the purpose of comparing the numerical solutions with the
exact one, we compute the absolute and relative errors.
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Table 3: Comparisons of the exact solution (35) with the numerical solutions ob-
tained applying the following methods: explicit finite differences, lines, pseudo–
spectral with Euler and pseudo–spectral with Runge–Kutta of fourth order for
N = 25, ∆t = 10−4 and different final times, T .

Row T Code Absolute error Relative error
1 6 EXPLI 1.059 x10−2 9, 919 x10−3

2 6 LINE 6, 863 x10−4 7, 360 x10−4

3 6 ESPEC–EU 4, 511 x10−6 4, 838 x10−6

4 6 ESPEC–RK 2, 255 x10−6 2, 419 x10−6

5 18 EXPLI 2, 002 x10−3 1, 999 x10−3

6 18 LINE 9, 692 x10−6 9, 680 x10−6

7 18 ESPEC–EU 1, 652 x10−7 1, 654 x10−7

8 18 EXPEC–RK 4, 131 x10−8 4, 136 x10−8

9 30 EXPLI 1, 556 x10−3 1, 557 x10−3

10 30 LINE 7, 414 x10−6 7, 416 x10−6

11 30 EXPEC–EU 4, 539 x10−9 4, 540 x10−9

12 30 EXPEC–RK 7, 566 x10−10 7, 577 x10−10

13 60 EXPLI 1, 544 x10−3 1, 544 x10−3

14 60 LINE 2, 268 x10−7 2, 268 x10−7

15 60 EXPEC–EU 3, 440 x10−12 3, 440 x10−12

16 60 EXPEC–RK 0, 000 x10−15 0, 000 x10−15

From the results obtained using all the methods considered in this article, at
final time T = 60, we can observe the spectral accuracy of the pseudo–spectral
method with Runge–Kutta of fourth order with an error of order 10−15. Thus,
from our results, we have checked that the pseudo–spectral with Runge–Kutta’s
method of fourth order produces the most accurate numerical solution, even
though there is a computational cost to pay; it is followed, in accuracy, by the
pseudo–spectral with Euler’s method. This is in accordance with the fact that
the pseudo–spectral methods have exponencial convergence [3], which makes
them by far more accurate than the finite difference methods [10], [19], and
with the known fact that the method of Runge–Kutta of fourth order produces
more accurate solutions than the method of Euler.

Therefore, considering that the numerical solution obtained from the pseudo–
spectral with Runge Kutta’s method of fourth order is the most accurate nu-
merical solution of the problem, we took it as the reference solution for the
nonlinear problem, and conclude that the pseudo–spectral with Euler’s method
produces the best numerical solution to the problem (10) and (11) for times
T = 6, 18, 30, 60 and length L = 6π.



44 Rodolfo Gallo and Said Kas–Danouche

Acknowledgments

RG thanks the Consejo de Desarrollo Cient́ıfico y Tecnológico (CDCHT) of
the Universidad de Los Andes for financing this work through the project I
10440705b. SK thanks the Consejo de Investigación of the Universidad de Ori-
ente for financing the project CI–2–010301–1277/06.

References

[1] R. L. BURDEN AND J. D. FAIRES, (1997), Numerical Analysis, Sixth

edition, Brooks/Cole Publishing Company.

[2] C. CANUTO, M. Y. HUSSAINI, A. QUARTERONI AND T. A. ZANG,
(1988), Spectral Methods in Fluid Dynamics, Springer Series in Computa-
tional Physics, Springer–Verlag, USA.

[3] C. CANUTO, M. Y. HUSSAINI, A. QUARTERONI AND T. A. ZANG,
(2006), Spectral Methods. Fundamentals in Single Domains, Scientific Com-
putation, Springer, USA.

[4] K. CHEN, R. BAI AND D. D. JOSEPH, Lubricated pipelining. Part 3.

Stability of core–anular flow, Journal of Fluid Mechanics, 214, (1990), pp.
251–286.

[5] T. J. CHUNG, (2002), Computational Fluid Dynamics, Cambridge Univer-
sity Press.

[6] P. A. GAUGLITZ AND C. J. RADKE, An extended evolution equation for

liquid film breakup in cylindrical capillaries, Chemical Engineering Science,
43, (1988), pp. 1457–1465.

[7] S. L. GOREN, The instability of anular thread of fluid, Journal of Fluid
Mechanics, 12, (1962), pp. 309–319.

[8] D. GOTTLIEB AND S. A. ORSZAG, (1993), Numerical Analysis of Spec-

tral Methods: Theory ans Applications, Sixth printing, SIAM, Capital City
Press.

[9] P. S. HAMMOND, Nonlinear adjustament of a thin annular film of viscous

fluid surrounding a thread of another within a circular cylindrical pipe, J.
Fluid Mech. (1983), 137, pp. 363–384.
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