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Abstract

A projective bundle in PG(2, q) is a collection of q2 + q + 1 conics that
mutually intersect in a single point and hence form another projective plane
of order q. The purpose of this paper is to investigate the possibility of
partitioning the q5 − q2 conics of PG(2, q) into q2(q − 1) disjoint projective
bundles. As a by-product we obtain a multiplier theorem for perfect difference
sets that generalizes a portion of Hall’s theorem.

1 Introduction

There are q5 − q2 = q2(q − 1)(q2 + q + 1) nondegenerate conics in the desarguesian

projective plane π0 =PG(2, q) of order q [6, p. 140]. Moreover, it is not hard to find
(see [1, §8], [5, p. 1085], or [8]) a collection of q2 + q + 1 nondenegerate conics in
π0 that mutually intersect in exactly one point, and hence serve as the “lines” of

another projective plane on the points of π0.
We will call such a collection of conics a projective bundle. The issue of concern

for this paper is whether the q5 − q2 conics of π0 can be partitioned into q2(q − 1)
projective bundles. We exhibit a collection of q2(q − 1)/2 disjoint bundles for any

odd prime power q, and show that a slightly larger number of disjoint bundles may
be constructed for q = 3. When q is even, a similar construction produces only q−1
disjoint bundles, although a computer-aided search for q = 4 produced 30 disjoint
bundles. It seems unlikely, however, that a complete partitioning of the conics of π0

into projective bundles is possible. We also discuss the connections of this problem
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to the quadric Veronese surface of PG(5, q), to the construction of nondesarguesian
3-dimensional translation planes, and to perfect difference sets.

2 Disjoint projective bundles of type B(P )

For a prime power q, GF(q) denotes the finite field of q elements, and π0 = PG(2, q)

the desarguesian projective plane coordinatized by GF(q). We embed π0 into π =
PG(2, q3), and let σ denote the period 3 collineation of π that fixes the points of π0.
The points of π fall into three disjoint classes, depending upon the orbit structure
under the group 〈σ〉:

• the points of π0 (for which P σ = P ),

• the points of π\π0 lying on lines of π0 (for which P σ2 ∈ PP σ),

• the points not on any line of π0 (for which PP σP σ2
is a triangle).

The lines also fall into three disjoint classes, the duals of the point classes.

We define a real conic to be a conic of π that meets π0 in a nondegenerate conic
of π0. It is a simple consequence of the classical theory (see for instance [11, Chapter
X, especially exercises 9-12 on pages 296-297]) that, if P is not on any line of π0,
then there are exactly q2 + q+ 1 real conics through P, P σ , and P σ2

— one through

each pair of points of π0 — and these conics induce a projective bundle of π0. We
will denote this projective bundle by B(P ) (for any point P not on a line of π0). Of
course, B(P ) = B(P σ) = B(P σ2

). We now address the question of finding as many
disjoint projective bundles of this type as possible.

Lemma 2.1 A disjoint pair of triangles in π that are in perspective from a point
O and line ` have all six vertices on one conic if and only if the central collineation
having center O and axis ` is an involution that interchanges the two triangles.

Proof. This is an immediate consequence of Desargues’ involution theorem; see

[3, §9.3, especially exercise 3, p. 88]. 2

Note that when q is odd, O 6∈ ` and the involution is a homology; when q is even,
O ∈ ` and the involution is an elation [3, 6.32 and p. 132].

The lemma enables us to use a bundle B(P ) to generate a family of disjoint
projective bundles. For our construction we distinguish in π0 a line ` and a point

Q 6∈ `. Let E be the group of the q2 elations of π0 whose axis is `, and let H be the
group of the q − 1 homologies of π0 having axis ` and center Q.

Case 1. q is odd. Denote by J the involution with center Q and axis `. Let H′
be a subset of (q − 1)/2 homologies from H with the property that H ∈ H′ if and
only if HJ 6∈ H′. In particular, since H is a cyclic group of order q − 1, let H be a
generator of H and define

H′ = {Hk | k = 0, 1, · · · , (q − 3)/2}.
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Let P be any point of π not on a line of π0, and consider the set of images of P
under the q2(q − 1)/2 central collineations EH ′ with E ∈ E and H ′ ∈ H′. If E1H1

′

and E2H2
′ are any two such (distinct) collineations, then the images of the triangle

PP σP σ2
under these two maps are clearly disjoint. The resulting two triangles, say

T1 and T2, will be in perspective from the line ` and some point O, where O is
the center of the central collineation (E1H1

′)−1(E2H2
′). But (E1H1

′)−1(E2H2
′) =

E(H1
′)−1H2

′ for some E ∈ E as the elations with axis ` form a normal subgroup
of the perspectivities with axis `. Since the q2 involutions with axis ` are precisely
{EJ | E ∈ E}, the definition of H′ and the above lemma imply that the projective

bundles determined by T1 and T2 are disjoint.

Case 2. q is even. When q is even, no collineation of H is an involution. Arguing
as above, for any point P not on a line of π0, the image of PP σP σ2

under the q− 1

homologies of H produce q − 1 disjoint bundles.

To summarize, we have the following result.

Theorem 2.2 The above construction produces q2(q− 1)/2 disjoint projective bun-
dles of type B(P ) when q is odd, and q − 1 of them when q is even.

We have been unable to find any general construction for partitioning more

than half the conics of PG(2, q) into projective bundles using bundles of type B(P ).
Perhaps by employing different kinds of projective bundles one can do better. We
will investigate this possibility in the next section. However, we first briefly describe
an alternative construction for q2(q − 1)/2 disjoint bundles of type B(P ) when q is

odd.
Let ` now represent any line of π that meets π0 in a single point, say R. By

choosing left-normalized coordinates so that ` =< (0, 1, 0), (1, 0, β) > and R =
(0, 1, 0), where β is a primitive element of GF(q3), it is easy to see that {(1, r +

sβ, β) | r, s ∈ GF(q)} are the points of ` lying on exactly one line of π0, while
{(1, r + sβ + tβ2, β) | r, s, t ∈ GF(q), t 6= 0} are the points of ` lying on no line
of π0. We next partition GF(q) \ {0} (q odd) into two subsets F1 and F2 so that
each element of F2 is the additive inverse of some element in F1, and vice-versa.

Then a straightforward, but somewhat cumbersome, coordinate argument shows
that {B(P ) | P = (1, r + sβ + tβ2, β); r, s ∈ GF(q), t ∈ F1} is a collection of
q2(q − 1)/2 mutually disjoint projective bundles. It is interesting to note that in

this construction all the points P lie on a line, and hence we might call the above
collection of disjoint bundles a “collinear” set.

3 Other types of projective bundles

In his Ph. D. Thesis [4], David Glynn studied three types of projective bundles. (He
calls them packings.) Let us fix a triangle PP σP σ2

and denote it by T . The known
types of projective bundles are as follows.

1. A circumscribed bundle consisting of all real conics containing the three vertices
of T — the type B(P ) of the previous section; these exist for all q.
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2. An inscribed bundle consisting of all real conics that are tangent to the three
sides of T ; these exist for all odd q.

3. A self-polar bundle consisting of all real conics with respect to which T is
self-polar; these exist for all odd q.

The first and third types are bundles in the classical sense of the word: if f =
0, g = 0, h = 0 are the equations of three real conics with h not a linear combination

of f and g, then the bundle is the system of conics given by the equation λf + µg+
νh = 0 with λ, µ, ν ∈ GF(q). It is easy to verify that these systems are projective
bundles (cf.[11, p. 297]). By contrast, the definition of an inscribed bundle (with
its three conjugate imaginary common tangents) implies that any two of its conics

have a unique common tangent line in π0. The projective bundle requirement that
any two of these conics meet in exactly one point of π0 is an immediate consequence
of the next result.

Theorem 3.1 When q is odd, two real conics have one common point in π0 and
three in π \π0 if and only if they have one common tangent in π0 and three in π \π0.

Proof. The number of intersection points in π0 of two real conics C and D has
the same parity as the number of common tangents they have in π0. To see this,
simply count the pairs (P, t) where t is a tangent of D and P ∈ t ∩ C . If P is an

external point of D (on two of its tangents), then P is in exactly two pairs, while
any common point (of C ∩ D) belongs to a unique pair. Dually, any tangent t of
D that is a secant of C is in two pairs, while any common tangent is in one pair.
To finish the argument, observe that finding the points of C

⋂
D involves solving

a quartic equation; consequently, if there were three roots in GF(q), there would
necessarily be a fourth. In other words, 1 is the only possible odd number of real
roots. Dually, if the number of real tangents is odd, then that number must be 1.

2

Corollary

In PG(2, q) with q odd, the dual of a projective bundle is a collection of line
conics whose envelopes constitute the conics of a projective bundle.

Glynn studied his families of conics by associating each conic of π0 with a point
of PG(5, q). The conics of the self-polar and circumscribed bundles correspond in
this model to the points of certain planes in PG(5, q); the conics of an inscribed
bundle correspond to the points of a quadric Veronesean. (Background information

about this model can be found in [7, §25.1] or [10].)

Instead of going to five dimensions, one can study Glynn’s projective bundles
with the help of perfect difference sets [6, §4.2]. The points of π0 =PG(2, q) are

represented by ZN , the integers mod N , where N = q2 +q+1; the lines are obtained
from the perfect difference set D = {d0, d1, · · · , dq} as the images of D under the
Singer cycle S defined by S(i) = i + 1 (for all i ∈ ZN ).
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Theorem 3.2 For N = q2 + q + 1, if r ∈ ZN is relatively prime to N and D is a
perfect difference set for PG(2, q), then D/r = {d/r | d ∈ D} is the point set of a

curve of degree r.

Proof. As a collineation of π0 =PG(2, q), a Singer cycle S induces a collineation
of π =PG(2, q3) that fixes the vertices P, P σ, P σ2

of a triangle we denote by T . (As
before, σ is the collineation that fixes the points of π0.) Introduce new coordinates

so that T is the triangle of reference (1, 0, 0), (0, 1, 0), (0, 0, 1), and (1, 1, 1) is a point
of π0 corresponding to some element of D. S is then represented by a diagonal
matrix,

S =

 λ 0 0
0 µ 0
0 0 ν

 λ, µ, ν ∈ GF(q3).

Note that π0 is the orbit of (1, 1, 1) under successive powers of S. Elements d ∈ D
correspond to points with coordinates (λd, µd, νd) that satisfy the equation of some

line ax+by+cz = 0 (a, b, c ∈ GF(q3)). For fixed r ∈ ZN (relatively prime to N) and
d ∈ D, the element d/r (mod N) corresponds to the point (λd/r, µd/r, νd/r), which
satisfies the equation

axr + byr + czr = 0,

an equation of degree r as desired. 2

A theorem of Hall [5, Theorem 4.5] states that in any cyclic projective plane of
order n, if p is a prime divisor of n, then pD is a line. For the plane PG(2, q) this

follows from our theorem since x→ xp is a field automorphism for any p that divides
q. Other simple consequences:

1. r = −1. Then D/r = −D satisfies 1
x
+ 1
y
+ 1
z

= 0 (or equivalently, yz+zx+xy =
0), which is a conic that contains the vertices of T . S takes −D to the other

conics of the circumscribed bundle. (Bruck worked out this case and the next
in [1, §8]).

2. r = 1
2 . Then D/r = 2D satisfies x1/2 + y1/2 + z1/2 = 0 (or, when rationalized,

x2 + y2 + z2 − 2xy − 2yz − 2zx = 0), which is a conic tangent to the sides of

T when q is odd. S takes 2D to the other conics of the inscribed bundle.

3. r = 2. Then D/r = D/2 satisfies x2 + y2 + z2 = 0, a conic for which T is
self-polar (when q is odd). S takes D/2 to the other conics of the self-polar
bundle. (Hall discussed this case in his famous paper [5, p. 1085].)

Note that the second example provides an independent proof that, when q is
odd, an inscribed bundle is indeed a projective bundle. Moreover, as in the above

examples, if r ∈ ZN then D/(−r) is a curve of degree 2r (just multiply x−r + y−r +
z−r = 0 by xryrzr). Similarly, rD is a curve of degree r (since x1/r + y1/r + z1/r can
always be rationalized).
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Using the software package CAYLEY, we conducted an exhaustive search to
find the largest possible collection of disjoint projective bundles in PG(2, 3), where

bundles could be any one of the three known types. We found that the largest
possible collection consists of 10 bundles, only one more than the set of bundles
of type B(P ) we constructed in the last section. We obtained such a collection by
taking one circumscribed, three inscribed, and six self-polar bundles. The search

was certainly disappointing; although conics in PG(2, 3) are simply quadrangles,
the outcome suggests the implausibility for any q that the conics of PG(2, q) can
be partitioned into projective bundles. However, it should also be mentioned that

using the newly released software package MAGMA we were able to find 30 disjoint
projective bundles in PG(2, 4), all of type B(P ) (the only known type for q even).
Thus for q = 4 we were able to partition more than half the conics into projective
bundles, although the pattern of these bundles remains a mystery. The only general

partitioning construction we have for q even is the one previously mentioned in
Section 2.

Curiously, A. Cayley [2] calculated in 1850 that when q = 2 our constructed
“family” of disjoint bundles, with just q − 1 = 1 member, is best possible. Since a

conic in PG(2, 2) is a noncollinear triple of points, Cayley’s result can be stated as
follows: there exist just two disjoint Steiner triple systems on seven points — one is
formed by the lines of a PG(2, 2), the other by the conics of a circumscribed bundle.

4 Concluding remarks

It seems clear that new types of projective bundles must be found if one is to have
any hope of partitioning all the conics of π0 =PG(2, q) into projective bundles. On
the other hand, it is undoubtedly true that one can do much better than q − 1
disjoint projective bundles for q even, even if only bundles of type B(P ) are used,

as indicated by our previously mentioned search for q = 4.

As a footnote to our discussion we point out that Kirkman [9] found a complete
set of seven disjoint Steiner triple systems on 9 points. Interpreting one of these

systems as the 12 lines of an affine plane of order 3, the other six systems partition
the parabolas of the plane into disjoint “affine bundles” Thus, the affine version of
our problem has a positive solution when q = 3. It is easy to check that Kirkman’s
affine bundles do not extend to projective bundles.

In general the problem of determining the maximum number of disjoint Steiner
systems on v points has attracted considerable attention, but relatively few results
for block sizes larger than 4. If S(t, k, v) denotes a Steiner system with parameters
t, k, v and d(t, k, v) denotes the maximum number of mutually disjoint S(t, k, v)′s

on the same point set, our results show that d(2, q + 1, q2 + q+ 1) ≥ 1 + q2(q− 1)/2
for any odd prime power q.

While the partitioning problem discussed in this paper is interesting in its own
right, there is another motivation that should be mentioned. A partition of the

conics of π0 into circumscribed or self-polar bundles leads, via Glynn’s model, to a
collection of q3−q2 disjoint planes in PG(5, q) that partition the points corresponding
to nondegenerate conics. If one could then find a collection of q2 + 1 disjoint planes
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covering the remaining points, the union of these two partial spreads would give us
an interesting 2-spread of PG(5, q), and thus a method for constructing translation

planes that are 3-dimensional over their kernels.
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