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1 Statement of problems and results

Consider two players who compete with each other by successively taking part in a
series of ‘win-or-lose’ games for one person, henceforth called trials. Two termination
rules are taken into consideration:

(i) Stop as soon as one player has reached a prespecified number N of successful
trials;

(ii) stop after the Nth trial.
The player having more successes at the time of termination will be declared

the final winner; under rule (ii) there is of course also the possibility of a tie. For
determining who, at any given time, will carry out the next trial, two switching rules
are deliberated:

Rule 1. Always alternate between the players;
Rule 2. the current player continues if and only if he/she was successful in the

last trial.

We first assume that the outcomes scored by the two players form two determin-
istic sequences of 1’s (for successes) and 0’s (for failures), say U = (U1, U2, . . .) and
V = (V1, V2, . . .). To present the problem in a formal manner, let us take either U1

or V1 to start with. Call the resulting sequence X(i) = (X
(i)
1 , X

(i)
2 , . . .) if switching

rule i ∈ {1, 2} is used. Let M,N ∈ N be arbitrary positive integers. We consider,
for the two rules, the set of all pairs (U ,V) of 0-1-sequences for which there are more
1’s from the U-sequence than from the V -sequence among the first N components
of X(i) for i = 1, 2, and also the set of all (U ,V) for which there are N 1’s from
the U ’s before there are M 1’s from the V ’s. The gist of this paper is to show that
some surprisingly simple inclusions and even equalities hold between these sets. In
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the case when the sequences U and V are random this leads to some nonintuitive
relations between the corresponding winning probabilities.

2 Deterministic sequences

In this section let (U ,V) ∈ {0, 1}∞ × {0, 1}∞ be an arbitrary pair of 0-1-sequences.

For i = 1, 2 we denote by S
(i)
U,N (S

(i)
V,N) the number of 1’s among the U ’s (V ’s) in

(X
(i)
1 , . . . , X

(i)
N ).

Theorem 1.

(a) If N is even and one starts with V1, or if N is odd and one starts with U1,

then the relations S
(1)
U,N > S

(1)
V,N and S

(2)
U,N > S

(2)
V,N are equivalent.

(b) If N is even and one starts with U1, or if N is odd and one starts with V1,

then S
(2)
U,N = S

(2)
V,N implies that S

(1)
U,N = S

(1)
V,N . The converse implication does

not hold.

Proof. Assume that N = 2n for some n ∈ N; the case of an odd N is treated
similarly.

(a) Let Sj = U1 + . . . + Uj, S
′
j = V1 + . . . + Vj . Since obviously S

(1)
U,N > S

(1)
V,N

if and only if Sn > S ′n, it remains to show that Sn > S ′n is also equivalent to

S
(2)
U,N > S

(2)
V,N . Consider the moment when the (n + 1)th Uj or Vk, whichever comes

first, is placed in X(2). If this value is a V -value (case 1), there are n− n1 U-values

among the previous X
(2)
j for some index n1 ≥ 0. As the number of 0’s coming so

far from the U-sequence is equal to that coming so far from the V -sequence (note
that X(2) starts with V1), and is equal to n − S ′n, the number of 1’s from the Uj ’s

so far is equal to n − n1 − (n − S ′n) = S ′n − n1. In order to achieve S
(2)
U,N > S

(2)
V,N ,

there are thus at least n1 + 1 more 1’s required from the U-sequence. But there are
at most max[0, N − (n + 1) − (n − n1)] = max[0, n1 − 1] components left among

(X
(2)
1 , . . . , X

(2)
N ). Hence S

(2)
U,N > S

(2)
V,N is impossible in case 1.

On the other hand, if the (n+1)th U precedes the (n+1)th V (case 2), prior to its
placement there have been n−n2 V -values before for some index n2 ≥ 0, the number
of 0’s among them exceeding that of 0’s from the U-sequence by 1. Therefore, the
number of V ’s so far is equal to n−n2− (n−Sn + 1) = Sn− n2− 1. Further, there

are max[0, N − (n+ 1)− (n−n2)] = max[0, n2− 1] positions in (X
(2)
1 , . . . , X

(2)
N ) still

to be taken by future U ’s or V ’s. Thus, S
(2)
V,N ≤ (Sn − n2 − 1) + max[0, n2 − 1] ≤

Sn − 1 < S
(2)
U,N .

Hence, in case 1 (2) we have S
(2)
U,N ≤ S

(2)
V,N (S

(2)
U,N > S

(2)
V,N). In case 1, the number of

1’s among U1, . . . , Un−n1 is S ′n−n1, so that Sn ≤ (S ′n−n1) +n1 = S ′n. In case 2, the
number of 1’s among V1, . . . , Vn−n2 is Sn−n2−1, so that S ′n ≤ (Sn−n2−1)+n2 < Sn.
This completes the proof of (a).

(b) If S
(2)
U,N = S

(2)
V,N , then the numbers of U ’s and V ’s in (X

(2)
1 , . . . , X

(2)
N ) are the

same, because the number of U ’s equal to 1 is equal to that of V ’s which are 1, and
the 0’s from both sequences alternate so that their numbers must also coincide, as
N is even. In this case a typical sequence is of the form

1U , . . . , 1U , 0U , 1V , . . . , 1V , 0V , 1U , . . . , 1V , 0V , 1U , . . . , 1U (1)
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or

1U , . . . , 1U , 0U , 1V , . . . , 1V , 0V , 1U , . . . , 1V , 0V (2)

(N/2 U ’s and N/2 V ’s in (2.1) and (2.2)), where the notation is self-explanatory.
(Of course it is possible that the sequence starts with 0U .) The corresponding
sequence generated under switching rule 1, i.e., with alternating U ’s and V ’s, is
easily obtained: Proceeding from left to right, shift each V -value as far as possible
to the left such that the sequence to its left corresponds to U, V, U, V, . . .. After all
V ’s have been shifted accordingly, shift the 1U ’s on the right, if there are any, to
the left such that finally one arrives at a completely alternating sequence. It follows
that S

(2)
U,N = S

(2)
V,N implies S

(1)
U,N = S

(1)
V,N .

Finally, consider sequences U = (1, . . . , 1, 0, . . .) and V = (1, . . . , 1, . . .) each

starting with N/2 1’s and U having a 0 in the (1 + N/2)th position. Then S
(1)
U,N =

S
(1)
V,N = N/2, but S

(2)
U,N = N > N − 1 = S

(2)
V,N .

Next we consider the reaching of certain levels under the two switching rules.
Let σ

(i)
N (τ

(i)
N ) be the index of the Nth 1 coming from the U-sequence (V -sequence)

in (X
(i)
1 , X

(i)
2 , . . .).

Theorem 2. If N ≥ M , the relation σ
(1)
N < τ

(1)
M implies that σ

(2)
N < τ

(2)
M . If

N = M , the two inequalities are equivalent.

Proof. We assume that one starts with U1, the other case being treated similarly.
Let αN = inf{j ≥ 1 | U1+. . .+Uj = N} and assume that αN = N+j and σ

(1)
N < τ

(1)
M .

If U1 + . . .+Uk equals N for the first time for k = N + j, then σ
(1)
N < τ

(1)
M iff among

the first N + j − 1 V -values of X(1) there are less than M 1’s (recall that in X(1)

U-values and V -values alternate). Therefore, αN = N + j, σ
(1)
N < τ

(1)
M is equivalent

with αN = N + j, V1 + . . .+ VN+j−1 ≤M − 1.

On the other hand, the case αN = N + j, σ
(2)
N < τ

(2)
M occurs iff the Nth 1 of

U1, U2, . . . is the (N + j)th element of that sequence and (since the 0’s of the U-
sequence and of the V -sequence alternate under rule 2) in the V -sequence the jth 0
appears before the Mth 1, i.e. there are less than M 1’s among the first M + j − 1
V -values in X(1). Consequently, αN = N + j, σ

(2)
N < τ

(2)
M is satisfied if and only if

αN = N + j, V1 + . . .+ VM+j−1 ≤ M − 1. Next note that trivially,

V1 + . . . + VN+j−1 ≤ M − 1 =⇒ V1 + . . .+ VM+j−1 ≤M − 1,

as N ≥M . It follows that

αN = N + j, σ
(1)
N < τ

(1)
M =⇒ αN = N + j, σ

(2)
N < τ

(2)
M .

with equivalence holding if N = M . Since j was arbitrary, Theorem 2 is proved.

3 The probabilistic setting

Let us now assume that U and V are two random sequences with no restrictions
whatsoever on their joint probability distribution. Thus, each player may show an
arbitrary random performance in the trials; any conceivable kind of stochastic dy-
namics between the players’ outcomes is permissible, reflecting e.g. effects caused by
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learning from experience or other sources, stubborn sticking to unsuccessful strate-
gies, fatigue, internal or external changes in the trials etc., as well as any reactions
on the opponent’s successes or lack of these.

The results in Section 2 have immediate consequences for the winning prob-
abilities of the players under both termination rules and switching rules. These
probabilities are given by

p
(i)
N = P

(
S

(i)
U,N > S

(i)
V,N

)
, and q

(i)
N,M = P

(
σ

(i)
N < τ

(i)
M

)
.

By Theorem 2, we can conclude that

q
(1)
N,M


≤
=
≥

 q
(2)
N,M if N


>
=
<

 M. (3)

Using Theorem 1, it is seen that if the sequence starts with U1,

p
(1)
N

{
≤
=

}
p

(2)
N if N is

{
even
odd

, (4)

while if it starts with V1, we obtain

p
(1)
N

{
≤
=

}
p(2)
n if N is

{
odd
even

. (5)

To see (3.2) for even N , note that by Theorem 1 we can conclude that

P

(
S

(2)
U,N = S

(2)
V,N

)
≤ P

(
S

(1)
U,N = S

(1)
V,N

)
, P

(
S

(2)
U,N < S

(2)
V,N

)
= P

(
S

(1)
U,N < S

(1)
V,N

)

(reversing the roles of U and V to obtain the equation). Hence,

p
(2)
N = 1− P

(
S

(2)
U,N = S

(2)
V,N

)
− P

(
S

(2)
U,N < S

(2)
V,N

)

≥ 1− P
(
S

(1)
U,N = S

(1)
V,N

)
− P

(
S

(1)
U,N < S

(1)
V,N

)

= p
(1)
N .

It is surprising that the relations (3.1)-(3.3), in particular the equalities, hold
independently of the distribution of (U ,V). The results are not intuitive (at least
to the author) even in the case of i.i.d. Bernoulli trials Uj and Vj . Actually this
note originated from an effort to prove the false claim that in the Bernoulli case
P (Uj = 1) > P (Vj = 1) implies that q

(1)
N,N < q

(2)
N,N .

We have not found references to switching problems like the ones considered
here in the voluminous literature on random 0-1-sequences. The models of paired
comparisons and their ramifications, as investigated e.g. by Maisel [3], Uppuluri
and Blot [9], Menon and Indira [4], Groeneveld and Arnold [2], Nagaraya and Chan
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[5], Stadje [7], and Sigrist [6], seem to be the most closely related ones. However,
in these models a trial is a kind of match of the two ‘players’ against each other
in which each one of them can score the point, while in the situation studied here
every trial is carried out by only one player so that some switching rule is required.
However, suppose that in every match only one player (called the ‘attacker’, say)
can score, while the other takes the role of a ‘defender’. This modification leads to
our model. There is also a connection to Banach’s matchbox problem in which items
are successively removed from two piles following some selection rule for the piles
(see Goczyla [1] and Stirzaker [8] and the references given there). If additionally
to the pile selection rule we introduce the possibility that removals may fail with
some probability (possibly variable and depending on the other trials), our model
also applies.

Acknowledgement. I am grateful to the referee who in particular noticed that
U and V do not have to be independent of each other, as I had originally assumed.
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