
Solving some problems of advanced analytical

nature posed in the SIAM-review

Carl C. Grosjean

In this paper, three SIAM-Review problems selected from Vol. 34 (1992) are
reconsidered and treated using methods according to my own vision on them.

1 On alternating double sums 1

Consider the functions S(v) and C(v) defined as the sums of two infinite double
series :

S(v) =
+∞∑
m=0

+∞∑
n=1

(−1)m+n sin(2v
√

m2 + n2)√
m2 + n2

, (1.1)

C(v) =
+∞∑
m=0

+∞∑
n=1

(−1)m+n cos(2v
√

m2 + n2)√
m2 + n2

, (1.2)

whereby it is indifferent in which order of succession of m and n the summations
are carried out on account of the symmetry of the summands with respect to m and
n. Find closed expressions for S(v) and C(v) for arbitrary real v and try to deduce
from them whether the conjectures

S(v) = −v/2 if − π/
√

2 < v < π/
√

2 , C(v) = 0 if v = ±5/4 , (1.3)

based upon numerical calculations, hold or not.

1problem posed by Malte Henkel (University of Geneva, Geneva, Switzerland) and R.A. Weston
(University of Durham, UK) (Problem 92-11∗)
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These sums arose in finite-size scaling studies of the three-dimensional spherical
model.

Solution
1a. First, one notices that

S(v) =
+∞∑
n=1

(−1)n
sin 2vn

n
+

+∞∑
m=1

(−1)m
(

+∞∑
n=1

(−1)n
sin(2v

√
m2 + n2)

(m2 + n2)1/2

)
. (1.4)

The way in which (1.1) is rewritten indicates that the summations will be carried
out horizontally and not diagonally or according to any other order of succession
which could possibly influence ultimately the value of the sum of the double series.
The same will hold for (1.2) in sect.1b.

It is known that

+∞∑
n=1

(−1)n
sinnx

n
=


−x

2
+ jπ , (2j − 1)π < x < (2j + 1)π , ∀j ∈ Z ,

0 , x = ±π,±3π, . . . (1.5)

being the “saw-tooth” curve extending from −∞ to +∞. By differentiation with
respect to x, one finds in the Cesàro-sense (C1) :

+∞∑
n=1

(−1)n cos nx =

 −
1

2
, −(2j − 1)π < x < (2j + 1)π , ∀j ∈ Z ,

πδ[x− (2k + 1)π] , k = 0,±1,±2, . . .

= −1

2
+ π

+∞∑
k=−∞

δ[x− (2k + 1)π] (C1) , ∀x ∈ R . (1.6)

In [Chap. XIII, 13·47] of ref.[1], one reads on p. 415 :∫ ∞
0

Jµ(bt)
Jν(a
√

t2 + z2)

(t2 + z2)ν/2
tµ+1 dt

=



0 , (a < b) ,

bµ

aν

{√
a2 − b2

z

}ν−µ−1

Jν−µ−1(z
√

a2 − b2) , (a > b) ,

a, b ∈ R+ .

For µ = 0, ν = 1/2, this simplifies to(
2

πa

)1/2 ∫ ∞
0

J0(bt)
sin(a

√
t2 + z2)

(t2 + z2)1/2
t dt

=


0 , (a < b) ,

1√
a

{
z√

a2 − b2

}1/2 (
2

πz
√

a2 − b2

)1/2

cos z
√

a2 − b2 , (a > b) ,

or

∫ ∞
0

tJ0(bt)
sin(a

√
t2 + z2)

(t2 + z2)1/2
dt =


0 , (a < b) ,

cos z
√

a2 − b2

(a2 − b2)1/2
, (a > b) .
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Hankel inversion yields

∫ a

0
b J0(tb)

cos z
√

a2 − b2

(a2 − b2)1/2
db =

sin a
√

t2 + z2

(t2 + z2)1/2
, ∀a ∈ R+ ,

and substituting (a2 − b2)1/2 = ax, one obtains

sin a
√

t2 + z2

(t2 + z2)1/2
= a

∫ 1

0
J0(at

√
1− x2) cos azx dx .

Setting a = 2v, t = m and z = n, there comes :

sin(2v
√

m2 + n2)

(m2 + n2)1/2
= 2v

∫ 1

0
J0(2vm

√
1− x2) cos 2vnx dx (1.7)

valid for any real v and any integer values of m and n. This result can also be deduced
from a more general formula given in ref.[2] (p.743, item 6.688(2)). Multiplying both
sides by (−1)n and summing with respect to n from 1 to an arbitrarily chosen large
positive integer N , one finds for any m ≥ 1 :

N∑
n=1

(−1)n
sin(2v

√
m2 + n2)

(m2 + n2)1/2

= 2v
∫ 1

0
J0(2vm

√
1− x2)

N∑
n=1

(−1)n cos 2vnx dx

= 2v
∫ 1

0
J0(2vm

√
1− x2)

{
− 1

2
+

(−1)N

2

cos(2N + 1)vx

cos vx

}
dx

= −v
∫ 1

0
J0(2vm

√
1− x2) dx

+v
∫ 1

0
J0(2vm

√
1− x2)

sin(2N + 1)(vx− π/2)

sin(vx− π/2)
dx .

The function

sin(2N + 1)u

sinu
, ∀u ∈ R

is an even π-periodic function of u. It is of oscillatory nature, with zeros at u =
jπ/(2N+1), j = 1, 2, . . . , N in 0 < u ≤ π/2. It is descending from 2N+1 at u = 0 to
a negative local minimum situated between π/(2N +1) and 2π/(2N +1), ascending
from that minimum to a positive local maximum situated close to 5π/2(2N + 1),
again descending to a negative local minimum lying close to 7π/2(2N +1), etc., and
it is equal to (−1)N at u = π/2. In the limit N = +∞, it is positive infinite at
u = 0. The union over N of the zero-sets of the functions comprised in the above
expression for N ≥ N0 > 1 is dense in [0, π/2]. In every interval [a, b] ⊂]0, π/2],
the sequence of distributions [sin(2N +1)u]/ sinu, N = N0, N0 +1, . . ., converges to
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zero. Therefore, in the Cesàro-sense, it may be regarded as a periodically repeated
Dirac δ-function,i.e.,

lim
N→+∞

sin(2N + 1)u

sinu
= C

+∞∑
k=−∞

δ(u− kπ) , C > 0 ,

the whole of oscillations between 0 and π having zero measure when integrated.
Since, for any N > 1,

∫ π/2

−π/2

sin(2N + 1)u

sinu
du

=
∫ π/2

−π/2
(1 + 2 cos 2u + 2cos 4u + · · ·+ 2cos 2Nu) du = π ,

independent of N , and

C
∫ π/2

−π/2
δ(u) du = C ,

it is clear that C = π and so, in conclusion, for any m ≥ 1 :

+∞∑
n=1

(−1)n
sin(2v

√
m2 + n2)

(m2 + n2)1/2
= −v

∫ 1

0
J0(2vm

√
1− x2) dx

+πv
∫ 1

0
J0(2vm

√
1− x2)

+∞∑
k=−∞

δ[vx− (2k + 1)π

2
] dx

= −v
∫ 1

0
J0(2vm

√
1− x2) dx

+π
∫ 1

0
J0(2vm

√
1− x2)

+∞∑
k=−∞

δ

[
x− (2k + 1)π

2v

]
dx . (1.8)

Next,

∫ 1

0
J0(2vm

√
1− x2) dx =

∫ 1

0
J0(2vmy)

y√
1− y2

dy

=
+∞∑
j=0

(−1)j
(vm)2j

j! j!

∫ 1

0

y2j+1

√
1− y2

dy =
+∞∑
j=0

(−1)j
(vm)2j

j! j!

2.4 . . . (2j)

3.5 . . . (2j + 1)

=
+∞∑
j=0

(−1)j
(2vm)2j

(2j + 1)!
=

sin 2vm

2vm
,

in agreement with (1.7) when n is set equal to zero. Furthermore, a δ-function in
(1.8) can only contribute to the integral when its singularity is located in 0 < x ≤ 1.
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Hence,

+∞∑
n=1

(−1)n
sin(2v

√
m2 + n2)

(m2 + n2)1/2

=



− sin 2vm

2m
, |v| < π

2
,

π

2
sgn(v) , v = ±π

2
,

− sin 2vm

2m
+ πsgn(v)

j∑
r=1

J0(m
√

4v2 − (2r − 1)2π2) ,

(2j − 1)π/2 < |v| < (2j + 1)π/2 , j = 1, 2, . . . ,

πsgn(v)

1

2
+

j∑
r=1

J0(mπ
√

(2j + 1)2 − (2r − 1)2)

 ,

v = ±(2j + 1)π/2 , j = 1, 2, . . . .

For the sake of clarity, let v be momentarily non-negative. Taking (1.4) and (1.5)
into account, summation with respect to m yields :

S(v) =



−v +
+∞∑
m=1

(−1)m
(
−sin 2vm

2m

)
= −v − 1

2
(−v) = −v

2
,

0 ≤ v <
π

2
,

0 +
+∞∑
m=1

(−1)m
π

2
=

π

2

+∞∑
m=1

(−1)m , v =
π

2
, and similarly ,

− v

2
+ j

π

2
+ π

j∑
r=1

[
+∞∑
m=1

(−1)mJ0(m
√

4v2 − (2r − 1)2π2)

]
,

(2j − 1)π/2 < v < (2j + 1)π/2 , j = 1, 2, . . . ,

π

2

+∞∑
m=1

(−1)m + π
j∑
r=1

[
+∞∑
m=1

(−1)mJ0(mπ
√

(2j + 1)2 − (2r − 1)2)

]
,

v = (2j + 1)π/2 , j = 1, 2, . . . ,

in which
∑+∞
m=1(−1)m has to be summed in the Cesàro-sense which entails continuity

between the first two and the last two right-hand sides. Therefore, by virtue of

+∞∑
m=1

(−1)m = − 1

2
(C1) ,

there comes :

S(v) =



− v

2
, 0 ≤ v ≤ π

2
,

− v

2
+ j

π

2
+ π

j∑
r=1

[
+∞∑
m=1

(−1)mJ0(m
√

4v2 − (2r − 1)2π2)

]
,

(2j − 1)π/2 < v ≤ (2j + 1)π/2 , j = 1, 2, . . . .
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By means of

+∞∑
m=1

(−1)mJ0(mx) =



− 1

2
, −π < x < π ,

− 1

2
+ 2

l∑
s=1

1√
x2 − (2s − 1)2π2

,

(2l − 1)π ≤ |x| < (2l + 1)π ,

l = 1, 2, . . . , (1.9)

one obtains as final result for any v ∈ R, taking into account that S(−v) = −S(v),

S(v) =



− v

2
, − π√

2
< v <

π√
2

,

− v

2
+ sgn(v)

j∑
r=1

lv(r)∑
s=1

1[
v2

π2
− (r − 1

2
)2 − (s− 1

2
)2

]1/2
,

|v| ≥ π√
2

, (1.10)

in which j is the largest integer smaller than or equal to

1

2
+

(
v2

π2
− 1

4

)1/2

(1.10′)

and lv(r) is the largest integer smaller than or equal to

1

2
+

[
v2

π2
−
(
r − 1

2

)2
]1/2

. (1.10′′)

The first right-hand side in the final result for S(v) proves the first conjecture in
(1.3). It is astonishing that in v ≥ π

√
2 ∧ v ≤ −π/

√
2, S(v) has infinitely many

vertical asymptotes, i.e., at the abscissae

v = ±π

[(
r − 1

2

)2

+
(
s− 1

2

)2
]1/2

, ∀r ∈ N0 , ∀s ∈ {1, 2, . . . , r} ,

(N0 = {1, 2, . . .}) . (1.11)

These are the v-values for which the double series in (1.1) suddenly becomes diver-
gent.

Let the positive v-values comprised in (1.11) be classified in ascending order.
To every half-open interval between two consecutive of these v-values, closed at the
left-hand side and open at the right, there belongs a positive integer j determined
by (1.10′), for instance, j = 1 for π

√
2/2 ≤ v < π

√
10/2, j = 2 for π

√
10/2 ≤

v < π
√

18/2 and π
√

18/2 ≤ v < π
√

26/2, j = 3 for π
√

26/2 ≤ v < π
√

34/2 and
π
√

34/2 ≤ v < π
√

50/2, etc. Actually, the same j belongs to the set of above
consecutive half-open intervals which are contained in the wider interval

π
(
j2 − j +

1

2

)1/2

≤ v < π
(
j2 + j +

1

2

)1/2

.
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What distinguishes the half-open intervals between two consecutive positive v-values
of the ordered set (1.11) from one another in (1.10) are the upper bounds of s for
r = 1, 2, . . . , j in the double sum. For instance,

– to π
√

2/2 ≤ v < π
√

10/2 belongs j = 1, r = 1, s = 1, hence lv(1) = 1 ;

– to π
√

10/2 ≤ v < π
√

18/2 belongs j = 2,

r = 1, s = 1, 2, hence lv(1) = 2,

r = 2, s = 1, hence lv(2) = 1 ;

– to π
√

18/2 ≤ v < π
√

26/2 belongs j = 2,

r = 1, s = 1, 2, hence lv(1) = 2,

r = 2, s = 1, 2, hence lv(2) = 2 ;

– to π
√

26/2 ≤ v < π
√

34/2 belongs j = 3,

r = 1, s = 1, 2, 3, hence lv(1) = 3,

r = 2, s = 1, 2, hence lv(2) = 2,

r = 3, s = 1, hence lv(3) = 1 ;

– to π
√

34/2 ≤ v < π
√

50/2 belongs j = 3,

r = 1, s = 1, 2, 3, hence lv(1) = 3,

r = 2, s = 1, 2, 3, hence lv(2) = 3,

r = 3, s = 1, 2, hence lv(3) = 2; etc.

Note that lv(1) = j because (1.10′) and (1.10′′) are identical conditions for r = 1.
Furthermore, lv(2) ≤ j and lv(r) < j for r = 3, 4, . . . , j. When v varies over
[π
√

50/2, π
√

58/2[, the expression (1.10′) varies over [4, (1/2)+(1/2)
√

57[ and clearly
j = 4. The values of r are 1, 2, 3, 4 and lv(1) = 4. With r = 2 inserted into (1.10′′),
the expression varies over [(1/2) + (1/2)

√
41, 4[ and therefore lv(2) = 3. With

r = 3 inserted into (1.10′′), the expression varies over [3, (1/2) + (1/2)
√

33[ so that
lv(3) = 3. Finally, with r = 4 inserted into (1.10′′), the expression varies over [1, 2[
so that lv(4) = 1. Consequently ,

r = 1 , s = 1, 2, 3, 4

r = 2 , s = 1, 2, 3

r = 3 , s = 1, 2, 3

r = 4 , s = 1 (1.12)

and the double sum in (1.10) contains eleven terms.
An equivalent way of writing the double sum in (1.10) is

sgn(v)
+∞∑
r=1

+∞∑
s=1

1[
v2

π2
−
(
r − 1

2

)2

−
(
s− 1

2

)2
]1/2

,

∀(r, s) :
v2

π2
−
(
r − 1

2

)2

−
(
s− 1

2

)2

≥ 0 . (1.13)



430 C. C. Grosjean

For finite v, this double series never involves an infinite number of terms by virtue
of the condition on the (r, s)-couples. For any finite v,

(
r − 1

2

)2

+
(
s− 1

2

)2

being an expression which increases with growing r, s and both, does not remain
smaller than v2/π2. At a certain moment, it starts getting larger than v2/π2. (1.13)
is called locally finite. For instance, when π

√
50/2 ≤ v < π

√
58/2, the (r, s)-couples

in (1.13) are those listed in (1.12).

1b. In their solution, J. Boersma and P.J. de Doelder [3] combine C(v) and S(v)
by forming C(v) + iS(v) and subject f(v; x, y) defined as

f(v; x, y) :=


exp(2iv

√
x2 + y2)− 1√

x2 + y2
, (x, y) 6= (0, 0) ,

2iv , (x, y) = (0, 0) ,

with v ≥ 0 to two-dimensional complex Fourier transformation with respect to x and
y. This offers the advantage that they simultaneously attain results for S(v) and
C(v) both of the form (1.10). In what follows, several representations of C(v), some
more interesting from the numerical point of view and some mainly of theoretical
importance, will be deduced.

In contrast to S(0) = 0, one notices that C(0) 6≡ 0 and I shall first concentrate
on the constant C(0) given by

+∞∑
m=0

+∞∑
n=1

(−1)m+n

(m2 + n2)1/2
=

+∞∑
n=1

(−1)n

n
+

+∞∑
m=1

+∞∑
n=1

(−1)m+n

(m2 + n2)1/2

= − ln 2 +
+∞∑
m=1

+∞∑
n=1

(−1)m+n

(n2 + m2)1/2
.

Making use of form. (1) in [Chap. XIII,13·2] of ref. [1], i.e.,

∫ ∞
0

e−atJ0(bt) dt =
1

(a2 + b2)1/2
, Re(a) > 0 ,

one can write

C(0) = −ln 2 +
+∞∑
m=1

(−1)m
+∞∑
n=1

(−1)n
∫ ∞

0
e−ntJ0(mt) dt

= −ln 2−
∫ ∞

0

dt

et + 1

+∞∑
m=1

(−1)mJ0(mt) .
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Applying (1.9), one finds :

C(0) = −ln 2 +
1

2

∫ ∞
0

dt

et + 1

−2
+∞∑
s=1

∫ ∞
(2s−1)π

dt

(et + 1)[t2 − (2s− 1)2π2]1/2

= − 1

2
ln 2− 2

+∞∑
s=1

∫ ∞
1

du√
u2 − 1{1 + exp[(2s− 1)πu]}

= − 1

2
ln 2− 2

+∞∑
s=1

∫ ∞
1

exp[−(2s− 1)πu]√
u2 − 1{1 + exp[−(2s− 1)πu]}

du

= − 1

2
ln 2 + 2

+∞∑
s=1

∫ ∞
1

du√
u2 − 1

+∞∑
r=1

(−1)rexp[−r(2s− 1)πu]

= − 1

2
ln 2 + 2

+∞∑
s=1

{
+∞∑
r=1

(−1)r
∫ ∞

1

exp[−r(2s− 1)πu]√
u2 − 1

du

}
,

which permits the use of the modified Bessel function of the second kind and order
zero (cfr. [1], VI,6.3 p.185) :

K0(z) =
∫ ∞

1

e−zu√
u2 − 1

du .

Hence,

C(0) = − 1

2
ln 2 + 2

+∞∑
s=1

{
+∞∑
r=1

(−1)rK0[r(2s− 1)π]

}

= −0.403 885 656 . . .

where the numerical value of C(0) was obtained with the help of a computer program
for the numerical integration of

J (a) :=
∫ ∞

1

du√
u2 − 1(1 + eau)

=
∫ ∞

0

dx√
1 + x2[1 + exp(a

√
1 + x2)]

applicable for any real a ≥ 1, say. A high accuracy is easily attained on account of
the rapid decrease of the integrand with growing x. Similarly, due to

0 < J (a) < K0(a) '
(

π

2a

)1/2

e−a[1 +O(1/a)] ,

the convergence of the series in

C(0) = − 1

2
ln 2− 2

+∞∑
s=1

J [(2s− 1)π]

is also fast enough to obtain easily the mentioned numerical value with all the
decimals being significant.
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As far as an analytical representation of C(0) in terms of known functions is
concerned, one can appeal to Table I in [4] in which one finds :

+∞∑
m=1

+∞∑
n=1

(−1)m+n

(m2 + n2)s
= (1− 21−2s)ζ(2s)− (1− 21−2s)β(s)ζ(s) , (1.14false)

where ζ(s) is the well-known Riemann zeta function and

β(s) :=
+∞∑
j=0

(−1)j

(2j + 1)s
, s > 0 .

There is a misprint in (1.14false) since the formula leads to C(0) = 0. Indeed, if it
were correct, one would have

C(0) =
+∞∑
n=1

(−1)n

n
+ lim

s→1/2
[(1− 21−2s)ζ(2s)− (1− 21−2s)β(s)ζ(s)]

= −ln 2 + lim
s→1/2

[(1− 21−2s)ζ(2s)]− 0.β(1/2)ζ(1/2)

whereby β(1/2) and ζ(1/2) are finite numbers :

1/2 < β(1/2) < π/4 , −(
√

2 + 1)ln 2 < ζ(1/2) < −(
√

2 + 1)/2 .

Hence,

C(0) = −ln 2 + lim
s→1/2

(
1− e(1−2s)ln 2

)( 1

2s − 1
+O(s0)

)

= −ln 2 + lim
s→1/2

[
−(1− 2s)ln 2 +O((1− 2s)2)

] ( 1

2s − 1
+O(s0)

)
= −ln 2 + ln2 = 0 .

In [5], the correct formula replacing the erroneous one appears to be

+∞∑
m=1

+∞∑
n=1

(−1)m+n

(m2 + n2)s
= (1− 21−2s)ζ(2s)− (1− 21−s)β(s)ζ(s) , (1.14)

so that

C(0) = (
√

2− 1)β(1/2)ζ(1/2)

= −
(

1− 1√
3

+
1√
5
− · · ·

)(
1− 1√

2
+

1√
3
− · · ·

)

from which one can deduce

− π

4
ln 2 < C(0) < − 1

4

or

−0.544 40 < C(0) < −0.25 ,
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indeed satisfied by C(0) = −0.403 885 656 . . ., very close to the middle of the interval.

The cosine analogue of (1.5) is

+∞∑
n=1

(−1)n
cosnx

n
= − ln

(
2
∣∣∣∣cos x

2

∣∣∣∣) , ∀x ∈ R .

By differentiation with respect to x, one finds in the Cesàro-sense (C1) :

+∞∑
n=1

(−1)n sinnx =

 −
1

2
tan

x

2
, (2j − 1)π < x < (2j + 1)π , ∀j ∈ Z ,

0 , x = ±π,±3π, . . . (1.15)

One could consider treating the problem with C(v) along the same lines as that
with S(v). For that purpose, one has to dispose of the analogue of (1.7) which is

cos(2v
√

m2 + n2)

(m2 + n2)1/2
= −2v

∫ 1

0
J0(2vm

√
1− x2) sin 2vnx dx

+
2n

π

∫ 1

0

cos 2vmu

[m2(1− u2) + n2]
√

1− u2
du , (1.16)

but in contrast to (1.7), this result is valid for 0 ≤ m < n only. This restriction,
as well as the appearance of two integrals in the right-hand side, make (1.16) less
attractive. Instead, one can make use of form. (4) in [Chap. XIII, 13·47] of ref. [1],
i.e.,

∫ ∞
0

J0(bt)
exp[−a

√
t2 − y2]

(t2 − y2)1/2
t dt =

exp[∓ iy
√

a2 + b2]

(a2 + b2)1/2

where the upper or lower sign is taken according as the indentation passes above or
below the y-axis. This leads to

C(v) =
+∞∑
n=1

(−1)n
cos(2vn)

n
+

+∞∑
n=1

+∞∑
m=1

(−1)n+m cos(2v
√

m2 + n2)

(m2 + n2)1/2

= −ln(2| cos v|) +
+∞∑
n=1

+∞∑
m=1

(−1)n+m

{
−
∫ 2|v|

0
tJ0(nt)

sin(m
√

4v2 − t2)

(4v2 − t2)1/2
dt

+
∫ ∞

2|v|
tJ0(nt)

exp[−m
√

t2 − 4v2]

(t2 − 4v2)1/2
dt

}
. (1.17)
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Taking (1.15) into account, (1.17) becomes :

C(v) = −ln(2| cos v|)

+
+∞∑
n=1

(−1)n
{

1

2
P
∫ 2|v|

0
tJ0(nt)

tan(
√

4v2 − t2/2)

(4v2 − t2)1/2
dt

−
∫ ∞

2|v|

tJ0(nt)

(t2 − 4v2)1/2[1 + exp(
√

t2 − 4v2)]
dt

}

= −ln(2| cos v|)

+
+∞∑
n=1

(−1)n
{

1

2
P
∫ 2|v|

0
J0(n
√

4v2 − x2)tan(x/2) dx

−
∫ ∞

0

J0(n
√

4v2 + u2)

eu + 1
du

}
. (1.18)

The appearance of the Cauchy principal value operator P stems from the fact that
the right-hand side of (1.15) involves infinitely many discontinuities which may be
removed by means of cut-offs which are symmetric with respect to the vertical
asymptotes. In connection herewith, it may be preferable to incorporate the same
prescription as for taking the Cauchy principal value of a divergent integral into
(1.15) by writing :

+∞∑
n=1

(−1)n sinnx = lim
ε→+0


− 1

2
tan

x

2
, (2j − 1)π + ε < x < (2j + 1)π − ε ,

∀j ∈ Z , (1.15′)

0 , (2j + 1)π − ε ≤ x ≤ (2j + 1)π + ε , ∀j ∈ Z .

In order to remove the summation with respect to n in (1.18), one can apply (1.9)
and obtain :

− for − π/2 < v < π/2 :

C(v) = − 1

2
ln(2 cos v)

−2
+∞∑
s=1

∫ ∞
[(2s−1)2π2−4v2]1/2

du

(eu + 1)[u2 − (2s− 1)2π2 + 4v2]1/2
;

(1.19)
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− for (2j − 1)π/2 < |v| < (2j + 1)π/2 , ∀j ∈ N0 :

C(v) = − 1

2
ln(2| cos v|)

+
j∑
s=1

P
∫ [4v2−(2s−1)2π2]1/2

0

tan(x/2)

[4v2 − (2s − 1)2π2 − x2]1/2
dx

−2
j∑
s=1

∫ ∞
0

du

(eu + 1)[u2 + 4v2 − (2s− 1)2π2]1/2

−2
+∞∑
s=j+1

∫ ∞
[(2s−1)2π2−4v2]1/2

du

(eu + 1)[u2 − (2s − 1)2π2 + 4v2]1/2
.

(1.20)

When |v| converges towards π/2, the first term in (1.19) tends to +∞, but at
the same time, the first integral in the series also tends to +∞ and therefore an
indeterminacy of the type (+∞−∞) occurs. It can be eliminated making use of
some formulae belonging to the theory of the Gamma-function and so,

C(±π/2) = γ − 1

2
ln(π/2)

−2
+∞∑
s=2

∫ ∞
2π
√
s(s−1)

du

(eu + 1)[u2 − 4π2s(s− 1)]1/2
. (1.21)

In a similar way, one gets :

C(±(2j + 1)π/2) = γ − 1

2
ln[π/2(2j + 1)]

+
j∑
s=1

P
∫ 2π
√

(j+s)(j−s+1)

0

tan(x/2)

[4π2(j + s)(j − s + 1) − x2]1/2
dx

−2
j∑
s=1

∫ ∞
0

du

(eu + 1)[u2 + 4π2(j + s)(j − s + 1)]1/2

−2
+∞∑
s=j+2

∫ ∞
2π
√

(s+j)(s−j−1)

du

(eu + 1)[u2 − 4π2(s + j)(s− j − 1)]1/2
,

∀j ∈ N0 . (1.22)

Taken together, the formulae (1.19)–(1.22) constitute a representation of C(v), ∀v ∈
R, clearly generalizing

C(0) = − 1

2
ln 2− 2

+∞∑
s=1

∫ ∞
(2s−1)π

du

(eu + 1)[u2 − (2s − 1)2π2]1/2
. (1.19′)

They involve only rapidly converging series.
From (1.19) and (1.21), it follows that C(v) is a continuous function of v in

[−π/2, π/2]. In (1.20), there is continuity for |v| ∈ [(2j − 1)π/2, (2j + 1)π/2] as far
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as the first term, the third part and the fourth part are concerned, but the second
part generates infinite discontinuities at the same abscissae as S(v), namely, at

v = ±π

[(
r − 1

2

)2

+
(
s− 1

2

)2
]1/2

, ∀r ∈ N0 , ∀s ∈ {1, 2, . . . , r}. (1.23)

Indeed, each time the upper bound of integration [4v2 − (2s − 1)2π2]1/2 attains a
positive odd integer multiple of π, the tangent function causes divergence of the
integral involved, as it gives rise to a (single) pole at that bound. The infinite jumps
closest to the origin being located at v = ±π/

√
2, C(v) is a continuous function of

v in ]− π/
√

2, π/
√

2[ just as S(v), but it is by far not as simple.

From (1.19), it follows that C(v) < 0 for any v ∈ [0, π/3]. For v ∈]π/3, π/2], the
first term in (1.19) is positive whereas the second part continues to furnish a negative
contribution. Computer tabulation reveals that C(v) increases monotonically from
−0.140 972 . . . at v = π/3 to 0.351 309 . . . at v = π/2. Consequently, C(v) has
a single zero inside [π/3, π/2]. That zero is v0 = 1.252 129 . . . and not 5/4 as
is conjectured by the proposers in (1.3). Their numerical work clearly was not
sufficiently accurate, but 5/4 differs from v0 only by approximately 0.002. It could
therefore have been used in practice when a precision of two decimals would be
sufficient.

A second representation of C(v) no longer containing integrals but at the expense
of involving a double series, can be obtained as follows for −π/2 < v < π/2, making
use of (1.19) and (1.19′) :

C(v)− C(0) = − 1

2
ln cos v

−2
+∞∑
s=1

∫ ∞
1

dt
√

t2 − 1{1 + exp[
√

(2s− 1)2π2 − 4v2t]}

+2
+∞∑
s=1

∫ ∞
1

dt√
t2 − 1{1 + exp[(2s− 1)πt]}

= − 1

2
ln cos v − 2

+∞∑
s=1

∫ ∞
1

exp[−
√

(2s − 1)2π2 − 4v2t]
√

t2 − 1{1 + exp[−
√

(2s − 1)2π2 − 4v2t]}
] dt

+2
+∞∑
s=1

∫ ∞
1

exp[−(2s− 1)πt]√
t2 − 1{1 + exp[−(2s− 1)πt]}

dt
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= − 1

2
ln cos v + 2

+∞∑
s=1

+∞∑
r=1

(−1)r
{
K0(r[(2s − 1)2π2 − 4v2]1/2)

−K0[r(2s− 1)π]

}

= − 1

2
ln cos v + 2

+∞∑
s=1

+∞∑
r=1

(−1)r
{∫ ∞

0

cos ru

[(2s− 1)2π2 − 4v2 + u2]1/2
du

−
∫ ∞

0

cos ru

[(2s− 1)2π2 + u2]1/2
du

}

= − 1

2
ln cos v + 2

+∞∑
s=1

∫ ∞
0

(
1

[(2s− 1)2π2 − 4v2 + u2]1/2

− 1

[(2s− 1)2π2 + u2]1/2

)(
− 1

2
+ π

+∞∑
r=−∞

δ[u− (2r − 1)π]

)
du

= − 1

2
ln cos v +

1

2

+∞∑
s=1

ln

(
1− 4v2

(2s− 1)2π2

)

+
+∞∑
s=1

+∞∑
r=1

 1[(
s− 1

2

)2
− v2

π2 +
(
r − 1

2

)2
]1/2

− 1[(
s− 1

2

)2
+
(
r − 1

2

)2
]1/2

. (1.24)

In these calculations, use was made of two integral representations of K0(z):

K0(z) =
∫ ∞

1

e−zt√
t2 − 1

dt and K0(xz) =
∫ ∞

0

cos xu√
z2 + u2

du .

A known infinite product representation of the cosine function has as consequence
the cancellation of the above first two parts against one another. Hence,

C(v) = C(0) +
+∞∑
r=1

+∞∑
s=1


1[(

r − 1
2

)2
+
(
s− 1

2

)2
− v2

π2

]1/2

− 1[(
r − 1

2

)2
+
(
s− 1

2

)2
]1/2

 , −π/2 < v < π/2 , (1.25)

showing a greater similarity to (1.10) than previous representations such as (1.19)–
(1.22) or the first right-hand side in (1.24). This expression is less suited for com-
putational evaluation of C(v) than (1.19) although it converges faster than the
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definition of C(v) since its general term is of the form

v2/2π2[(
r − 1

2

)2
+
(
s− 1

2

)2
]3/2

+O

 v4[(
r − 1

2

)2
+
(
s− 1

2

)2
]5/2

 .

The double series in (1.25) is absolutely convergent by virtue of its general term
being positive for all r and s ∈ N0.

(1.25) may be extended to any real v. When (2k − 1)π/2 < v < (2k + 1)π/2,
∀k ∈ N0, (1.24) changes into

C(v)− C(0) = − 1

2
ln cos(v − kπ)

+2
+∞∑
s=k+1

+∞∑
r=1

(−1)r
{
K0(r[(2s − 1)2π2 − 4v2]1/2) −K0[r(2s− 1)π]

}

+
k∑
s=1

+∞∑
r=1

(−1)r
{
K0(ir[4v

2 − (2s− 1)2π2]1/2)

+K0(−ir[4v2 − (2s − 1)2π2]1/2)− 2K0[r(2s− 1)π]
}

= − 1

2
ln[(−1)k cos v] + 2

+∞∑
s=k+1

+∞∑
r=1

(−1)r
{∫ ∞

0

cos ru du

[(2s− 1)2π2 − 4v2 + u2]1/2

−
∫ ∞

0

cos ru

[(2s− 1)2π2 + u2]1/2
du

}

+2
k∑
s=1

+∞∑
r=1

(−1)r
{∫ ∞

[4v2−(2s−1)2π2]1/2

cos ru du

[u2 − (4v2 − (2s − 1)2π2)]1/2

−
∫ ∞

0

cos ru

[u2 + (2s− 1)2π2]1/2
du

}

= − 1

2

k∑
s=1

ln

(
4v2

(2s− 1)2π2
− 1

)
− 1

2

+∞∑
s=k+1

ln

(
1− 4v2

(2s− 1)2π2

)

+2
+∞∑
s=k+1

∫ ∞
0

(
1

[u2 + (2s− 1)2π2 − 4v2]1/2
− 1

[u2 + (2s − 1)2π2]1/2

)

×
(
− 1

2
+ π

+∞∑
r=−∞

δ[u− (2r − 1)π]

)
du
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+2
k∑
s=1

∫ ∞
[4v2−(2s−1)2π2]1/2

(
1

[u2 + (2s− 1)2π2 − 4v2]1/2

− 1

[u2 + (2s− 1)2π2]1/2

)(
− 1

2
+ π

+∞∑
r=−∞

δ[u− (2r − 1)π]

)
du

−2
k∑
s=1

∫ [4v2−(2s−1)2π2]1/2

0

1

[u2 + (2s − 1)2π2]1/2

×
(
− 1

2
+ π

+∞∑
r=−∞

δ[u− (2r − 1)π]

)
du .

On account of

∫ ∞
0

(
1√

u2 + A2
− 1√

u2 + B2

)
du

= lim
λ→+∞

∫ λ

0

(
1√

u2 + A2
− 1√

u2 + B2

)
du

= lim
λ→+∞

ln

(
u +
√

u2 + A2

u +
√

u2 + B2

)∣∣∣∣∣
u=λ

u=0

= ln
B

A
, A > 0, B > 0 , (1.26)

there comes :

C(v)−C(0) = − 1

2

k∑
s=1

ln

(
4v2

(2s− 1)2π2
− 1

)

+
+∞∑
s=k+1

+∞∑
r=1

 1[(
r − 1

2

)2
+
(
s− 1

2

)2
− v2

π2

]1/2

− 1[(
r − 1

2

)2
+
(
s− 1

2

)2
]1/2



+2π
k∑
s=1

+∞∑
r=1

∫ ∞
[4v2−(2s−1)2]1/2

(
1

[u2 + (2s− 1)2π2 − 4v2]1/2

− 1

[u2 + (2s− 1)2π2]1/2

)
δ[u− (2r − 1)π] du
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−
k∑
s=1

∫ ∞
0

(
1

[u2 + 4v2 − (2s− 1)2π2]1/2

− 1

[u2 + (2s− 1)2π2]1/2

)
du

−2π
k∑
s=1

+∞∑
r=1

∫ [4v2−(2s−1)2π2]1/2

0

δ[u− (2r − 1)π]

[u2 + (2s− 1)2π2]1/2
du , (1.27)

in which use was made of∫ λ

A

du

(u2 −A2)1/2
=
∫ √λ2−A2

0

dt

(t2 + A2)1/2
=
∫ √λ2−A2

0

du

(u2 + A2)1/2
.

The right-hand side of (1.27) is even in v and therefore holds in both regions v <
−π/2 and v > π/2. By virtue of (1.26), its first part is cancelled by its fourth part.
Now, for s = 1 in the third part, the δ-function has its peak inside the integration
interval when

(2r − 1)π > (4v2 − π2)1/2

which gives

r >
1

2
+

(
v2

π2
− 1

4

)1/2

.

In accordance with (1.10′′) this means

r > lv(1) .

Similarly for s = 2, 3, . . . , k, the δ-function has its peak inside the integration interval
when

r >
1

2
+

[
v2

π2
−
(
s− 1

2

)2
]1/2

which means

r > lv(s) .

Consequently,

C(v)− C(0) =


+∞∑
s=k+1

+∞∑
r=1

+
k∑
s=1

+∞∑
r=lv(s)+1


 1[(

r − 1
2

)2
+
(
s− 1

2

)2
− v2

π2

]1/2

− 1[(
r − 1

2

)2
+
(
s− 1

2

)2
]1/2

−
k∑
s=1

lv(s)∑
r=1

1[(
r − 1

2

)2
+
(
s− 1

2

)2
]1/2

.
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Finally, to make this result better comparable with (1.10), let us rename k as j, s
as r and vice-versa. There comes :

C(v) =



C(0) +
+∞∑
r=1

+∞∑
s=1


1[(

r − 1
2

)2
+
(
s− 1

2

)2
− v2

π2

]1/2

− 1[(
r − 1

2

)2
+
(
s− 1

2

)2
]1/2

 , −π/
√

2 < v < π/
√

2,

C(0)−
j∑
r=1

lv(r)∑
s=1

1[(
r − 1

2

)2
+
(
s− 1

2

)2
]1/2

+
+∞∑
r=1

+∞∑
s=lv(r)+1

 1[(
r − 1

2

)2
+
(
s− 1

2

)2
− v2

π2

]1/2

− 1[(
r − 1

2

)2
+
(
s− 1

2

)2
]1/2

 , |v| ≥ π/
√

2, (1.28)

whereby j is still defined as in (1.10′) and lv(r) as in (1.10′′) when r = 1, 2, . . . , j
whereas lv(r) = 0 for r = j + 1, j + 2, . . .. This result confirms the occurrence of
infinite discontinuities at the abscissae (1.23). It is worth noticing that (1.10) and
(1.28) are related in such a way that their combination yields :

+∞∑
m=0

+∞∑
n=1

(−1)m+n exp(2iv
√

m2 + n2)√
m2 + n2

= C(0) +
+∞∑
r=1

+∞∑
s=1


1[(

r − 1
2

)2
+
(
s− 1

2

)2
− v2

π2

]1/2

− 1[(
r − 1

2

)2
+
(
s− 1

2

)2
]1/2

−
v

2
i , ∀v ∈ R ,

or
+∞∑
m=0

+∞∑
n=1

(−1)m+n exp(2iv
√

m2 + n2)− 1√
m2 + n2

=
+∞∑
r=1

+∞∑
s=1


1[(

r − 1
2

)2
+
(
s− 1

2

)2
− v2

π2

]1/2

− 1[(
r − 1

2

)2
+
(
s− 1

2

)2
]1/2

−
v

2
i , ∀v ∈ R , (1.29)
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if one agrees upon setting[(
r − 1

2

)2

+
(
s− 1

2

)2

− v2

π2

]1/2

= −i sgn(v)

[
v2

π2
−
(
r − 1

2

)2

−
(
s− 1

2

)2
]1/2

,

when v exceeds

π

[(
r − 1

2

)2

+
(
s− 1

2

)2
]1/2

.

This is entirely like in the definition of the branch of (z2 − 1)1/2 in C which is
determined by the arithmetic square root of x2 − 1 when z(= x + yi) ∈]1, +∞[.
Indeed, in that case,[

(z2 − 1)1/2
]
z=x±0.i

= ± i
√

1− x2 , ∀x ∈]− 1, 1[ .

The fraction in the left-hand side of (1.29) explains why Boersma and de Doelder
have started their calculation of S(v) and C(v) by introducing f(v; x, y) (cfr. the
beginning of subsection 1b) (see also [3]). At the end of their paper, Boersma and de
Doelder derive a convergent single series representing C(v) in −π/

√
2 < v < π/

√
2 :

C(v) =
(

2

π

)1/2 +∞∑
n=0

Γ(n + 1
2
)

n!
(1− 2−n−(1/2))β(n +

1

2
)ζ(n +

1

2
)

(
2v2

π2

)n
.

(1.30)

Independently, for the purpose of computing C(v)-values in the same interval, I
established :

C(v) = C(0) +
+∞∑
n=1

1.3 . . . (2n − 1)

2.4. . . . 2n

×


+∞∑
r=1

+∞∑
s=1

1[(
r − 1

2

)2
+
(
s− 1

2

)2
]n+(1/2)

 v2n

π2n

= C(0) +
+∞∑
n=1

Anv
2n ∼= −0.403 885 656 +

10∑
n=1

Anv
2n

whereby

A1 = 2.091 942 879 4 × 10−1, A2 = 2.281 414 756 3 × 10−2,

A3 = 3.707 098 721 0 × 10−3, A4 = 6.530 541 970 7 × 10−4,

A5 = 1.189 582 057 8 × 10−4, A6 = 2.209 193 287 4 × 10−5,

A7 = 4.156 799 684 0 × 10−6, A8 = 7.896 899 562 4 × 10−7,

A9 = 1.511 341 062 6 × 10−7, A10 = 2.909 485 373 4 × 10−8. (1.31)
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For v not too close to ±π/
√

2, this permits the calculation of C(v) with high accu-
racy. The formula (1.30) presents the advantage that it enables one to express the
A-coefficients in terms of the functions β and ζ :

An =

√
2

π2n

1.3. . . . (2n− 1)

n!

(
1− 1

2n+(1/2)

)
β(n +

1

2
)ζ(n +

1

2
) , n = 1, 2, . . .

The asymptotic approximation of An is

An '
√

2

πn

(
2

π2

)n (
1 +

2

5n+(1/2)
+O

(
1

9n+(1/2)

))
, n� 1 .

By means of d’Alembert’s test, this formula shows that the series
∑∞
n=1 Anv

2n with
solely positive coefficients is convergent for |v| < π/

√
2.

Another practical formula for the same purpose is obtained on the basis of

C(v) = C(0) +
√

2

[(
1− 2

π2
v2
)−1/2

− 1

]

+
+∞∑
n=1

(
An −

1.3. . . . (2n − 1)

n!

√
2

π2n

)
v2n

∼= −0.403 885 656 +
√

2

[(
1− 2

π2
v2
)−1/2

− 1

]
+

5∑
n=1

anv
2n

with

a1 = 0.065 904 495 885, a2 = 0.001 036 710 560,

a3 = 0.000 029 572 564 5, a4 = 0.000 000 984 416 73,

a5 = 0.000 000 034 938 255, (a6 = 0.000 000 001 281 455,

an < 0.5× 10−10 , n ≥ 7). (1.32)

The exact expression and the asymptotic approximation of an are given by :

an =

√
2

π2n

1.3. . . . (2n− 1)

n!

[(
1− 1

2n+(1/2)

)
β(n +

1

2
)ζ(n +

1

2
)− 1

]

' 2

√
2

5πn

(
2

5π2

)n
+ · · · , n� 1 .

The series
∑∞
n=1 anv

2n is convergent for |v| < π
√

10/2, the new upper bound being
the one following π/

√
2 in (1.23) (for r = 2, s = 1). The formula (1.32) allows a

much closer approach of v towards ±π/
√

2 if need be, because it comprises the exact
way in which C(v) tends to infinity at ±π/

√
2. At the same time, it enables one to

attain comparable precisions as obtained by means of (1.31), but with roughly one
half of the terms by virtue of the faster convergence of the a-coefficients towards
zero.
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2 Summing an alternating double series involving a B essel func-

tion 2

Find a closed expression representing

Sν(v) :=
+∞∑
m=0

+∞∑
n=1

(−1)m+nJν(2v
√

m2 + n2)

(m2 + n2)ν/2
, ν ≥ 0, (2.33)

for any real v ≥ 0.

Solution
Setting ν = 1/2, one finds :

S1/2(v) =
1√
πv

+∞∑
m=0

+∞∑
n=1

(−1)m+n sin(2v
√

m2 + n2)√
m2 + n2

=
S(v)√

πv
(2.34)

in which S(v) is given by (1.1). This relation will be useful for verification pur-
poses. It also shows that (2.1) is a logical generalization of (1.1) which may have
applications in higher dimensional extensions of Henkel and Weston’s work.

Hankel inversion of form. (1) on p. 415 of [1] yields, after replacement of a by
2v, t by n and z by m,

Jν(2v
√

n2 + m2)

(n2 + m2)ν/2
=

1

(2v)ν

∫ 2v

0
bµ+1

{√
4v2 − b2

m

}ν−µ−1

×Jν−µ−1(m
√

4v2 − b2)
Jµ(nb)

nµ
db , v > 0 , (2.35)

where n and m can take on any positive integer value and ν > µ > −1. Although
the integrand is in general not invariant for permutation of m and n, the integral
also represents

Jν(2v
√

m2 + n2)

(m2 + n2)ν/2

2a generalization of Problem 1 proposed and solved by C.C. Grosjean
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for m and n independently belonging to {1, 2, . . .}. Eq.(2.3) may therefore be re-
placed by

Jν(2v
√

m2 + n2)

(m2 + n2)ν/2
=

1

(2v)νnµ

∫ 2v

0
bµ+1

{√
4v2 − b2

m

}ν−µ−1

×Jν−µ−1(m
√

4v2 − b2)Jµ(nb) db , v > 0 , (2.3′)

valid for −1 < µ < ν, any positive integer n, any positive integer m and even for
m = 0 as can be directly verified, on the condition, however, that for m = 0

Jν−µ−1(m
√

4v2 − b2)

mν−µ−1

be replaced by

(
√

4v2 − b2)ν−µ−1

2ν−µ−1Γ(ν − µ)
.

This is justified by the fact that before z was set equal to the integer m in the Hankel
inverse of form.(1) on p.415 of [1], letting z tend to zero in that inverse would have
lead to the above limit. Thus, with m = 0 in the right-hand side of (2.3’), there
comes still for v > 0 :

1

22ν−µ−1nµvνΓ(ν − µ)

∫ 2v

0
bµ+1(4v2 − b2)ν−µ−1Jµ(nb) db

=
2vν−µ

nµΓ(ν − µ)

∫ 1

0
tµ+1(1− t2)ν−µ−1Jµ(2nvt) dt

=
2vν−µ

nµΓ(ν − µ)

+∞∑
k=0

(−1)k
(nv)µ+2k

k! Γ(µ + k + 1)

∫ 1

0
t2µ+2k+1(1− t2)ν−µ−1 dt

=
vν−µ

nµΓ(ν − µ)

+∞∑
k=0

(−1)k
(nv)µ+2k

k! Γ(µ + k + 1)

∫ 1

0
uµ+k(1− u)ν−µ−1 du

=
vν−µ

nµΓ(ν − µ)

+∞∑
k=0

(−1)k
(nv)µ+2k

k! Γ(µ + k + 1)

Γ(µ + k + 1)Γ(ν − µ)

Γ(ν + k + 1)

=
+∞∑
k=0

(−1)k
n2kvν+2k

k! Γ(ν + k + 1)
=

Jν(2vn)

nν
.

By virtue of what preceded, we may write for v > 0 :

Sν(v) =
+∞∑
m=0

+∞∑
n=1

(−1)m+n

(2v)νnµ

∫ 2v

0
bµ+1

{√
4v2 − b2

m

}ν−µ−1

×Jν−µ−1(m
√

4v2 − b2)Jµ(nb) db

= 2v
+∞∑
m=0

+∞∑
n=1

(−1)m+n

mν−µ−1nµ

∫ 1

0
tµ+1(

√
1− t2)ν−µ−1

Jν−µ−1(2mv
√

1− t2)Jµ(2nvt) dt .
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Summation with respect to n in (2.1), using the integral representation (2.3), neces-
sitates the calculation of

+∞∑
n=1

(−1)n
Jµ(nb)

nµ
.

One way to do this makes use of the integral representation

Jν(z) =
2(z/2)ν

Γ(ν +
1

2
)Γ(

1

2
)

∫ 1

0
(1− t2)ν−(1/2) cos zt dt

being form. (2) on p. 48 in [1], valid for Re(ν) > −1/2. Renaming ν as µ and setting
z = nb, one obtains :

+∞∑
n=1

(−1)n
Jµ(nb)

nµ
=

bµ

2µ−1
√

πΓ(µ + 1
2
)

∫ 1

0
(1− t2)µ−(1/2)

×
(

+∞∑
n=1

(−1)n cos nbt

)
dt , µ > −1/2 , (2.36)

and by virtue of (1.6),

+∞∑
n=1

(−1)n
Jµ(nb)

nµ

=
bµ

2µ−1
√

πΓ(µ + 1
2
)

∫ 1

0
(1− t2)µ−(1/2)

{
− 1

2
+ π

+∞∑
k=−∞

δ[bt− (2k + 1)π]
}

dt

=



− bµ

2µ+1Γ(µ + 1)
, 0 ≤ b < π ,

µ > −1/2 ,

− bµ

2µ+1Γ(µ + 1)
+

√
π

2µ−1Γ(µ + 1
2
)bµ

×
j∑
r=1

[b2 − (2r − 1)2π2]µ−(1/2)

(2j − 1)π ≤ b < (2j + 1)π , j = 1, 2, . . . , (2.5)

in which the last term of the sum should be multiplied by 1/2 when b = (2j−1)π, j ≥
1, because{∫ 1

0
δ

(
t− 2k + 1

2j − 1

)
dt

}
k=j−1

=
1

2
.

As in the case of (1.8), for any positive b, one has to examine which ones of the
infinitely many δ-functions have their singularity located in ]0, 1]. For those whereby
(2k + 1)π/b belongs to ]0, 1[, the integral takes on the value

1

b2µ
[b2 − (2k + 1)2π2]µ−(1/2) .
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When the singularity is located at the upper bound t = 1 of the integration in-
terval, this expression must be multiplied by 1/2, as was just indicated. All other
δ-functions with singularity outside the integration interval do not contribute to the
value of the integral.

In what precedes, the dummy integer index k was replaced by r− 1 to facilitate
comparison with results obtained in subsection 1a. The multiplication by 1/2 in
the last term of the sum in (2.5) when b = (2j − 1)π, j ≥ 1, is in fact solely of
importance when µ = 1/2 because otherwise the last term with b = (2j − 1)π is
either 0 (for µ > 1/2) or infinite (for −1/2 < µ < 1/2). The left-hand side of
(2.3) being independent of µ (although this parameter is present in the right-hand
side), one may choose µ arbitrarily as long as −1 < µ < ν is fulfilled. Since the
expression for Sν(v) must be obtained only for ν > 0, momentarily at least, the
case µ = 1/2 can be avoided by assuming −1/2 < µ < ν when 0 < ν ≤ 1/2 and
−1/2 < µ < 1/2 when ν > 1/2 in (2.3). The right-hand side of (2.5) is the limit
of summing with respect to n at first from 1 to some finite N exceeding 1 and
afterwards letting N tend to +∞. The condition of validity µ > −1/2 which stems
from the requirement of convergence of the integral representation of Jµ(nb) used in
(2.4) is in agreement with the requirement of convergence of the infinite series in the
left-hand side of (2.4). Indeed, in the main part of the asymptotic form of its general
term, the denominator comprises nµ+(1/2) and since there is piecewise alternation
of sign, convergence requires µ + (1/2) > 0. When summation with respect to n is
carried out, one obtains :

a) for 0 < v < π/2 :

+∞∑
n=1

(−1)n
Jν(2v

√
m2 + n2)

(m2 + n2)ν/2
= − 1

2µ+ν+1Γ(µ + 1)vν

×
∫ 2v

0
b2µ+1

{√
4v2 − b2

m

}ν−µ−1

Jν−µ−1(m
√

4v2 − b2) db

= − vµ+1

Γ(µ + 1)mν−µ−1

∫ 1

0
x2µ+1(1− x2)(ν−µ−1)/2Jν−µ−1(2vm

√
1− x2) dx .

Furthermore,

∫ 1

0
x2µ+1(1− x2)(ν−µ−1)/2Jν−µ−1(2vm

√
1− x2) dx

=
∫ 1

0
(1− u2)µuν−µJν−µ−1(2vmu) du

=
+∞∑
k=0

(−1)k
(vm)ν−µ+2k−1

k! Γ(ν − µ + k)

∫ 1

0
u2ν−2µ+2k−1(1− u2)µ du

=
1

2

+∞∑
k=0

(−1)k
(vm)ν−µ+2k−1

k! Γ(ν − µ + k)

∫ 1

0
tν−µ+k−1(1− t)µ dt

=
1

2

+∞∑
k=0

(−1)k
(vm)ν−µ+2k−1Γ(µ + 1)

k! Γ(ν + k + 1)
=

1

2

Γ(µ + 1)

(vm)µ+1
Jν(2vm)
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confirmed by item 6.683(6) on p.740 of [2]. Therefore,

+∞∑
n=1

(−1)n
Jν(2v

√
m2 + n2)

(m2 + n2)ν/2
= − Jν(2vm)

2mν
, 0 < v < π/2 . (2.6)

Note that the parameter µ, present in the right-hand side of (2.3), vanishes auto-
matically in the course of the calculations;

b) for (2j − 1)π/2 ≤ v < (2j + 1)π/2 , j = 1, 2, . . . :

+∞∑
n=1

(−1)n
Jν(2v

√
m2 + n2)

(m2 + n2)ν/2
= − Jν(2vm)

2mν
+

√
π

2µ+ν−1Γ(µ + 1
2
)vν

×
j∑
r=1

∫ 2v

(2r−1)π
b

{√
4v2 − b2

m

}ν−µ−1

Jν−µ−1(m
√

4v2 − b2)

×[b2 − (2r − 1)2π2]µ−(1/2) db

= − Jν(2vm)

2mν
+

√
π

22µ−2Γ(µ + 1
2
)vµ−1mν−µ−1

×
j∑
r=1

∫ 1

(2r−1)π/2v
x(1− x2)(ν−µ−1)/2Jν−µ−1(2vm

√
1− x2)

×[4v2x2 − (2r − 1)2π2]µ−(1/2) dx .

The integral may be rewritten as

∫ α

0
uν−µJν−µ−1(2vmu)[4v2− (2r − 1)2π2 − 4v2u2]µ−(1/2) du

with α = [4v2 − (2r − 1)2π2]1/2/2v, and also as

[4v2 − (2r − 1)2π2](ν+µ)/2

(2v)ν−µ+1

∫ 1

0
tν−µ(1− t2)µ−(1/2)

×Jν−µ−1(mt
√

4v2 − (2r − 1)2π2) dt
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=
[4v2 − (2r − 1)2π2](ν+µ)/2

(2v)ν−µ+1

+∞∑
k=0

(−1)k
(m

2

√
4v2 − (2r − 1)2π2)ν−µ+2k−1

k! Γ(ν − µ + k)

×
∫ 1

0
t2ν−2µ+2k−1(1− t2)µ−(1/2) dt

=
1

2

[4v2 − (2r − 1)2π2](ν+µ)/2Γ(µ + 1
2
)

(2v)ν−µ+1

×
+∞∑
k=0

(−1)k
(m

2

√
4v2 − (2r − 1)2π2)ν−µ+2k−1

k! Γ(ν + 1
2

+ k)

=
1

2

[4v2 − (2r − 1)2π2](ν/2)−(1/4)

(2v)ν−µ+1(m/2)µ+(1/2)

×Γ(µ +
1

2
)Jν−(1/2)

{
m[4v2 − (2r − 1)2π2]1/2

}
.

Hence,

+∞∑
n=1

(−1)n
Jν(2v

√
m2 + n2)

(m2 + n2)ν/2

= − Jν(2vm)

2mν
+

√
π

(2m)ν−(1/2)vν

j∑
r=1

[4v2 − (2r − 1)2π2](ν/2)−(1/4)

×Jν−(1/2)

{
m[4v2 − (2r − 1)2π2]1/2

}
,

(2j − 1)π/2 ≤ v < (2j + 1)π/2 , j = 1, 2, . . . , ν > −1/2 . (2.6′)

Since ν > µ should hold in (2.3) and use was made of (2.5), the condition of validity
is ν > −1/2 which is again confirmed by the requirement of convergence of the series
in the left-hand side of (2.6)–(2.6′). The main part of the asymptotic form of the
general term has (m2 + n2)(ν/2)+(1/4) in its denominator and therefore, convergence
is ensured for ν > −1/2.

Finally, summation with respect to m gives, according to (2.1),

Sν(v) =
+∞∑
n=1

(−1)n
Jν(2vn)

nν
+

+∞∑
m=1

(−1)m
(

+∞∑
n=1

(−1)n
Jν(2v

√
m2 + n2)

(m2 + n2)ν/2

)
.

For 0 < v < π/2, there comes on account of (2.6) :

Sν(v) =
+∞∑
n=1

(−1)n
Jν(2vn)

nν
−

+∞∑
m=1

(−1)m
Jν(2vm)

2mν

=
1

2

+∞∑
n=1

(−1)n
Jν(2vn)

nν
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and by virtue of (2.5) in which b is set equal to 2v and µ is replaced by ν, the result
is

Sν(v) = − vν

4Γ(ν + 1)
, 0 < v < π/2 , ν > −1/2 .

For (2j − 1)π/2 ≤ v < (2j + 1)π/2, j = 1, 2, . . ., one finds in the same way :

Sν(v) =
+∞∑
n=1

(−1)n
Jν(2vn)

nν
−

+∞∑
m=1

(−1)m
Jν(2vm)

2mν

+

√
π

2ν−(1/2)vν

j∑
r=1

[4v2 − (2r − 1)2π2](ν/2)−(1/4)

×
+∞∑
m=1

(−1)m
Jν−(1/2)

{
m[4v2 − (2r − 1)2π2]1/2

}
mν−(1/2)

=
1

2

+∞∑
n=1

(−1)n
Jν(2vn)

nν
+

√
π

2ν−(1/2)vν

j∑
r=1

. . .
+∞∑
m=1

. . . , ν > −1/2 .

The final simplification is carried out by applying twice form. (2.5), firstly to the first
series, setting b equal to 2v and replacing µ by ν, and secondly to the infinite series
contained in the second part setting b = [4v2 − (2r − 1)2π2]1/2 and µ = ν − (1/2).
The result is :

Sν(v) = − vν

4Γ(ν + 1)
+

√
π

22νΓ(ν + 1
2
)vν

j∑
q=1

[4v2 − (2q − 1)2π2]ν−(1/2)

+

√
π

2ν−(1/2)vν

j∑
r=1

[4v2 − (2r − 1)2π2](ν/2)−(1/4)

×
{
− [4v2 − (2r − 1)2π2](ν/2)−(1/4)

2ν+(1/2)Γ(ν + 1
2
)

+

√
π

2ν−(3/2)Γ(ν)[4v2 − (2r − 1)2π2](ν/2)−(1/4)

×
lv(r)∑
s=1

[4v2 − (2r − 1)2π2 − (2s − 1)2π2]ν−1

}
.

It is fairly surprising that the second part in this right-hand side which stems from
the first application of (2.5), cancels exactly the first contribution to the third part
which stems from the second application of (2.5). Ultimately, there comes :

Sν(v) = − vν

4Γ(ν + 1)
+

π

vνΓ(ν)

j∑
r=1

lv(r)∑
s=1

[v2 − (r − 1

2
)2π2 − (s− 1

2
)2π2]ν−1,

ν > 0 , (2j − 1)π/2 ≤ v < (2j + 1)π/2 , j = 1, 2, . . . ,
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with

− 1

2
+

[
v2

π2
−
(
r − 1

2

)2
]1/2

< lv(r) ≤
1

2
+

[
v2

π2
−
(
r − 1

2

)2
]1/2

,

r = 1, 2, . . . , j. (2.7)

The reason that the validity of this result is provisionally guaranteed only for ν > 0
lies in the fact that (2.5) was proved only for µ > −1/2 and that in its second
application, µ was set equal to ν − (1/2). Combined, this yields ν > 0. For π/2 ≤
v < 3π/2, j = 1 and r = 1 and the above formula becomes :

Sν(v) = − vν

4Γ(ν + 1)
+

π

vνΓ(ν)

lv(1)∑
s=1

[
v2 − π2

4
−
(
s− 1

2

)2

π2

]ν−1

with

− 1

2
+

(
v2

π2
− 1

4

)1/2

< lv(1) ≤
1

2
+

(
v2

π2
− 1

4

)1/2

.

Being an integer, lv(1) is equal to zero when

1

2
+

(
v2

π2
− 1

4

)1/2

< 1

which entails v < π/
√

2. Therefore,

Sν(v) = − vν

4Γ(ν + 1)
for π/2 ≤ v < π/

√
2 .

When π/
√

2 ≤ v < 3π/2, it appears that lv(1) = 1 and so,

Sν(v) = − vν

4Γ(ν + 1)
+

π

vνΓ(ν)

(
v2 − π2

2

)ν−1

.

For (2j − 1)π/2 ≤ v < (2j + 1)π/2, j = 2, 3, . . ., whereby r = 1, 2, . . . , j, no case
can be found in which the double sum in the last right-hand side of (2.7) is empty.
Hence, the final result which cannot undergo any further simplification reads :

Sν(v) =



− vν

4Γ(ν + 1)
, 0 ≤ v < π/

√
2 ,

− vν

4Γ(ν + 1)
+

π

vνΓ(ν)

j∑
r=1

lv(r)∑
s=1

[
v2 − (r − 1

2
)2π2

−(s− 1

2
)2π2

]ν−1

, v ≥ π/
√

2 ν > 0, (2.8)

in which j is the largest integer smaller than or equal to

1

2
+

(
v2

π2
− 1

4

)1/2
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and lv(r) is the largest integer smaller than or equal to

1

2
+

[
v2

π2
−
(
r − 1

2

)2
]1/2

,

being the same conditions determining j and lv(r) as in (1.10′) and (1.10′′). The
same kind of comments as given on (1.10)–(1.10′′) also apply to (2.8). In analogy to
(1.13), the double sum in (2.8) may also be written as

+∞∑
r=1

+∞∑
s=1

[
v2 −

(
r − 1

2

)2

π2 −
(
s− 1

2

)2

π2

]ν−1

,

∀(r, s) : v2 −
(
r − 1

2

)2

π2 −
(
s− 1

2

)2

π2 ≥ 0 , (2.9)

being a locally finite series. Since Jν(0) = 0 when ν > 0, v = 0 may be included in
the first condition on v. Also in that inequality v = π/

√
2 may be included when

ν > 1.

For ν = 1/2, (2.8) yields

S1/2(v) =



−
√

v

2
√

π
, 0 ≤ v < π/

√
2 ,

−
√

v

2
√

π
+

√
π√
v

j∑
r=1

lv(r)∑
s=1

1[
v2 − (r − 1

2
)2π2 − (s− 1

2
)2π2

]1/2 ,

v ≥ π/
√

2

and comparison with (1.10) when v ≥ 0 shows that

S1/2(v) =
S(v)√

πv
,

confirming (2.2). Sν(v) as defined by (2.1) and given by (2.8) really is a generaliza-
tion of (1.1).

The terms in the double sum of (2.8) are by far the simplest when ν = 1. In
that special case, there comes :

S1(v) = − v

4
+

π

v

j∑
r=1

lv(r) , ∀v ∈ R ,
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with the above definitions of j and lv(r) holding good. Hence,

S1(v) = − v

4
, |v| < π√

2
,

= − v

4
+

π

v
,

π
√

2

2
≤ |v| < π

√
10

2
,

= − v

4
+

3π

v
,

π
√

10

2
≤ |v| < π

√
18

2
,

= − v

4
+

4π

v
,

π
√

18

2
≤ |v| < π

√
26

2
,

= − v

4
+

6π

v
,

π
√

26

2
≤ |v| < π

√
34

2
,

etc. Clearly,
∑j
r=1 lv(r) represents the number of terms in the double sum of (2.8) for

every half-open v-interval bounded by two consecutive positive abscissae contained
in (1.11). For ν = 1, the considered terms are equal to unity and the double sum in
(2.8) gives rise to an infinite number of finite jumps in R+.

The result

Sν(v) = − vν

4Γ(ν + 1)
,

0 ≤ v <
π√
2

for 0 < ν ≤ 1 and 0 ≤ v ≤ π√
2

for ν > 1 ,

generalizes the first conjecture in (1.3) of Problem 92-11∗. It is also worthwhile
noticing that if one agrees upon

(
Jν(2v

√
m2 + n2)

(m2 + n2)ν/2

)
m=n=0

= lim
x→0
y→0

Jν(2v
√

x2 + y2)

(x2 + y2)ν/2
=

vν

Γ(ν + 1)
,

one can write

+∞∑
m=−∞

+∞∑
n=−∞

(−1)m+nJν(2v
√

m2 + n2)

(m2 + n2)ν/2
= 0 ,

0 ≤ v <
π√
2

for 0 < ν ≤ 1 and 0 ≤ v ≤ π√
2

for ν > 1 .

* * *

It is solely because, in order to obtain (2.7), we had to apply (2.5) proven for
µ > −1/2 with µ = ν − 1/2, that the final result (2.8) is shown by the foregoing
calculations only for ν > 0 and not for ν = 0. In what follows, the special case ν = 0
will be treated separately.
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Firstly, for the purpose of using the final result which was attained for S(v) (cfr.
(1.1) and (1.10)–(1.10′′)), one can start with

J0(x) =
2

π

∫ 1

0

cos xt

(1− t2)1/2
dt =

2

πx

∫ 1

0

1

(1− t2)1/2
d(sin xt− sinx)

=
2

π

sin x

x
− 2

πx

∫ 1

0
t
sinxt− sinx

(1− t2)3/2
dt .

Setting x = 2v(m2 + n2)1/2 and summing as in (2.1), one obtains :

S0(v) :=
+∞∑
m=0

+∞∑
n=1

(−1)m+nJ0(2v
√

m2 + n2)

=
1

πv

{
S(v)−

∫ 1

0
t
S(vt)− S(v)

(1− t2)3/2
dt

}
. (2.10)

For v = 0, S0 exists only in the Cesàro (C1) sense :

+∞∑
n=1

(−1)nJ0(0
√

m2 + n2) =
+∞∑
n=1

(−1)n = − 1

2
(C1) ,

S0(0) =
+∞∑
m=0

(−1)m
(
− 1

2

)
= − 1

2
.
1

2
= − 1

4
(C1) . (2.11)

Since S0(−v) = S0(v), v may be restricted to positive values without loss of gener-
ality in the following calculations. For 0 < v < π/

√
2, one finds :

S0(v) =
1

πv

{
− v

2
−
∫ 1

0
t
[
− vt

2
+

v

2

]
dt

(1− t2)3/2

}

= − 1

2π

[
1 +

∫ 1

0

t(1− t)

(1− t2)3/2
dt

]

= − 1

2π

[
1 +

∫ 1

0

t

(1 + t)(1− t2)1/2
dt

]

= − 1

2π

[
1 +

∫ π/2

0

cos φ

1 + cosφ
dφ

]

= − 1

2π

[
1 +

π

2
−
∫ π/2

0

d(φ/2)

cos2(φ/2)

]

= − 1

2π

[
1 +

π

2
− tan

π

4

]
= − 1

4
. (2.12)

Admitting the above Cesàro-sum for S0(0) comes down to regarding S0(v) as contin-
uous in −π/

√
2 < v < π/

√
2. The result obtained here is in fact the extrapolation

to ν = 0+ in the first equality of (2.8). Secondly, one gets in a similar manner for
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0 < a < 1 :

J0(x) =
2

π

∫ a

0

cosxt

(1− t2)1/2
dt +

2

π

∫ 1

a

cosxt

(1− t2)1/2
dt

=
2

πx

∫ a

0

d sinxt

(1− t2)1/2
+

2

πx

∫ 1

a

1

(1− t2)1/2
d(sin xt− sinx)

=
2

πx

sinxa

(1− a2)1/2
− 2

πx

∫ a

0

t sinxt

(1− t2)3/2
dt

− 2

πx

sinxa− sinx

(1− a2)1/2
− 2

πx

∫ 1

a
t
sinxt− sinx

(1− t2)3/2
dt

=
2

πx

{
sinx

(1− a2)1/2
−
∫ a

0
t

sinxt

(1− t2)3/2
dt−

∫ 1

a
t
sinxt− sinx

(1− t2)3/2
dt

}
.

The analogue of (2.10) is

S0(v) =
1

πv

{
S(v)

(1− a2)1/2
−
∫ a

0
t

S(vt)

(1− t2)3/2
dt

−
∫ 1

a
t
S(vt)− S(v)

(1− t2)3/2
dt

}
, 0 < a < 1 . (2.13)

For π
√

2/2 ≤ v < π
√

10/2, (1.10) yields

S(v) = − v

2
+

π

[v2 − (π2/2)]1/2
.

Setting a = π/v
√

2 in (2.13), with v > π/
√

2 on account of a < 1, one finds :

S0(v) =
1

πv

{
1

(1− π2/2v2)1/2

(
− v

2
+

π

[v2 − (π2/2)]1/2

)

−
∫ π/v

√
2

0
t

(−vt/2)

(1− t2)3/2
dt−

∫ 1

π/v
√

2
t
[
− vt

2
+

π

[v2t2 − (π2/2)]1/2

+
v

2
− π

[v2 − (π2/2)]1/2

] dt

(1− t2)3/2

}
, π

√
2/2 < v < π

√
10/2 . (2.14)

Now,

∫ π/v
√

2

0
t

(−vt/2)

(1− t2)3/2
dt = − v

2

∫ π/v
√

2

0

t2

(1− t2)3/2
dt

= − v

2

∫ π/v
√

2

0
t d(1− t2)−1/2 = − π

2
√

2

1(
1− π2

2v2

)1/2
+

v

2
arcsin

π

v
√

2
;
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∫ 1

π/v
√

2
t
(
− vt

2
+

v

2

)
dt

(1− t2)3/2
=

v

2

∫ 1

π/v
√

2

t

(1 + t)(1− t2)1/2
dt

=
v

2

∫ arccos(π/v
√

2)

0

cosφ

1 + cosφ
dφ =

v

2
arccos

π

v
√

2
− v

2
tan

φ

2

∣∣∣∣∣
φ=arccos(π/v

√
2)

φ=0

=
v

2
arccos

π

v
√

2
− v

2

1− π/v
√

2(
1− π2

2v2

)1/2
.

The last two results inserted into (2.14) give the provisional formula :

S0(v) = − 1

4
+

1

v2 − (π2/2)

− 1

v

∫ 1

π/v
√

2
t

(
1

[v2t2 − (π2/2)]1/2
− 1

[v2 − (π2/2)]1/2

)
dt

(1− t2)3/2

= − 1

4
+

1

v2 − (π2/2)
− v

2[v2 − (π2/2)]1/2

×
∫ 1

π2/2v2

1

(1− u)1/2[v2u− (π2/2)]1/2

× du

{[v2 − (π2/2)]1/2 + [v2u− (π2/2)]1/2} . (2.15)

The last integral can be calculated using the substitution 1− u = s2 :

∫ 1

π2/2v2
· · ·

=
∫ [1−π2/2v2]1/2

0

1

s[v2 − (π2/2) − v2s2]1/2

× 2s ds

{[v2 − (π2/2)]1/2 + [v2 − (π2/2) − v2s2]1/2} ,

followed by the substitutions s = [1− (π2/2v2)]1/2w and (1− w2)1/2 = y :

∫ 1

π2/2v2
· · · =

2

v[v2− (π2/2)]1/2

∫ 1

0

dw

(1− w2)1/2[1 + (1−w2)1/2]

=
2

v[v2− (π2/2)]1/2

∫ 1

0

dy

(1 + y)(1− y2)1/2

=
2

v[v2− (π2/2)]1/2

∫ π/2

0

dφ

(1 + cos φ)
=

2

v[v2 − (π2/2)]1/2
,

π
√

2/2 < v < π
√

10/2 .
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Inserted into (2.15), this last result simplifies the right-hand side in such measure
that

S0(v) = − 1

4
for π

√
2/2 < v < π

√
10/2 . (2.16)

In contrast to

Sν(v) =



− vν

4Γ(ν + 1)
, 0 ≤ v <

π√
2

,

− vν

4Γ(ν + 1)
+

π

vνΓ(ν)

(
v2 − π2

2

)ν−1

,

π
√

2

2
≤ v <

π
√

10

2
, ν > 0 (2.17)

according to (2.8), we obtained so far

S0(v) = − 1

4
, 0 ≤ v < π

√
2/2 and π

√
2/2 < v < π

√
10/2 , (2.18)

by putting (2.11), (2.12) and (2.16) together. We notice immediately that this is
in agreement with the extrapolation of (2.17) to ν = 0+ by virtue of Γ(0+) =
+∞ exception made for v = π

√
2/2 which is excluded in (2.18) on account of the

condition under which (2.14) was derived. (If v = π/
√

2 were tolerated in (2.14),
infinities would appear in the right-hand side). Since Γ(ν) is also comprised in a
denominator of the general result (2.8), something similar may be expected to occur
for v > π

√
10/2, with exceptions at the v-values where a term in the double sum is

infinite, i.e. at the positive v-values in (1.11). This has to be confirmed by direct
calculations, taking the entire expression of S(v) in (1.10) into account.

Both S(v) and its representation (1.10) are odd functions of v. We may therefore
provisionally restrict v to positive values in the discussion and calculations which will
follow here. Each of the terms in the summation with respect to r and s contributes
to S(v) from some value of v onward, e.g.,

1(
v2

π2
− 1

2

)1/2
for π

√
2/2 ≤ v < +∞ ,

1(
v2

π2
− 5

2

)1/2
for π

√
10/2 ≤ v < +∞ ,

1(
v2

π2
− 9

2

)1/2
for π

√
18/2 ≤ v < +∞ ,

1(
v2

π2
− 13

2

)1/2
for π

√
26/2 ≤ v < +∞ , (2.19)
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etc. Let us consider any such term in (1.10) with an acceptable (r, s) pair. For the
sake of brevity, we introduce the short-hand notation

[(
r − 1

2

)2

+
(
s− 1

2

)2
]1/2

π = λ (2.20)

and examine how the general term

π

(v2 − λ2)1/2
(2.21)

contributes to S0(v) for v ≥ π
√

10/2, in other words, what values get added to
−1/4 (cfr. (2.18)) stemming from (2.21) with λ = π

√
10/2, π

√
18/2, π

√
26/2, . . .?

Making use of (2.13) with (2.21), the contribution to S0(v) is given by

1

v

{
1

(1− a2)1/2(v2 − λ2)1/2

−
∫ 1

a
t

[
1

(v2t2 − λ2)1/2
− 1

(v2 − λ2)1/2

]
dt

(1− t2)3/2

}
(2.22)

in which it is clear that a must be set equal to the positive lower bound of t for
which (v2t2 − λ2)−1/2 is real, hence a = λ/v. a < 1 entails v > λ. (2.21) which only
contributes to S(v) for v ≥ λ when v > 0 may be regarded as part of a discontinuous
function on R+ which is zero in [0, λ[. This explains why there is no integral in (2.22)
with bounds 0 and λ/v. (2.22) becomes

1

v

{
v

v2 − λ2
−
∫ 1

λ/v
t

[
1

(v2t2 − λ2)1/2
− 1

(v2 − λ2)1/2

]
dt

(1− t2)3/2

}
,

v > λ . (2.23)

The integral can be evaluated as follows :

∫ 1

λ/v
· · · =

∫ 1

λ/v
t
(v2 − λ2)1/2 − (v2t2 − λ2)1/2

(v2t2 − λ2)1/2(v2 − λ2)1/2

dt

(1− t2)3/2

=
1

(v2 − λ2)1/2

∫ 1

λ/v
t

v2(1− t2)

(v2t2 − λ2)1/2[(v2 − λ2)1/2 + (v2t2 − λ2)1/2]

× dt

(1− t2)3/2

=
v2

2(v2 − λ2)1/2

∫ 1

(λ/v)2

1

(1− u)1/2(v2u− λ2)1/2

× du

[(v2− λ2)1/2 + (v2u− λ2)1/2]
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=
v2

2(v2 − λ2)1/2

∫ [1−(λ/v)2]1/2

0

1

s[(v2− λ2) − v2s2]1/2

× 2s ds

{(v2 − λ2)1/2 + [(v2− λ2)− v2s2]1/2}

=
v2

(v2 − λ2)1/2

∫ 1

0

[1− (λ/v)2]1/2

[(v2− λ2)(1− w2)]1/2

× dw

{(v2 − λ2)1/2 + (v2 − λ2)1/2(1− w2)1/2}

=
v

v2 − λ2

∫ 1

0

dw

(1− w2)1/2[1 + (1− w2)]1/2

=
v

v2 − λ2

∫ 1

0

dz

(1 + z)(1− z2)1/2

=
v

v2 − λ2

∫ π/2

0

dφ

(1 + cos φ)
=

v

v2 − λ2
tan

φ

2

∣∣∣∣∣
π/2

0

=
v

v2 − λ2
.

Inserted into (2.23), this result yields zero for v > λ. Applied with λ = π
√

2/2 in
(2.23), it shows that S0(v) = −1/4 cannot be modified by the second term in (1.10),
i.e., the first expression listed in (2.19), from v > π

√
2/2 onward. Similarly, with

λ = π
√

10/2 in (2.23), it shows that again S0(v) = −1/4 cannot be modified by the
third term in (1.10), i.e., the second expression listed in (2.19), from v > π

√
10/2

onward. Clearly, the same holds for all the terms which can appear in (1.10). It is
quite important to note that the real v-abscissae in which S0(v) remains unmodified
do not include the points (2.20) because, as stated already before, a < 1 in (2.13)
entails v > λ. Hence, the previous calculations prove that the even function

S0(v) =
+∞∑
m=0

+∞∑
n=1

(−1)m+nJ0(2v
√

m2 + n2) = − 1

4
,

∀v ∈ R \
±π

√
(r − 1

2
)2 + (s− 1

2
)2 | r ∈ N0, s ∈ {1, 2, . . . , r}

 . (2.24)

I readily admit that my method to study S0(v) exhibits the weakness that it does
not provide information on S0(v) at the abscissae just excluded. Such information
is provided, however, by the more powerful method expounded by N. Ortner and P.
Wagner (University of Innsbruck, Austria) in their forthcoming paper [3]. In every
abscissa excluded in (2.24), S0(v) is infinite as it is described by a Dirac δ-function
with a positive coefficient. For 0 < ν < 1 in (2.8), each term in the double sum on
the right is infinite at one of the abscissae comprised in (2.20) and finite for larger
v. When ν tends to 0 in a continuous manner, 1/Γ(ν) tends to zero. Thus, in every
abscissa where the terms in the double sum are finite, the limit value of that sum
is zero and S0(v) = −1/4. But, where infinity is present, an indeterminacy of the
type 0× (+∞) appears when ν = 0+. According to Ortner and Wagner’s paper, in
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the limiting process the infinity stemming from every term[
v2 −

(
r − 1

2

)2

π2 −
(
s− 1

2

)2

π2

]ν−1

gets the upper hand and since this occurs in a point, it is acceptable that a Dirac
δ-function is involved.

A way to verify this consists in proceeding formally as follows. For ν = 1, (2.8)
yields :

S1(v) =
+∞∑
m=0

+∞∑
n=1

(−1)m+n J1(2v
√

m2 + n2)√
m2 + n2

= − v

4
+

π

v

j∑
r=1

lv(r) ,

∀v ∈ R , (2.25)

in which j is the largest integer smaller than or equal to

1

2
+

(
v2

π2
− 1

4

)1/2

from v = π
√

2/2 onward ,

and lv(r) is the largest integer smaller than or equal to

1

2
+

[
v2

π2
−
(
r − 1

2

)2
]1/2

.

S1(v) is an odd function of v on R. For v > 0, it exhibits an infinite number of finite
jumps at the respective abscissae[(

r − 1

2

)2

+
(
s− 1

2

)2
]1/2

π , ∀r ∈ N0 , ∀s ∈ {1, 2, . . . , r} .

Making use of

d

dx
(xJ1(x)) = xJ0(x)

and assuming that in

d

dv
v

+∞∑
m=0

+∞∑
n=1

(−1)m+nJ1(2v
√

m2 + n2)√
m2 + n2

the differentiation may be carried out behind the double sum sign (which makes the
calculations formal, thus not providing a strict proof), we find

d

dv
vS1(v) =

+∞∑
m=0

+∞∑
n=1

(−1)m+n d

dv

(
v
J1(2v

√
m2 + n2)√

m2 + n2

)

= 2v
+∞∑
m=0

+∞∑
n=1

(−1)m+nJ0(2v
√

m2 + n2)

= 2vS0(v) .



Solving some problems posed in the SIAM-review 461

Consequently,

S0(v) =
1

2v

d

dv

(
− v2

4

)
= − 1

4
, 0 ≤ v < π

√
2/2 ,

S0(v) =
1

2v

d

dv

[
− v2

4
+ πH(v − (π

√
2/2))

]

= − 1

4
+

1√
2
δ(v − (π

√
2/2)) , 0 ≤ v < π

√
10/2 ,

where H denotes the Heaviside-function

H(x) =

{
0 , x < 0 ,
1 , x ≥ 0 ,

S0(v) =
1

2v

d

dv

[
− v2

4
+ πH(v − (π

√
2/2)) + 2πH(v − (π

√
10/2))

]

= − 1

4
+

1√
2
δ(v − (π

√
2/2)) +

2√
10

δ(v − (π
√

10/2)) ,

0 ≤ v < π
√

18/2 , (2.26)

etc. Since there is no simple general formula for the integer numerator of the coef-
ficient of each Dirac δ-function, the easiest way to represent S0(v) is by means of a
locally finite series as in (1.13) and (2.9). There comes :

S0(v) = − 1

4
+

+∞∑
r=1

+∞∑
s=1

δ
[
v − π

2

√
(2r − 1)2 + (2s − 1)2

]
√

(2r − 1)2 + (2s− 1)2
,

∀(r, s) : v2 −
(
r − 1

2

)2

π2 −
(
s− 1

2

)2

π2 ≥ 0 , (2.27)

complementing (2.24). For instance, when 0 ≤ v < π
√

18/2, the (r, s)-couples in
the two-dimensional grid which contribute to the double sum are (1,1), (1,2) and
(2,1), and (2.26) results.

Extending the summations in (2.1) to the entire (m, n)-plane in the case of ν = 0,
(2.27) leads to

+∞∑
m=−∞

+∞∑
n=−∞

(−1)m+nJ0(2v
√

m2 + n2)

= 4
+∞∑
r=1

+∞∑
s=1

δ
[
v − π

2

√
(2r − 1)2 + (2s− 1)2

]
√

(2r − 1)2 + (2s− 1)2
,

∀(r, s) : v2 −
(
r − 1

2

)2

π2 −
(
s− 1

2

)2

π2 ≥ 0 , (2.28)
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being a locally finite series of pure Dirac δ-functions (on the ground value zero).

Note
Other authors have considered Problems 1 and 2, and also related problems.

Their names are cited in an editorial note on p.500 in Vol.35, No.3 of the SIAM
Review. Besides this, also worth mentioning is a paper on m-dimensional Schlömilch
series by A.R. Miller submitted to the Canadian Mathematics Bulletin.
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3 A Finite Sum of Products of Binomial Coefficients

In Vol. 34, No. 4 (1992) of the SIAM Review, the following problem was posed :
– determine the sum

n∑
m=0

(
−1

4

m

)2 ( −1
4

n −m

)2

.

This sum arises from the calculation of the shift of the frequency of an electromag-
netic TM wave-mode caused by a small metallic cylinder in a resonant cavity.

The final result is

n∑
m=0

(
−1

4

m

)2 ( −1
4

n −m

)2

= (−1)n
(
−1

2

n

)3

. (3.1)

I submitted it more for aesthetic reasons than for its degree of difficulty, but I
never realized that the problem was that simple until Dr. Volker Strehl (Friedrich-
Alexander-Universität Erlangen-Nürnberg) pointed out to me that it is a special
case of Clausen’s product identities. If the given sum is called S, one can write :

S =
n∑

m=0

{(1/4)m}2 {(1/4)n−m}2

(m!)2(n−m)!2

and it is immediately clear that it is the coefficient of xn in the series obtained by
Cauchy multiplication of the power series expansion of the Gaussian hypergeometric
function 2F1(1/4, 1/4; 1; x) by itself. Now, it is sufficient to make use of Clausen’s
identity

[2F1(a, b; a + b + (1/2); x]
2

= 3F2(2a, a + b, 2b; a + b + (1/2), 2(a + b); x)
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with a = b = 1/4 to find out that S is also the coefficient of xn in the expansion of

3F2(1/2, 1/2, 1/2; 1, 1; x), hence

S =
{(1/2)n}3

(n!)3
= (−1)n

(
−1

2

n

)3

.

Nevertheless, my little problem has drawn a lot of attention as appears from the
discussion on pp. 645–646 in Vol. 35, No. 4 of the SIAM Review. Some authors
even submitted remarkable identities generalizing (3.1) and being considerably more
complicated to formulate as well as to prove.

Eq.(3.1) is of the form

n∑
m=0

(
−a

m

)2( −a

n−m

)2

= (−1)n
(
−2a

n

)3

(3.2)

and I have been asking myself whether there exist other non-zero complex values of
a than 1/4 for which (3.2) is also satisfied. Here follows one way to treat this new
problem.

Consider

+∞∑
m=0

(
−a

m

)2

xm , −1 < x < 1 .

By virtue of d’Alembert’s ratio test, this series is absolutely convergent for any
x ∈]− 1, 1[. Its sum is the Gaussian hypergeometric function 2F1(a, a; 1; x) which is
a regular solution of the differential equation

x(1− x)y′′ + [1− (2a + 1)x]y′ − a2y = 0 .

By Cauchy multiplication, one obtains :

2F
2
1 (a, a; 1; x) =

+∞∑
n=0

 n∑
m=0

(
−a

m

)2( −a

n−m

)2
 xn. (3.3)

If y1(x) and y2(x) are linearly independent solutions of

y′′ + P (x)y′ + Q(x)y = 0 ,

then y2
1(x), y1(x)y2(x) and y2

2(x) are linearly independent solutions of

z′′′ + 3P (x)z′′ + [2P 2(x) + P ′(x) + 4Q(x)]z′

+[4P (x)Q(x) + 2Q′(x)]z = 0

(see, for instance, [1], pp. 382–383). Applying this theorem with

P (x) =
1− (2a + 1)x

x(1− x)
, Q(x) = − a2

x(1− x)
,

one finds

x2(1− x)2z′′′ + 3x(1− x)[1− (2a + 1)x]z′′ + [1− 2(2a2 + 4a + 1)x

+(12a2 + 6a + 1)x2]z′ − 2a2(1− 4ax)z = 0 , (3.4)
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having (3.3) as a regular solution. Solving eq. (3.4) by means of Frobenius’s method
in terms of a power series in x, one gets :

z =
+∞∑
n=0

cnx
n

with 
c1 − 2a2c0 = 0 , c0 6= 0 ,

(n + 1)3cn+1 − [2n3 + 6an2 + 2a(2a + 1)n + 2a2]cn

+(n + 2a− 1)3cn−1 = 0 , n = 1, 2, . . . .. (3.5)

For (3.2) to hold for any n ∈ N0, one should have that(
2a(2a + 1) . . . (2a + n− 1)

n!

)3

, n ∈ N0 ,

regarded as cn, satisfies (3.5) with c0 = 1. This leads to

8a3 − 2a2 = 0 (3.6)

and

(n + 1)3 (2a + n)3

(n + 1)3
− [2n3 + 6an2 + 2a(2a + 1)n + 2a2]

+(n + 2a− 1)3 n3

(2a + n− 1)3
= 0 ,

or equivalently,

(2n3 + 6an2 + 12a2n + 8a3)− [2n3 + 6an2 + 2a(2a + 1)n + 2a2] = 0

or

(8a2 − 2a)n + (8a3 − 2a2) = 0 , ∀n ∈ N . (3.7)

It is clear that (3.6) and (3.7) are satisfied by only one non-zero value of a, namely,
a = 1/4. (3.1) really is the sole way in C to satisfy (3.2) non-trivially.
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