A quick and simple proof of Sherman's theorem on order in C^* -algebras

Wiebe R. Pestman^{*}

To every proper convex cone in any real linear space there is (see [1], [2]) a corresponding order relation. A cone is said to be a lattice if any two elements in it have a supremum for this ordering.

Theorem (S. Sherman). Let \mathfrak{A} be a C^* -algebra with or without a unit and let \mathfrak{A}_+ be the real cone of all positive elements in \mathfrak{A} . The cone \mathfrak{A}_+ is a lattice if and only if \mathfrak{A} is Abelian.

Proof. If \mathfrak{A} is Abelian then (by the Gelfand-Naimark theorem) it is easily seen that \mathfrak{A}_+ is a lattice.

To prove the converse, suppose that \mathfrak{A} is not Abelian. Then there exists (see [3], [5], [6], [8]) an irreducible *-representation $x \mapsto A_x$ of \mathfrak{A} on a Hilbert space \mathcal{H} of dimension ≥ 2 . Choose in \mathcal{H} two elements ξ_1, ξ_2 such that $\|\xi_1\| = \|\xi_2\| = 1$ and $\xi_1 \perp \xi_2$, and write

$$\eta_1 = \frac{\xi_1 + \xi_2}{\sqrt{2}}$$
 and $\eta_2 = \frac{\xi_1 - \xi_2}{\sqrt{2}}$

Denote the corresponding positive linear forms (pure states) on \mathfrak{A} by φ_i, ψ_i :

$$\varphi_i(x) = (A_x \xi_i, \xi_i)$$
 and $\psi_i(x) = (A_x \eta_i, \eta_i)$ $x \in \mathfrak{A}, i = 1, 2$

Let \mathfrak{A}_H be the real linear space of all Hermitian elements in \mathfrak{A} . Now $\mathfrak{A}_H = \mathfrak{A}_+$; in a natural way \mathfrak{A}_H is an ordered topological vector space with positive cone \mathfrak{A}_+ (see [3], [6], [8]). The cone of all positive linear forms on \mathfrak{A}_H will be denoted by P. Restriction of a positive linear form on \mathfrak{A} to \mathfrak{A}_H gives an element

Received by the editors September 1995.

Bull. Belg. Math. Soc. 3 (1996), 407-409

^{*}Work done as a student at the University of Groningen (the Netherlands).

Communicated by J. Schmets.

¹⁹⁹¹ Mathematics Subject Classification : 46L05, 46A40.

Key words and phrases : C^* -algebra, positive cone, lattice.

in P and in this canonical way a bijective correspondence emerges between Pand the cone of all positive linear forms on \mathfrak{A} . The representation $x \mapsto A_x$ being irreducible, it follows (see [3] p. 37/38, [5] p. 259/270) that the restrictions of $\varphi_1, \varphi_2, \psi_1, \psi_2$ to \mathfrak{A}_H generate mutually different extreme rays in the cone P. Moreover, it is easily verified that

$$\varphi_1 + \varphi_2 = \psi_1 + \psi_2$$

By Riesz's decomposition lemma (see [2]) this is possible only if P is *not* a lattice. Consequently \mathfrak{A}_H , and therefore \mathfrak{A}_+ , can not be a lattice (see [1], [2]). So " \mathfrak{A} not Abelian" implies " \mathfrak{A}_+ not a lattice"; this completes the proof of the theorem.

Remark. Another (even quicker) proof, in the case where \mathfrak{A} is a von Neumann algebra, can be found in [9]. Sherman's original proof was published in [7]; see also [4].

References

- N. Bourbaki, Eléments de mathématique, livre VI, Intégration, chapitre 1; Hermann, Paris (1973).
- [2] G. Choquet, Lectures on analysis; Benjamin Inc., London (1976).
- [3] J. Dixmier, Les C*-algèbres et leurs représentations; Gauthier-Villars, Paris (1964).
- [4] M. Fukamiya, M. Misonou, Z. Takeda, On order and commutativity of B^{*}algebras; Tôhoku Math. Journ. 6 (1954) p 89-93.
- [5] M.A. Naimark, Normed algebras; Wolters-Noordhoff Publishing, Groningen (1972).
- [6] G.K. Pedersen, C*-algebras and their automorphism groups; Academic Press, London (1979).
- [7] S. Sherman, Order in operator algebras, Amer. Journ. Math. 73 (1951) p.227-232.
- [8] M. Takesaki, Theory of operator algebras I; Springer-Verlag, Berlin (1979).
- [9] E.G.F. Thomas, Integral representations of invariant reproducing kernels, Proceedings, Bicentennial Congress Wiskundig Genootschap (Amsterdam 1978), part II p.391-404, Math. Centrum, Amsterdam (1979).

Wiebe R. Pestman University of Nijmegen Toernooiveld 6525 ED Nijmegen The Netherlands