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Abstract

Two subclasses A(p, n, α) and B(p, n, α) of analytic functions in the open
unit disk are introduced. The object of the present paper is to give a number
of quasi-convolution properties of functions belonging to each of the classes
A(p, n, α) and B(p, n, α).

1 Introduction and Definitions

Let T (p, n) be the class of functions f(z) of the form:

f(z) = zp −
∞∑

k=p+n

ak z
k (ak ≥ 0; p, n ∈ N := {1, 2, 3, · · · }), (1.1)

which are analytic in the open unit disk

U := {z : z ∈ C and |z| < 1} .

Let T (p, n, α) denote the subclass of T (p, n) consisting of functions f(z) which
also satisfy the inequality:

<
{
f(z)

zf ′(z)

}
> α

(
z ∈ U ; 0 ≤ α <

1

p

)
(1.2)
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for some α (0 ≤ α < 1/p). We note that a function f(z) belonging to the class
T (p, n, α) is p-valently starlike in U .

For the class T (p, n, α), Yamakawa [6] has shown that, if f(z) ∈ T (p, n) satisfies
the inequality:

∞∑
k=p+n

(2k − αpk − p) ak ≤ p(1− αp)
(

0 ≤ α <
1

p

)
, (1.3)

then f(z) ∈ T (p, n, α). Applying this fact, Yamakawa [6] gave the following equiv-
alence relations:

f(z) ∈ A(p, n, α) ⇔ f(z) ∈ T (p, n) and
∞∑

k=p+n

(2k − αpk − p) ak ≤ p(1− αp)
(

0 ≤ α <
1

p

)
;

(1.4)

f(z) ∈ B(p, n, α)⇔ f(z) ∈ T (p, n) and
∞∑

k=p+n

k(2k − αpk − p) ak ≤ p2(1− αp)
(

0 ≤ α <
1

p

)
.

(1.5)

Let the functions fj(z) given by

fj(z) = zp −
∞∑

k=p+n

ak,j z
k (j = 1, 2) (1.6)

be in the class T (p, n). Then the quasi-convolution (or modified Hadamard product)
(f1 ∗ f2)(z) of the functions f1(z) and f2(z) is defined here (and in what follows) by

(f1 ∗ f2)(z) = zp −
∞∑

k=p+n

ak,1 ak,2 z
k. (1.7)

The quasi-convolution (1.7) was introduced and studied earlier by Owa ([1] and
[2]), and by Schild and Silverman [3] for p = 1. [See also Srivastava et al. ([4] and
[5]).] In the present paper we aim at giving several quasi-convolution properties of
functions in the subclasses A(p, n, α) and B(p, n, α) characterized by (1.4) and (1.5),
respectively.

2 A Set of Lemmas

We begin by recalling the following lemmas due to Yamakawa [6], which will be
needed in proving our main results (Theorem 1 and Theorem 2 below).

Lemma 1 (Yamakawa [6]). If fj(z) ∈ A(p, n, αj) (j = 1, 2), then (f1 ∗ f2)(z) ∈
A(p, n, β), where

β =
[p + 2n− α1p(p + n)] [p + 2n− α2p(p + n)]− p(1− α1p)(1− α2p)(p + 2n)

p {[p+ 2n − α1p(p + n)] [p+ 2n − α2p(p + n)]− p(1− α1p)(1− α2p)(p + n)} .
(2.1)
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The result is sharp for the functions fj(z) given by

fj(z) = zp − p(1− αjp)
p+ 2n − αjp(p + n)

zp+n (j = 1, 2). (2.2)

Lemma 2 (Yamakawa [6]). If fj(z) ∈ B(p, n, αj) (j = 1, 2), then (f1 ∗ f2)(z) ∈
B(p, n, β), where

β = [p+2n−α1p(p+n)][p+2n−α2p(p+n)](p+n)−p2(1−α1p)(1−α2p)(p+2n)
p{[p+2n−α1p(p+n)][p+2n−α2p(p+n)](p+n)−p2(1−α1p)(1−α2p)(p+n)} . (2.3)

The result is sharp for the functions fj(z) given by

fj(z) = zp − p2(1− αjp)
(p + n) [p+ 2n − αjp(p + n)]

zp+n (j = 1, 2). (2.4)

3 Main Results and Their Consequences

One of our main results is contained in

Theorem 1. If fj(z) ∈ A(p, n, αj) for each j = 1, · · · , m, then

(f1 ∗ f2 ∗ · · · ∗ fm)(z) ∈ A(p, n, β),

where

β =
1

p
−

npm−2
m∏
j=1

(1− αjp)
m∏
j=1

[p + 2n− αjp(p + n)]− pm−1(p+ n)
m∏
j=1

(1− αjp)
. (3.1)

The result is sharp for the functions fj(z) (j = 1, · · · , m) given by

fj(z) = zp − p(1− αjp)
p + 2n− αjp(p + n)

zp+n (j = 1, · · · , m). (3.2)

Proof. Our proof of Theorem 1 is by induction on m. Indeed the assertion
of Theorem 1 holds true when m = 1. For m = 2, we find from Lemma 1 that
(f1 ∗ f2)(z) ∈ A(p, n, β) with

β =
[p + 2n− α1p(p + n)] [p + 2n− α2p(p + n)]− p(1− α1p)(1− α2p)(p + 2n)

p {[p+ 2n − α1p(p + n)] [p+ 2n − α2p(p + n)]− p(1− α1p)(1− α2p)(p + n)}

=
1

p
− n(1− α1p)(1− α2p)

[p + 2n− α1p(p + n)] [p + 2n− α2p(p + n)]− p(1− α1p)(1− α2p)(p + n)
.

(3.3)

Therefore, Theorem 1 is true also for m = 2.
Next we suppose that Theorem 1 is true for a fixed natural number m. Then,

applying Lemma 1 once again, we see that

(f1 ∗ f2 ∗ · · · ∗ fm+1)(z) = (f1 ∗ f2 ∗ · · · ∗ fm)(z) ∗ fm+1(z) ∈ A(p, n, γ), (3.4)
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where

γ = 1
p
− n(1−αm+1p)(1−βp)

[p+2n−αm+1p(p+n)][p+2n−βp(p+n)]−p(1−αm+1p)(1−βp)(p+n)

= 1
p
−

npm−1
m+1∏
j=1

(1−αjp)

m+1∏
j=1

[p+2n−αjp(p+n)]−pm(p+n)
m+1∏
j=1

(1−αjp)
.

(3.5)

Therefore, Theorem 1 is true also for m+ 1. Thus, by mathematical induction, we
conclude that Theorem 1 is true for any natural number m.

Finally, if we take the functions fj(z) (j = 1, · · · , m) given by (3.2), then we
have

(f1 ∗ f2 ∗ · · · ∗ fm)(z) = zp − pm
m∏
j=1

(1− αjp)
m∏
j=1

[p + 2n− αjp(p + n)]
zp+n

= zp − Ωzp+n

(3.6)

where, for convenience,

Ω = pm

m∏
j=1

(1− αjp)
m∏
j=1

[p+ 2n − αjp(p + n)]
. (3.7)

Therefore, in view of (1.4), we obtain

∞∑
k=p+n

2k − βpk − p
p(1− βp) Ω

=
2(p + n)− βp(p+ n)− p

p(1− βp) ·
pm

m∏
j=1

(1− αjp)
m∏
j=1

[p + 2n− αjp(p + n)]

= 1,

which shows that the assertion of Theorem 1 is sharp for the functions fj(z) (j =
1, · · · , m) given by (3.2).

Setting αj = α (j = 1, · · · , m) in Theorem 1, we readily obtain

Corollary 1. If fj(z) ∈ A(p, n, α) for all j = 1, · · · , m, then

(f1 ∗ f2 ∗ · · · ∗ fm)(z) ∈ A(p, n, β),

where

β =
1

p
− npm−2(1− αp)m

[p+ 2n − αp(p + n)]m − pm−1(p+ n)(1− αp)m . (3.8)

The result is sharp for the functions fj(z) (j = 1, · · · , m) given by

fj(z) = zp − p(1− αp)
p + 2n− αp(p + n)

zp+n (j = 1, · · · , m). (3.9)
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The proof of Theorem 1 can be applied mutatis mutandis in order to derive

Theorem 2. If fj(z) ∈ B(p, n, αj) for each j = 1, · · · , m, then

(f1 ∗ f2 ∗ · · · ∗ fm)(z) ∈ B(p, n, β),

where

β =
1

p
−

npm−1
m∏
j=1

(1− αjp)

(p+ n)

{
(p+ n)m−2

m∏
j=1

[p + 2n− p(p + n)αj ]− pm
m∏
j=1

(1− αjp)
} . (3.10)

The result is sharp for the functions fj(z) given by

fj(z) = zp − p2(1− αjp)
(p + n) [p+ 2n − p(p + n)αj]

zp+n (j = 1, · · · , m). (3.11)

For αj = α (j = 1, · · · , m), Theorem 2 immediately yields Corollary 2. If fj(z) ∈

B(p, n, α) for all j = 1, · · · , m, then

(f1 ∗ f2 ∗ · · · ∗ fm)(z) ∈ B(p, n, β),

where

β =
1

p
− npm−1(1− αp)m

(p + n) {(p + n)m−2 [p + 2n− p(p + n)α]m − pm(1− αp)m} . (3.12)

The result is sharp for the functions fj(z) (j = 1, · · · , m) given by

fj(z) = zp − p2(1− αp)
(p + n) [p+ 2n − p(p + n)α]

zp+n (j = 1, · · · , m). (3.13)
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