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Abstract

One says that Veldkamp lines exist for a point-line geometry Γ if, for any
three distinct (geometric) hyperplanes A, B and C (i) A is not properly con-
tained in B and (ii) A ∩ B ⊆ C implies A ⊂ C or A ∩ B = A ∩ C. Under
this condition, the set V of all hyperplanes of Γ acquires the structure of
a linear space – the Veldkamp space – with intersections of distinct hyper-
planes playing the role of lines. It is shown here that an interesting class
of strong parapolar spaces (which includes both the half-spin geometries and
the Grassmannians) possess Veldkamp lines. Combined with other results on
hyperplanes and embeddings, this implies that for most of these parapolar
spaces, the corresponding Veldkamp spaces are projective spaces.

The arguments incorporate a model of partial matroids based on intersec-
tions of sets.

1 Introduction

Let Γ be a point-line geometry, that is, a rank two incidence system (P ,L) with each
object incident with at least two others. The objects of P are called “points”; those
of L are called “lines”; nothing is assumed by this nomenclature. A subspace of Γ
is a subset S of P such that any line L with two of its incident points in S has all
its incident points in S. We assume without any real loss that distinct lines possess
distinct sets of incident points (distinct point-shadows) and so may themselves be
regarded as subsets of P .
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A (geometric) hyperplane is a proper subspace H of Γ such that each line L
intersects H non-trivially. We may note that if A and B are hyperplanes with A
properly contained in B, then P − A cannot have a connected collinearity graph,
and conversely. Thus for any hyperplane A, the two conditions

(i) A is not properly contained in B for any hyperplane B,

(ii) P − A has a connected collinearity graph

are equivalent, and if this happens for any hyperplane A, then we say Veldkamp
points exist. We say that Veldkamp lines exist, if

(i) Veldkamp points exist

(ii) For any three distinct hyperplanes A, B and C, A ∩B ⊆ C implies A ∩ B =
A ∩ C.

If this condition holds, then the incidence system V = (V1,V2), where V1 is all
hyperplanes of Γ, V2 is the set of intersections of pairs of distinct hyperplanes of V1,
and incidence is inclusion, becomes a linear space since any two “points” of a “line”
determine that line. The linear space V = (V1,V2) is then called the Veldkamp space.
(The term is intended to be meaningless unless Veldkamp lines already exist.)

In some cases, the Veldkamp space V is a projective space P and in some of
these cases there is an embedding e : (P ,L) → (V1,V2) provided by the Veldkamp
space. Historically this step was first taken by F.D. Veldkamp for “embeddable polar
spaces” – that is, polar spaces of rank at least three whose planes are Desarguesian
(see J. Tits [Ti], for details of this characterization of Veldkamp’s polar spaces). If
(P ,L) is such a space, then the mapping p → p⊥, p ∈ P , provides the embedding
P → V .

There are quite a few geometries, Γ, of diameter k in which the mapping p →
∆∗k−1(p), the set of all points at distance at most k − 1 from p, defines a mapping
e : P → V . But in many of these cases, for example, in the half-spin geometries
D2n,2n(F ), and the Grassmannians A2n−1,n(F ), where F is a field, it has never even
been established that Veldkamp lines exist! Thus it is not clear that the mapping
e : P → V constitutes an embedding into a Veldkamp space in these cases.

In this note, we rectify this by showing that Veldkamp lines exist for a class of
strong parapolar spaces which include all half-spin geometries and all Grassmanni-
ans, An,k(F ) (Corollary 6.3).

The results here are generalized somewhat, to yield a modest contribution to an
outstanding question, proposed to me by Professor Arjeh Cohen ([Co1]).

QUESTION: If Γ = (P ,L) is a strong parapolar space of singular rank at least 3,
for which Veldkamp lines exist, is the Veldkamp space a projective space?

The results of this paper show that the hypothesis that Veldkamp lines exist in
the above question, is automatically true. In fact, in the case of half-spin geometries
and the exceptional Lie geometry E6,1(F ), the following stronger condition holds:
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(Veldkamp Planes Exist):

(i) Veldkamp lines exist.

(ii) For any four hyperplanes A1, . . . , A4 with A1, A2 and A3 independent (i.e.
A1 ∩ A2 ∩ A3 is not the intersection of two of the Ai, i ∈ {1, 2, 3}), then
A1∩A2∩A3 ⊆ A4 implies either A1∩A2 ⊆ A4 or A1∩A2∩A3 = A1∩A2∩A4.

The relevance of this condition to Cohen’s question is manifest in the following

Lemma 1.1 Suppose Γ = (P ,L) is a geometry for which the following two
conditions hold:

(i) Veldkamp planes exist.

(ii) (Teirlinck’s Condition) For any two distinct hyperplanes A and B and a point
p in P − (A ∪B), there is a unique hyperplane C containing {p} ∪ (A ∩B).

Then the Veldkamp space is a generalized projective space.

Although this proof seems to be well-known, at least for polar spaces (see Chapter
15 of the forthcoming book of Buekenhout and Cohen [BC]), we sketch it for the
sake of completeness. It suffices to verify the so-called Pasch’s Axiom for V . Let
H1, H2 and K3 be hyperplanes with K3 not containing H1 ∩H2. Suppose K1 and
K2 are hyperplanes containing H1 ∩K3 and H2 ∩K3, respectively. In the Veldkamp
space we have the configuration :

H1 H2

K2

K3

K1

H1 K3˙ H2 K3˙

H1 H2˙

K1 K2˙

with the Veldkamp lines indicated. Clearly K1 ∩K2 is not contained in H1 ∩H2, so
there is a point p in K1∩K2− (H1∩H2). By (ii) there is a hyperplane X containing
p and H1 ∩H2. Then X ∩K1 ∩K2 properly contains W = K1 ∩K2 ∩H1. Thus as
Veldkamp planes exist, K1 ∩ K2 ∩ H1 ⊆ X implies K1 ∩K2 ⊆ X. So X is on the
intersection of the Veldkamp lines H1 ∩H2 and K1 ∩K2. Thus V is a linear space
with thick lines satisfying Pasch’s axiom and so is projective.

There is a condition which implies Teirlinck’s axiom, namely the condition that
every hyperplane arises from an embedding.

Let Γ = (P ,L) be a geometry of points and lines with no repeated lines, and let
P be a projective space (we also denote the points of P by the same symbol P). A
projective embedding is an injective map e : P → P such that
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(i) e(P) spans P

(ii) for each line L of L (regarded as a subset of P), e(L) is the point set of some
projective line of P.

If H is a projective hyperplane of P it is easy to see that H = e−1(e(P)∩H) is a
geometric hyperplane of Γ. In that case, we say that the hyperplane H of Γ, arises
from the embedding e.

One can easily argue at this point that if Veldkamp planes exist, and all hyper-
planes arise from some embedding e : P → P, then Teirlinck’s condition holds and
so by Lemma 1.1, the Veldkamp space is a projective space.

But, as was pointed out to me by Peter Johnson [Jh], the hypothesis that all
hyperplanes arise from some embedding is so overwhelmingly strong, that we in fact
have

Proposition (P. Johnson) Let Γ = (P ,L) be a geometry of points and lines
such that

(i) Veldkamp lines exist

(ii) For some projective embedding e : P → P of the geometry Γ, every geometric
hyperplane of Γ arises from the embedding.

Then the Veldkamp space V of Γ is a projective space.

Proof. From Lemma 4.2, to be proved in Section 4 of this paper, the hypothesis
that Veldkamp lines exist implies

(1.1) Every subspace W of codimension at most 2 in P is spanned by the image
points of e(P) contained in it.

It follows (see Lemma 4.2(ii)) that e provides an isomorphism between (V1,V2)
and the points and lines of the dual projective space P∗. Hence V is a projective
space. �

We then obtain several answers to the posed question:

Corollary Let Γ = (P ,L) be one of the following geometries

(i) a Grassmann space, An,d(D), D a division ring

(ii) a half-spin geometry Dn,n(F ), F a field

(iii) a Lie incidence geometry of type E6,1(F ), F a field.

Then the Veldkamp space of Γ is a projective space.

Proof. By Corollary 6.3 of this paper, Veldkamp lines exist for the listed geometries.
By the Proposition it suffices to show that there exists a projective embedding
e : Γ → P from which every geometric hyperplane of Γ arises. This result for the
half-spin geometries appears in [Sh4]. The result for Grassmann spaces is in [Sh3].
The result for E6,1 appears in [CooSh]. �
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2 Partial Matroids

A dependence theory on a set X is normally regarded as a relation D between X
and its power set P (X) satisfying these three axioms:

(i) (reflexivity) Any element x depends on any finite set which contains it.

(ii) (transitivity) If x depends on A and every member of A depends on B, where
A and B are finite sets, then x depends on B.

(iii) (the exchange axiom) If y depends on {x1, . . . , xn} but not {x1, . . . , xn−1}, then
xn depends on {x1, . . . , xn−1, y}.

We wish to consider here a partial dependence theory where the relation D sat-
isfies (i) and (ii) above and

(iii-r) (Partial exchange axiom) For each positive integer s ≤ r, if x depends on
{x1, . . . , xs} but not {x1, . . . , xs−1}, then xs depends on {x1, . . . , xs−1, x}.

One can lift most of the definitions used for dependence theories to the partial
case. We say that a set {x1, . . . , xn} is independent if no xi is dependent on its
complement in this set. We say U is spanned by a set X if and only if every element
of U depends on a finite subset of X; we say U is a flat if and only if U is the set of
all elements spanned by some set X.

If F is a flat consisting of all elements spanned by an s-element set X, where
s ≤ r, then the restriction of D to F × P (F ) is an ordinary dependence theory. If
X is an independent set X is called a basis for F . Thus using (i) and (ii) it is easy
to show

Lemma 2.1 Let D be a partial dependence theory on set X satisfying the partial
exchange axiom (iii-r). Then the following hold:

(i) Suppose A and B are finite sets with A ⊆ B. If x depends on A then x
depends on B.

(ii) If s ≤ r and U = {x1, . . . , xs−1} is an independent set and xs does not depend
on U , then {x1, . . . , xs−1, xs} is also an independent set.

(iii) If F is the flat of all elements dependent on an s-set X where s ≤ r, then any
independent set of fewer than r elements extends to a basis and any two bases
of F have the same cardinality.

3 The Set-intersection Model of a Partial Matroid

Let F = {Aσ

∣∣∣ σ ∈ I} be a family of subsets of a set P indexed by I . We shall

declare that a set A ∈ F depends on subset {A1, . . . , An} of F , if and only if
A1 ∩ · · · ∩An ⊆ A. The following observation is immediate:

(3.1) The relation of “dependence” defined on F × P (F) satisfies the axioms (i)
(reflexivity) and (ii) (transitivity) of a dependence theory.
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Fix a positive integer r. Consider next the

(r-fold intersection property.) For each positive integer s with s ≤ r, and mem-
bers A,A1, . . . , As of F , if

A1 ∩ · · · ∩As ⊆ A,

then either

A1 ∩ · · · ∩As−1 ⊆ A or A1 ∩ · · · ∩As−1 ∩A = A1 ∩ · · · ∩ As.

Here, if s = 1, the intersection A1 ∩ · · · ∩ As−1 is over an empty collection of
sets and by convention is understood to mean the entire set P . Thus for r = 1, the
r-fold intersection property asserts that in F it is impossible to have

Aσ ⊂ Aτ ⊂ P (proper inclusions)

for any indices σ and τ of I .

Lemma 3.1 Suppose the family F = {Aσ} of subsets of P satisfies the r-fold
intersection property. Then with respect to the definition of “dependence” preceding
(3.1), one obtains a partial dependence theory satisfying the partial exchange axiom
(iii-r).

Proof. Axioms (i) and (ii) hold as noted in (3.1). Suppose s ≤ r and that A depends
on {A1, . . . , As}, but not on {A1, . . . , As−1}. This means

A1 ∩ · · · ∩As ⊆ A

but
A1 ∩ · · · ∩As−1 6⊆ A.

By the r-fold intersection property A1 ∩ · · · ∩ As−1 ∩ A is contained in As, so As

depends on {A1, . . . , As−1, A}. Thus the partial exchange axiom holds. �

Note that in this model, to say that {A1, . . . , An} is an independent set is equiv-
alent to saying that the intersection A1 ∩ · · · ∩An does not remain the same if any
Ai is omitted from the intersection.

4 Veldkamp (r − 1)-Spaces and Embeddings

We wish to apply the ideas of the previous section to the case that P is the set P
of points of a point-line geometry Γ = (P ,L) and F is the set V of all geometric
hyperplanes of Γ. In section 1 we introduced three properties affecting the struc-
ture of V : (1) Veldkamp points exist, (2) Veldkamp lines exist and (3) Veldkamp
planes exist. But these three concepts are simply the r-fold intersection property
for hyperplanes in the respective cases r = 1, 2 and 3.

For r ≥ 4, we say Veldkamp (r − 1)-spaces exist if and only if V satisfies the
r-fold intersection property.
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A sufficient condition for this is given in

Lemma 4.1 Let V be the set of hyperplanes of a geometry Γ = (P ,L) and fix
a positive integer r. Suppose, for any subset {A1, . . . , As} of V , where s ≤ r, that

A1 ∩ · · · ∩ As−1 − A1 ∩ · · · ∩As

has a connected collinearity graph (this includes the case that it is empty).
Then Veldkamp (r − 1)-spaces exist.

Proof. We need only verify the r-fold intersection property. So fix s ≤ r, and
suppose A,A1, . . . , As are hyperplanes of Γ, with A1 ∩ · · · ∩ As ⊆ A. Then we have

A1 ∩ · · · ∩ As ⊆ A1 ∩ · · · ∩As−1 ∩A ⊆ A1 ∩ · · · ∩As−1.

The last set is a subspace S of Γ and the first set, H = A1∩· · ·∩As, is either equal to
S or is a hyperplane of it. If H = S all three sets are equal. But if they are not equal,
H is a hyperplane of S and S − H has a connected collinearity graph. It follows
that H is a maximal subspace of S. Thus in either case, H = A1∩ · · · ∩As−1 ∩A or
else A1 ∩ · · · ∩As−1 ∩A = A1 ∩ · · · ∩As−1, which implies A1 ∩ · · · ∩As−1 ⊆ A. But
these two alternatives form the conclusion of the r-fold intersection property. Thus
Veldkamp (r − 1)-spaces exist. �

Lemma 4.2 Suppose Veldkamp (r − 1) spaces exist for Γ = (P ,L).

(i) If e : Γ → P is an embedding of Γ, then every subspace K of codimension at
most r in P(V ) is spanned by the image points contained in it.

(ii) If, moreover, every hyperplane of Γ arises from the embedding e : Γ → P,
then there is an incidence-preserving bijection between the subspaces of P of
codimension at most r and the flats of V of dimension at most r. (The map
converts codimension to dimension.)

Proof. (i) For each subspace U of P set S(U) = {p ∈ P|e(p) ∈ U}. Clearly S(U)
is a subspace of Γ and if codim(U) = 1, S(U) is a hyperplane of Γ. We proceed by
induction on r.

Assume r = 1 so Veldkamp points exist. Then all geometric hyperplanes are
maximal subspaces. Let H be a hyperplane of P and suppose K = 〈e(P) ∩ H〉P
has codimension at least 2. There exists a point p ∈ P − S(K) and so there is
a hyperplane H′ containing 〈K, e(p)〉P. Then S(H) is properly contained in S(H′)
while both are geometric hyperplanes. This contradicts S(H) maximal.

Now assume the result holds for all values of r less than k, and suppose Veldkamp
(r − 1)-spaces exist for Γ. Suppose by way of contradiction that U is a subspace
of codimension k in P such that K = 〈e(P) ∩ U〉P has codimension > k. Again
choose p ∈ P −S(U). Then there is a subspace U′ of codimension k in P containing
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〈K, e(p)〉P. Since U and U′ each have codimension k in P, each can be expressed as
the intersection of k independent hyperplanes Hi (or H′i) of P, so

U = H1 ∩ · · · ∩ Hk, U′ = H′1 ∩ · · · ∩ H′k.

Setting Ai = S(Pi) and A′i = S(P′i) we see that

S(U) = A1 ∩ · · · ∩Ak $ S(U′) = A′1 ∩ · · · ∩ A′h. (5.1)

Since Veldkamp (k − 1) spaces exist, the collection V forms a partial matroid with
the partial exchange axiom (iii-k). The set F of all hyperplanes of Γ containing
S(U) is a flat spanned by {A1, . . . , Ak}.

Now the geometric hyperplanes {A′i} are independent since, by induction, any
intersection over a proper subset of the P′i is spanned by the points of e(P) which it
contains, and so the intersection over the corresponding A′is must properly contain
the full intersection.

Now a similar argument shows that the Ai are also independent. Thus {Ai} is
a basis of k-elements of the flat F , and {A′i} is an independent set of k elements
which does not span F . This contradicts Lemma 2.3(iii).

(ii) Since Veldkamp (r−1) spaces exist, the “points” of V form a partial matroid
satisfying axiom (iii-r). Let U be a subspace of codimension k ≤ r in P. Then as
U is the intersection of k independent hyperplanes of P, we can conclude as in part
(i), that S(U) is a k-dimensional flat. Since each such space U is generated by its
image points, S induces an injection

S∗ : {U ≤ P|codimU ≤ r} → {k − flats of V |k ≤ r}.

But this map is onto. Suppose X is a k-flat of V . Then X is all hyperplanes
containing an intersection A1 ∩ · · · ∩ Ak of independent hyperplanes. But each
hyperplane Ai is S(Hi) for some projective hyperplane Hi of P, since all hyperplanes
arise from the embedding e : Γ→ P. Thus

A1 ∩ · · · ∩ Ak = S(H1 ∩ · · · ∩Hk := U)

so X = S∗(U).
Thus S∗ is a bijection. �

5 Veldkamp Points and Lines for Polar Spaces

By a polar space we mean a point-line geometry Γ = (P ,L) satisfying the familiar
“one or all” axiom for points and lines, namely:

(5.1) For any point-line pair (p, L), p is collinear with either 1 or all points of L.

The radical, Rad(P), is the set of points collinear with all other points; the polar
space is called non-degenerate if Rad(P) is empty. There is a canonical procedure
described in [BSh] for obtaining a non-degenerate polar space ρ(Γ) from any polar
space Γ. Its points are the equivalence classes ρ(P) on P−Rad(P) for the equivalence
relation defined by the equation x⊥ = y⊥. The restriction of the mapping ∗ :
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P − Rad(P)→ ρ(P) to any line not meeting Rad(P) is injective and the images of
such restrictions form the lines ρ(L) of the polar space ρ(Γ).

A subspace S of Γ = (P ,L) is said to be singular if any two of its points are
collinear. The singular rank of Γ is the minimal length of an unrefinable chain of
singular subspaces beginning with the empty subspace. (To avoid confusion on this
point, the length of any properly ascending chain is the number of “upward hops”
in it – that is, one less than the number of members in the chain.) If Γ is a polar
space, the reduced rank of Γ is the singular rank of ρ(Γ); if Γ is non-degenerate, the
singular rank is just called the rank. Thus a non-degenerate polar space of rank 2
is a (non-degenerate) generalized quadrangle; a polar space of reduced rank zero is
a singular space.

A polar space has thick lines if and only if each of its lines is incident with at
least three distinct points.

The following well-known Lemma is seminal for what follows.

Lemma 5.2 Let Γ = (P ,L) be a polar space of reduced rank at least two having
thick lines. Then for any hyperplane H, the set P −H has a connected collinearity
graph – that is, Veldkamp points exist.

Proof. Choose by way of contradiction, two points x and y lying in distinct connected
components of P − H. Then x⊥ ∩ y⊥ ⊆ H and, as neither x nor y lies in Rad(P)
and Γ has reduced rank at least 2, x⊥ ∩ y⊥ is not a linear space. There is thus a
non-collinear pair of points (u, v) in x⊥ ∩ y⊥. Let A and B be lines on {x, v} and
{x, u} and C a line containing {v, y}. Then H∩A = {u} and H∩C = {v}. Since C
is thick, there is a point y′ in C−{y, v}, which clearly belongs to the same connected
component of P −H as does y. But by the axiom (5.1), y′ is collinear to one or all
points of A. But if y′ were collinear with u then u⊥ ∩ C would contain {y, y′} and
hence all of C by (5.1), contradicting the fact that u is not collinear with v on C .
Thus y′ is not collinear with u and so is collinear with a point x′ of A−{u} = A−H.
But then (x, x′, y′, y) is a path of length three connecting x and y. This contradicts
the choice of x and y and proves the Lemma. �

Corollary 5.3 Let Γ = (P ,L) be a polar space of reduced rank at least r + 1.
Then Veldkamp (r − 1)-spaces exist for Γ.

Proof. This proof depends on the fact that any subspace of a polar space is a polar
space. A hyperplane of a polar space of reduced rank at least k is in fact a polar space
of reduced rank at least k minus one. Thus for any integer s ≤ r, and hyperplanes
A1, . . . , As of Γ, the intersection A1 ∩ · · · ∩As−1 is a polar space of reduced rank at
least 2 which is either equal to A1∩· · ·∩As or contains the latter as a hyperplane. In
either case (in the latter Lemma 5.2 must be employed)A1∩· · ·∩As−1−A1∩· · ·∩As

has a connected collinearity graph. The result now follows from Lemma 4.1. �
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6 A Class of Strong Parapolar Spaces

If p and q are distinct points of a point-line geometry Γ = (P ,L), a path from p
to q of length n is a sequence of points (x0, x1, . . . , xn) with x0 = p, xn = q and
i = 1, . . . , n, xi−1 distinct from, but collinear with xi. A path of minimal length
from p to q is called a geodesic and its length dΓ(p, q) is called the distance from p to
q in Γ. A subspace S of Γ is called convex if it contains every geodesic connecting
any two of its points. P itself is a convex subspace, and clearly the intersection of
any family of convex subspaces is a convex subspace. Thus, given any subset X of
P , the intersection of all convex subspaces of Γ containing X is a convex subspace
denoted 〈X〉Γ and called the convex closure of the set X.

We introduce a family {En
∣∣∣ n = 1, 2, . . .} of classes En of point-line geometries.

If Γ ∈ En, n ≥ 2, then Γ satisfies the following four axioms:

(E1) Γ is connected (i.e., P has a connected collinearity graph) and has thick lines.

(E2) (i) For any positive integer k ≤ n, every geodesic (x0, . . . , xk) of length k
completes to a geodesic (x0, . . . , xk, . . . , xn) of length n.

(ii) diamΓ := max{dΓ(p, q)
∣∣∣ p, q ∈ P} is n exactly and for each point p, the

set ∆∗n−1(p) := {q ∈ P
∣∣∣ dΓ(p, q) ≤ n− 1} is a geometric hyperplane of Γ.

(E3) If p and q are distinct points of Γ with dΓ(p, q) = k, then the convex closure
〈p, q〉Γ is a member of Ek.

Remarks 1) The members of the set E1, strictly speaking, are not point-line
geometries: Each Γ ∈ E1 is just a single thick line, since by, (E2)(ii) each point p,
the sole member of ∆∗0(p), must be a geometric hyperplane.

2) The geometries of E2 have diameter 2 and for each point p of a geometry Γ of
E2, p⊥ is a hyperplane of Γ. Thus they are non-degenerate polar spaces of rank at
least two.

3) Similarly, if n > 2, and Γ ∈ En, it is true that the convex closure of every pair
(p, q) of points at distance 2 is a convex non-degenerate polar space of rank at least
2. We call such convex polar subspaces symplecta.

4) If all symplecta have rank at least 3, it is easy to see that Γ satisfies the axioms
of a parapolar space without having special pairs (p, q) such that |p⊥∩q⊥| = 1. (Such
spaces are called strong parapolar spaces: see [CooSh] for definitions.)

If Γ ∈ En, we denote the subcollection of all convex subspaces of the form 〈p, q〉Γ
where dΓ(p, q) = k ≤ n, by the symbol Ek(Γ).

There are four “classical” models of geometry classes En, n ≥ 2.

1. The dual polar spaces. Points are maximal singular subspaces of classical
polar spaces of rank at least two (polar spaces of type Dn are excluded here since
dual polar spaces of this type yield thin lines). These have been characterized by
P. Cameron ([Ca]). Here, symplecta are generalized quadrangles.

2. The Grassmann spaces of the form A2n−1,n. Points are n-dimensional
subspaces of a 2n-dimensional vector space; lines are rank 2 flags of dimension
(n−1, n+1). There are several characterizations of these geometries (see Proposition
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6.1 of [Sh1] and Bichara and Tallini [BT]; but probably the best is that of Cohen
([Co2])). Here symplecta are rank 3 polar spaces of type A3,2.

3. The half-spin geometries Dn,n where n is even. Points are the members of
one of the two classes of maximal singular subspaces of a vector space of dimension
2n admitting a quadratic form of maximal Witt index. Lines are totally singular (n−
2)-dimensional subspaces. There are several characterizations of these geometries
(Cooperstein [Coo], Cooperstein and Cohen [CooCo]; see also Shult [Sh2] for one
based on singular subspaces rather than symplecta). Here symplecta are classical
polar spaces of type D4 and rank 4.

4. The exceptional geometry E7,1 whose points and lines are the cosets of
the maximal parabolic subgroups of E7(k) corresponding to the nodes “P” and “L”
in the diagram

L P

(This is called E7,7 in [BCN].)
We shall require some elementary results on these geometries.

Lemma 6.1 Let Γ be a member of En, n ≥ 2, and let m be any positive integer
less than n.

(i) For any point p, ∆∗m(p) is a subspace of Γ.

(ii) For any hyperplane H of Γ, P −H has a connected collinearity graph.

Proof. (i) Let L be a line and suppose x and y are two distinct points of L in
∆∗m(p). Then L ⊆ ∆∗m(p) unless L contains a point v with dΓ(p, v) = m + 1. Then
Y = 〈p, v〉Γ ∈ Em+1(Γ) and contains x, y – and hence L – by convexity. Then as
∆∗m(p) is a hyperplane of Y , we have L ⊆ ∆∗m(p).

(ii) If n = 2, this is Lemma 4.2. We assume by way of contradiction that n > 2 is
minimal such that (ii) is false. So there exists a geometry Γ ∈ En, a hyperplane H of
Γ with two points x and y in distinct connected components of P−H, with nminimal
with respect to these conditions. Then dΓ(x, y) = n. Let (x0 = x, x1, . . . , xn = y)
be a geodesic connecting x and y and let Y = 〈x1, y〉Γ ∈ En−1(Γ). Let L be a line of
Y on x1 and x2 and let R = 〈x, x2〉Γ ∈ E2(Γ). Now, let A be a line on {x, x1} and
let B be a line of Res(x) not in A⊥. Then as x⊥ ∩ Y is, by the convexity of Y , a
singular subspace, B∩Y = ∅. Since B is thick, there is a point v in B−{{x}∪H},
and B 6⊆ A⊥ implies v is not collinear with x1. Thus v⊥ ∩ L = {u} 6= {x1}.

Now no point z in P − H exists, with max(dΓ(x, z), dΓ(y, z)) < n, since, by
minimality of n, 〈x, z〉Γ − H and 〈y, z〉Γ − H would both be connected. Thus
∆∗n−2(x1)∩Y ⊆ H. Since ∆∗n−2(x1)∩Y is a hyperplane of Y , minimality of n forces
Y −∆∗n−2(x1) connected, whence ∆∗n−2(x1) ∩ Y is a maximal subspace of Y . Thus
∆∗n−2(x1)∩Y = H∩Y . Since v lies in the same connected component of P−H as x,
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then similarly ∆∗n−2(u)∩H = H∩Y . Thus ∆∗n−2(x1)∩Y = ∆∗n−2(u)∩Y . But this is
impossible since by axiom E2(i), (u, x1) completes to a geodesic (u, x1, a2, . . . , an−1)
of Y whence an−1 ∈ ∆∗n−2(x1) ∩ Y but is not in ∆∗n−2(u) ∩ Y . This contradiction
completes the proof. �

In the following, we wish to show that if En is a class of geometries satisfying
the axioms (E1)-(E3), and the members of E2 all have reduced rank r, then there
are r points x1, . . . , xr such that the hyperplanes Hi = ∆∗n−1(xi), i = 1, . . . , r, are
independent in the sense of section 3. In order to do this we must introduce the
concept of gated sets.

Let G = (V,E) be any connected graph and let X ⊆ V define an induced
subgraph and suppose y is any vertex. We say that X is strongly gated with respect
to y if X contains a unique vertex g nearest y (called the gate) (with respect to the
distance metric dG : V × V → Z) and for each vertex x in X we have

dG(y, x) = dG(y, g) + dX(g, x).

Of course, if X is embedded isometrically as a subgraph of G, – as, for example,
when X is convex in G – then the second term dX(g, x) = dG(g, x) in which case
we say that X is gated with respect to y. The latter concept seems to have been
introduced by Dress and Scharlau ([DrSch]). Near polygons, for example, are point-
line geometries in which each line is gated with respect to every point. Buildings
are chamber systems in which residues are gated with respect to every chamber
(Scharlau, [Sch]).

Lemma 6.2 Suppose Γ ∈ En, satisfying (E1) through (E3).

(i) Suppose Y ∈ En−1(Γ) and that x is at distance 1 and at distance n from points
of Y . Then Y is gated with respect to point x.

(ii) Suppose T ∈ Em(Γ), 1 ≤ m < n, and x is a point such that there are points a
and b in T with dΓ(x, a) = n, dΓ(x, b) = n−m. Then T is gated with respect
to x with gate b.

(iii) If S ∈ E2(Γ) and g ∈ S, then there exists a point u with dΓ(g, u) = n− 2 and
S is gated with respect to u.

Proof. (i) Let W = {y ∈ Y
∣∣∣ dΓ(x, y) = n}. By hypothesis W is a non-empty

subset of Y − ∆∗n−2(g) where g ∈ x⊥ ∩ Y , also given to be non-empty. Since Y
is convex, x⊥ ∩ Y is a singular subspace. If x⊥ ∩ Y contained a line L, then for
any w ∈ W , ∆∗n−2(w) ∩ Y , being a hyperplane of Y , would meet L at a point t, so
n = dΓ(x, w) ≤ dΓ(x, t)+dΓ(t, w) = 1+n−2 = n−1, an absurdity. Thus the singular
space x⊥∩Y consists of a single point g. Choose w ∈W and let N be any line of Y
on w. Then N∩∆∗n−2(g) is a point, and any point of N−∆∗n−2(g) also belongs to W .
Thus W is a connected component of the collinearity graph on Y − (∆∗n−2(g) ∩ Y ).
By Lemma 6.1(ii), the latter is connected. Thus W = Y − (∆∗n−2(g) ∩ Y ) – i.e.,
every point of Y at distance n− 1 from g is distance n from x.
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Now suppose v is any point of Y at distance d from g. Then a geodesic path p
from g to v can be extended to a geodesic path p ∗ q of length n− 1 terminating at
a point t. Since t ∈ W , d(x, t) = n by the previous paragraph so (x, g) ∗ p ∗ q is a
geodesic from x to t. Thus its first part (x, g) ∗ p is a geodesic, whence dΓ(x, v) =
1 + d = dΓ(x, g) + dΓ(g, v). Thus Y is gated with respect to point x.

(ii) The result is true by (i) if n − m = 1; that is, x⊥ ∩ T 6= ∅. We proceed
by induction on n −m. Let (b, x1, . . . , xn−m = x) be a geodesic from b to x. Then
as d(a, x) = n, d(a, xn−m−1) = n − 1 so Y = 〈a, xn−m−1〉 ∈ En−1(Γ) and x is at
distance 1 and n from points of Y . Thus by (i) Y is gated with respect to x with
gate xn−m−1. It follows by induction on n −m that T is gated (in Y ) with respect
to xn−m−1. Noting that T and Y are convex in Γ, this means that for each t ∈ T ,

dΓ(t, b) + dΓ(b, x) = dΓ(t, b) + dΓ(b, xn−m−1) + dΓ(xn−m−1, x)

= dY (b, xn−m−1) + dΓ(xn−m−1, x) = dΓ(t, x).

Thus T is gated with respect to x with gate b.
(iii) There is a geodesic (a, b, g) in S, which can be extended to a geodesic

(a, b, g, x3, . . . , xn = u) of Γ. Then d(a, u) = n, d(g, u) = n − 2 and (ii) applies to
yield the result.

�

Corollary 6.3 Suppose Γ ∈ En, and that S is a symplecta of E2(Γ). Suppose
points x1, . . . , xk of S are such that the sets {x⊥i ∩ S} are independent sets of S.
Then the k hyperplanes Hi = ∆∗n−1(xi), are independent sets of Γ, in the sense of
section 3.

Proof. By hypothesis, for each (k− 1)-subset Uj = {x1, . . . , xk}− {xj}, there exists
a point gj of S such that g⊥j ∩ {x1, . . . , xk} = Uj. By Lemma 6.2(ii), there exists a
point uj in Γ, such that S is gated with respect to uj with gate gj . Then uj lies in
∆∗n−1(xi) if and only if i 6= j. It is thus impossible for Hj to contain the intersection

of the remaining Hi’s for i 6= j, whence the sets {Hi

∣∣∣ i = 1, . . . , k} are independent.
�

Corollary 6.4 Suppose either (i), X = {x1, . . . , xr} are points of a symplecton
S which span an (r − 1)-dimensional projective space or (ii), X = {x1, x2, x3, x4}
are 4 points; any two of which are collinear except for the pair {x1, x4}. Then the

sets {Hx = ∆∗n−1(x)
∣∣∣ x ∈ X} are independent.

Proof. In case (i) 〈X〉 ' PG(r − 1) and S has rank ≥ r, and for any hyperplanes

H of 〈X〉 there is a point sH of S with s⊥H ∩ 〈X〉 = H. Thus {x⊥i ∩ S
∣∣∣ i = 1, . . . , r}

are independent in S and Corollary 6.3 applies.
In case (ii) let S = 〈x1, x4〉. Since S has rank ≥ 3, x⊥1 ∩ x⊥4 is a non-degenerate

polar space in which there is a point u collinear with x2 but not x3 or vice versa.
Then u⊥ ∩ X = {x1x4x2} or {x1x4x3} as desired. Also x⊥1 ∩ X = {x1x2x3} and

x⊥4 ∩X = {x2x3x4}. Thus the sets {x⊥i ∩S
∣∣∣ i ' 1, . . . , 4} are independent in S, and

the result again follows from Corollary 6.3. �
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The goal of the next few lemmas is to show that if A and B are subspaces of Γ
with A − B non-empty, then there exists a point x in A − B which lies on a line
not contained in A. This is not true for all geometries Γ, but it is true for strong
parapolar spaces with thick lines, and that is the context for these lemmas. The
proof uses the arguments on deep points outlined in [Sh3].

Throughout the rest of this section let Γ = (P ,L) be a strong parapolar space
– that is, Γ is connected, the convex closure of every distance 2 pair of points is a
symplecton, and every line lies in a symplecton. Suppose further that Γ has thick
lines.

Let S be a proper subspace of Γ. A point x of S is said to be a deep point if
x⊥ ⊆ S. We let D0(S) be the set of points of S which are not deep. Inductively, we
define for i ≥ 1,

Di(S) := {x ∈ S − (D0(S) + · · ·+Di−1(S))
∣∣∣ x⊥ ∩Di−1(S) 6= ∅},

the points not in any previous Dj(S) which are collinear with a point of Di−1(S).
Then there is a complete partition of the points of S:

S = D0(S) +D1(S) + · · ·

into sets of points of “increasing depth”. For each positive integer k we set

D∗k(S) = Dk(S) +Dk+1(S) + · · · .

Lemma 6.5 The sets D∗k(S) are subspaces of S.

Proof. This is Lemma 2.2.2 of [Sh3]. If false, there is a line L carrying two points
x and y of D∗k(S) and a point z in Dk−1(S). By definition, z lies on a line N
carrying a point u of Dk−2(S) at distance 2 from x or y. (Note that by convention
D−1(S) = P − S.) Form the symplecton R = 〈x, u〉Γ. Then by induction on k,
D∗k−1(S) ∩ R is a subspace of R with two distinct deep points x and y. But that
is impossible for a nondegenerate polar space R since the hyperplanes x⊥ ∩ R and
y⊥ ∩R are both maximal subspaces of R (see Lemma 6.1(ii) applied to R). �

Lemma 6.6 Let A and B be proper subspaces of the strong parapolar space Γ
having thick lines. If A− B is non-empty, it contains a point lying on a line not in
A.

Proof. It suffices to show that D0(A)−B is non-empty. Since A is partitioned into
the sets Di(A), there exists an integer k such that Dk(A) − B is non-empty. But
then we are done if we can show

(6.1) For j ≥ 1, Dj(A)− B non-empty implies Dj−1(A)− B is also non-empty.

Let y be a point of Dj(A) − B, j ≥ 1. Like any other point of Dj(A), y must lie
on a line – say L – carrying a point u of Dj−1(A). Since L is thick and D∗j (A) is
a subspace of A, L ∩ D∗j (A) = {y} and L − {y} contains at least two points, at
most one of which lies in B. Thus L contains a point of Dj−1(A) − B. Thus the
implication (6.1) holds and the proof is complete. �
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Corollary 6.7 A strong parapolar space with thick lines is never the union of
two proper subspaces.

Proof. Suppose Γ = (P ,L) as above, and P = A ∪ B where A and B are proper
subspaces. Then A − B is non-empty, and so by Lemma 6.5 there is a point x in
A− B on a line L not in A. Then as L is thick and meets A and B in at most one
point each, L contains a point of P − (A ∪B), contrary to assumption. �

7 Veldkamp Lines for Strong Parapolar Spaces

We can at least prove

Theorem 7.1 Let {En}, n ≥ 2, be a family of point-line geometries satisfying
axioms (E1)-(E3). Assume that for each Γ ∈ En, all symplecta in E2(Γ) have rank
at least three. Then for any two hyperplanes A1, A2 of Γ, the set

Z = A1 − (A1 ∩A2)

is connected.
For any geometry Γ ∈ En, n ≥ 2, Veldkamp lines exist.

Proof. The last assertion follows from the connectivity result by Lemma 4.1.
It remains, then to show the connectivity of the set Z. By way of contradiction,

we assume it to be false. Then there exists a minimal integer n such that En contains
a geometry Γ with two hyperplanes A1, A2 such that Z = A1 − (A1 ∩ A2) is non-
empty and has a non-connected collinearity graph. By hypothesis (and Corollary
5.3), n ≥ 3.

By Lemma 6.6 there is a point x in A1 − A2 lying on a line L not in A1. Let y
be a point of Z lying in a connected component of Z distinct from that containing
x. Now if dΓ(x, y) = d < n, then R = 〈x, y〉Γ ∈ Ed(Γ) and so by minimality of n,
R ∩ Z is connected, contrary to the choice of x and y. Thus we see

dΓ(x, y) = n (7.1)

and

(7.2) there exists no point z ∈ Z such that max(dΓ(x, z), dΓ(y, z)) < n.

Now the line L carries a point x1 at distance n− 1 from y. Then Y = 〈x1, y〉Γ ∈
En−1(Γ) and by (7.2)

Y ∩∆∗n−2(x1) ∩ Z = ∅.

That is,

(Y ∩∆∗n−2(x1)) ∩ A1 ⊆ A2. (7.3)

Now choose a line Ni on x1 in Y , and note that as Y is gated with respect to x,
Ni 6⊆ x⊥, so the symplecton Ri = 〈L,Ni〉Γ can be formed.
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Suppose, first, that Z ∩ Ri ⊆ x⊥1 . This means

Ri ∩A1 ⊆ A2 ∪ x⊥1 .

Ri ∩ A1 is itself a polar space. If it is degenerate, then Ri ∩ A1 = p⊥ ∩ Ri for
some point p in Ri. As x1 is not in A1 each line on p in Ri contains just one point
of x⊥1 and hence at least two points of A2 whence p⊥ ⊆ A2. But this contradicts
x ∈ A1 − A2. Thus Ri ∩ A1 is a non-degenerate polar space of rank at least two.
By Corollary 6.7, Ri ∩A1 is contained in A2 or in x⊥1 . The first case is out because
x ∈ A1 − A2. So assume Ri ∩ A1 ⊆ x⊥1 . Now as Veldkamp points exist for Ri, and
Ri ∩ A1 is a hyperplane of Ri, it is in fact a maximal subspace of Ri. But x1 was
chosen not in A1 so Ri = x⊥1 against Ri non-degenerate.

Thus we can find a point zi in Z ∩Ri − x⊥1 . Then z⊥i ∩Ni = {vi} 6= x1. Since zi
belongs to the same connected component of Z as does x, we have

(Y ∩∆∗n−2(vi)) ∩ A1 ⊆ A2.

Now Y ∩ A1 6= Y because of x1, and Y ∩ A2 6= Y because of y. Thus Y ∩ A1 and
Y ∩A2 are distinct hyperplanes of Y , and as Y has Veldkamp lines

Y ∩∆∗n−2(vi) ⊇ A1 ∩A2 ∩ Y. (7.4)

Similarly
Y ∩∆∗n−2(x) ⊇ A1 ∩A2 ∩ Y.

Now there is a symplecton of rank ≥ 3 on x1 within Y , and so there is a plane π of
Y on x1, and we can choose the lines Ni, i = 1, 2 distinct and in π. Then the three
points {x1, v1, v2} span the plane π. Then by Lemma 6.3, the three hyperplanes

Y ∩∆∗n−2(x1), Y ∩∆∗n−2(vi), i = 1, 2

are independent in the sense of section 3. But that is a contradiction, since each of
these contain A1 ∩A2 ∩ Y and Veldkamp lines exist for Y . �

Any result in this direction can be extended to geometries whose convex closures
〈x, y〉Γ belong to Ed.

Specifically we have

Theorem 7.2 Let Γ be a geometry with the property that for every point-
pair (x, y) at mutual distance d, the convex closure 〈x, y〉Γ belongs to the class Ed
satisfying axioms (E1)-(E3).

If all the convex subgeometries 〈x, y〉Γ of diameter two or more, satisfy the con-
dition
(7.5) For any s ≤ r hyperplanes A1, . . . , As,

A1 ∩ · · · ∩ As−1 − A1 ∩ · · · ∩ As

is connected
then Γ itself satisfies condition (7.5).
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Proof. Let A1, . . . , As be hyperplanes of Γ, set Z = A1 ∩ · · · ∩ As−1 − A1 ∩ · · · ∩ As

and suppose x and y belong to distinct connected components of the collinearity
graph on Z. This is an impossible supposition since 〈x, y〉Γ ∩ Z is connected by
hypothesis. �

Corollary 7.3 All Grassmann spaces An,d(D), all half-spin geometries Dn,n(F )
(n odd or even), and all Lie incidence geometries of type E6,1(F ) or E7,1(F ), (D a
division ring, F a field) possess Veldkamp lines.

Proof. For the geometries listed, all convex subgeometries 〈x, y〉Γ of diameter at
least 2 belong to Ed, d = dΓ(x, y) and have symplecta of rank 3. The conclusion
thus follows from Theorem 7.1 and 7.2. �
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