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The purpose of this note is to give a proof of the following theorem and to give
some easy applications of it and its proof to the extrinsic geometry of convex Zoll
surfaces.

In what follows we will use the word surface to mean smooth closed surface, and
the words strictly convex to mean of positive Gaussian curvature.

Theorem 1 On a strictly convex surface Σ ⊂ R3 there exists a closed geodesic
whose length is less than or equal to one half the total mean curvature of Σ.

The proofs and applications are based on a Riemannian version of Gromov’s
non-squeezing theorem and classical integral geometry.

Given a convex surface Σ ⊂ R3 and a point q in the unit sphere S2 we denote by
UΣ(q) the perimeter of the orthogonal projection of Σ onto a plane perpendicular
to q. We obtain a function UΣ on the sphere which is clearly continuous, even, and
positive. Let us denote the minimum value for this function by uΣ. The analogue
of the non-squeezing theorem we wish to present is the following result.

Lemma 1 Let Σ ⊂ R3 be a strictly convex surface. There exists on Σ a closed
geodesic whose length is less than or equal to uΣ.

The theorem follows from this lemma and the following integral-geometric char-
acterization of the total mean curvature in terms of the average of the perimeter
function over the sphere.

Lemma 2 Let Σ ⊂ R3 be a strictly convex surface and let H := 1
2
(κ1 + κ2) be its

mean curvature function. We have that∫
Σ
HdΣ =

1

2π

∫
S2
UΣdω .
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For a proof of lemma 2 we refer the reader to pages 66 and 67 of the classic book
of Bonnesen and Fenchel [3].

1 The Birkhoff Invariant and Proof of Lemma 1

We begin by stating a slight variant of Birkhoff’s theorem on the existence of at
least one closed geodesic on a surface diffeomorphic to a sphere.

Let (S2, g) denote the sphere provided with an arbitrary Riemannian metric. If
f : S2 → R is a smooth function with only two critical points, we define

β(f) := max{length of f−1(c) : c ∈ R} .

We now define the Birkhoff invariant , β, of the metric g as the infimum over all such
smooth functions of the numbers β(f). Intuitively, β is the minimum length of a
closed string which may be slipped over the surface (see [2]). The Birkhoff invariant
is a Riemannian invariant of (S2, g) resembling a symplectic capacity.

Theorem [Birkhoff] There exists a closed geodesic on (S2, g) with length β.

Proof of lemma 1. If (S2, g) is isometrically embedded in R3 as a strictly convex
surface Σ we may compare β with β(hq), where hq is the height function of the convex
surface Σ in the direction of q ∈ S2. From this comparison it follows immediately
that β ≤ uΣ and hence lemma 1.

Using the Birkhoff invariant theorem 1 can be slightly sharpened to the following
result:

Theorem 1’ Let Σ be a strictly convex surface in R3. The Birkhoff invariant of Σ
is less than or equal to one half the total mean curvature of Σ.

Proof. Using lemma 2 and the fact that UΣ(q) ≥ uΣ we have that

∫
Σ
HdΣ =

1

2π

∫
S2
UΣdω ≥

1

2π

∫
S2
uΣdω = 2uΣ .

The theorem follows from the inequality β ≤ uΣ.

Remark. During the fall of 1994 Gelfand posed the following question in his semi-
nar:

Is it possible to localize symplectic invariants in the same way that the Gauss-
Bonnet theorem localizes the Euler characteristic?

Theorem 1’ arose from trying to understand and answer this question. Although
this result is by no means a localization of the Birkhoff invariant, it seems to be a
step in the right direction. Integral geometry can be used, much in the same way
it has been done here, to give an upper bound for the capacity of a convex set in
R2n in terms of local U(n)-invariants of its boundary. This result will be published
elsewhere.
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2 Applications to Zoll Surfaces

All proofs and original sources for the unpoved statments in this section may be
found in Besse’s book [1].

Definition A Zoll surface is a Riemannian metric on the 2-sphere whose geodesic
flow is periodic with minimal period 2π.

Here are some of the things that are known about Zoll surfaces:

• There are infinitely many Zoll surfaces which are not isometric to the unit
sphere (Zoll, Darboux).

• The area of a Zoll surface is equal to 4π (Weinstein).

• Given two Zoll surfaces there exists a diffeomorphism between the manifolds
of unit covectors which preserves the canonical contact forms. In particular,
the geodesic flows of any two Zoll surfaces are conjugate (Weinstein).

In this section we apply the previous results to the study of the extrinsic geometry
of Zoll surfaces. It seems that these are the first steps in this direction.

To state our first theorem we introduce some notations:
Let us agree to call an embedding e : S2 → R3 a Zoll embedding if the induced

metric is Zoll, and let us say that a convex subset of R3 is a cylinder if it is the
union of a family of parallel lines. By the perimeter of a cylinder we shall mean the
perimeter of the plane convex set obtained by intersecting the cylinder with a plane
perpendicular to its lines.

Theorem 2 (Non-squeezing) There does not exist any strictly convex Zoll em-
bedding of S2 into a cylinder of perimeter less than 2π.

Proof. If Σ ⊂ R3 is a convex surface, then it cannot be embedded in a cylinder of
perimeter less than uΣ. Now, by Birkhoff’s theorem, the β invariant of a convex
Zoll surface is 2π and therefore uΣ ≥ 2π.

Theorem 3 The total mean curvature of a strictly convex Zoll surface Σ is greater
than or equal to 4π. Moreover, equality holds if and only if Σ is the unit sphere.

Proof. For a convex Zoll surface Σ and for every point q in the unit sphere we have
that UΣ(q) ≥ uΣ ≥ 2π. Using lemma 2 this implies that the total mean curvature
is greater than or equal to 4π. It also implies that if the total mean curvature is
4π, then UΣ ≡ uΣ = 2π. We shall now show that this will hold if and only if all the
orthogonal projections of Σ are discs of radius 1.

Let us denote by aΣ(q) the area of the orthogonal projection of Σ onto the plane
perpendicular to q. Since UΣ(q) = 2π, the isoperimetric inequality implies that
aΣ(q) ≤ π for all q. Now Cauchy’s formula in integral geometry (see pages 47-50 in
[3]) states that

A(Σ) :=
∫

Σ
dΣ =

1

π

∫
S2
aΣdω .
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Since by Weinstein’s theorem the area of Σ equals 4π, we have that aΣ ≡ π. The
equality case in the isoperimetric inequality now implies that the projections of Σ
must be discs of radius 1.

The proof is concluded by invoking Fujiwara’s theorem [5] which states that if
the projections of a convex surface are discs, then the surface is a sphere.

The well known integral-geometric characterization of the total mean curvature
in terms of the average of the breadth function over the sphere allows us to prove
the following result:

Theorem 4 The extrinsic diameter of a strictly convex Zoll surface Σ is greater
than or equal to 2. Moreover, equality holds if and only if Σ is the unit sphere.

Lemma 3 The extrinsic diameter of a strictly convex surface Σ is greater than or
equal to 1

2π
times its total mean curvature. Moreover, equality holds if and only if Σ

is a surface of constant breadth.

Proof. Let BΣ(q) denote the distance between the two planes tangent to Σ and
orthogonal to q ∈ S2. The function q 7→ BΣ(q) is known as the breadth function,
and the integral-geometric representation we mentioned is as follows:∫

Σ
HdΣ =

1

2

∫
S2
BΣdω .

Noting that the diameter of Σ equals the maximum value of BΣ, we have that∫
Σ
HdΣ =

1

2

∫
S2
BΣdω ≤ 2π diam(Σ) .

The equality holds if and only if BΣ ≡ diam(Σ).
Theorem 4 follows immediately from lemma 3 and theorem 3.

3 The Camel Problem for Zoll Surfaces

We close the paper by posing an interesting problem in the extrinsic geometry of
Zoll surfaces which mimics a well known theorem in symplectic geometry (see [4]).

Let W (r) be the “holed wall” defined by

W (r) := {(x, y, z) ∈ R3 : y = 0, x2 + z2 > r} .

If r < 1, does there exist a continuous family of Zoll embeddings of S2 in R3\W (r)
joining unit round spheres on either side of the wall?

The non-squeezing theorem implies that the answer is no if we restrict to convex
Zoll embeddings.
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