The *p*-adic Finite Fourier Transform and Theta Functions

G. Van Steen

A polarization on an abelian variety A induces an isogeny between A and its dual variety \hat{A} . The kernel of this isogeny is a direct sum of two isomorphic subgroups. If A is an analytic torus over a non-archimedean valued field then it is possible to associate with each of these subgroups a basis for a corresponding space of theta functions, cf. [5], [6].

The relation between these bases is given by a finite Fourier transform. Similar results hold for complex abelian varieties, cf. [3].

The field k is algebraically closed and complete with respect to a non-archimedean absolute value. The residue field with respect to this absolute value is \overline{k} .

1 The finite Fourier transform

In this section we consider only finite abelian groups whose order is not divisible by $char(\overline{k})$.

For such a group A we denote by \hat{A} the group of k-characters of A, i.e. $\hat{A} = Hom(A, k^*)$. The vector space of k valued functions on A is denoted as V(A).

Lemma 1.1 Let A_1 and A_2 be finite abelian groups. Then $(\widehat{A_1 \times A_2})$ is isomorphic with $\widehat{A_1} \times \widehat{A_2}$.

Proof The map $\theta : \widehat{A_1} \times \widehat{A_2} \to \widehat{A_1} \times \widehat{A_2}$, defined by $\theta(\chi, \tau)(a_1, a_2) = \chi(a_1) \cdot \tau(a_2)$ is an isomorphism.

Bull. Belg. Math. Soc. 4 (1997), 539-548

Received by the editors January 1996.

Communicated by A. Verschoren.

¹⁹⁹¹ Mathematics Subject Classification : 14K25,14G20.

Key words and phrases : theta functions, p-adic.

The vectorspace V(A) is a banach space with respect to the norm

$$||f|| = max\left\{|f(a)| \mid a \in A\right\}$$

For each $a \in A$ the function $\delta_a \in V(A)$ is defined by $\delta_a(b) = 0$ if $a \neq b$ and $\delta_a(a) = 1$. The functions $(\delta_a)_{a \in A}$ form an orthonormal basis for V(A), i.e.

$$\begin{cases} ||\sum_{a \in A} \lambda_a \delta_a|| = max \left\{ |\lambda_a| \mid a \in A \right\} \\ ||\delta_a|| = 1 \text{ for all } a \in A \end{cases}$$

Definition 1.1 Let *m* be the order of the finite group *A*. The finite Fourier transform F_A on V(A) is the linear map $F_A : V(A) \to V(\widehat{A})$ defined by $F_A(\delta_a) = (1/\sqrt{m}) \sum_{\chi \in \widehat{A}} \chi(a) \delta_{\chi}$.

Proposition 1.2 Let A_1 and A_2 be finite abelian groups and let $F_1 = F_{A_1}$ and $F_2 = F_{A_2}$ be the finite Fourier transforms.

- 1. The map $\phi: V(A_1) \otimes V(A_2) \to V(A_1 \times A_2)$, defined by $\phi(\delta_{a_1} \otimes \delta_{a_2}) = \delta_{(a_1,a_2)}$ is an isomorphism. Furthermore $\phi(f_1 \otimes f_2)(a_1, a_2) = f_1(a_1)f_2(a_2)$.
- 2. Let $\hat{\theta}: V(\widehat{A_1 \times A_2}) \to V(\widehat{A_1} \times \widehat{A_2})$ be the linear map induced by the homomorphism $\theta: \widehat{A_1} \times \widehat{A_2} \to \widehat{A_1} \times \widehat{A_2}$, (cf 1.1). The following diagram is then commutative :

$$\begin{array}{cccc} V(A_1) \otimes V(A_2) & \stackrel{\phi}{\longrightarrow} & V(A_1 \times A_2) \\ F_1 \otimes F_2 & & & \downarrow \\ V(\widehat{A}_1) \otimes V(\widehat{A}_2) & \stackrel{\hat{\phi}}{\longrightarrow} V(\widehat{A}_1 \times \widehat{A}_2) \stackrel{\hat{\theta}^{-1}}{\longrightarrow} & V(\widehat{A}_1 \times A_2) \end{array}$$

Proof Straightforward calculation.

Proposition 1.3 The finite Fourier transform F_A is a unitary operator on V(A), *i.e.* $||F_A|| = 1$. Furthermore $F_A(f)(\tau) = (1/\sqrt{m}) \sum_{a \in A} f(a)\tau(a)$.

Proof For $f \in V(A)$ we have :

$$F_A(f)(\tau) = F_A(\sum_{a \in A} f(a)\delta_a)(\tau)$$

= $\sum_{a \in A} f(a) \left((1/\sqrt{m}) \sum_{\chi \in \widehat{A}} \chi(a)\delta_{\chi}(\tau) \right)$
= $(1/\sqrt{m}) \sum_{a \in A} f(a)\tau(a)$

The norm on F_A is defined by $||F_A|| = max \{ ||F_A(f)|| \mid f \in V(A) \text{ and } ||f|| \le 1 \}$. Hence

$$\begin{aligned} ||F_A|| &= max \left\{ ||F_A\left(\sum_{a \in A} \lambda_a \delta_a\right)|| \mid \lambda_a \in k \text{ and } |\lambda_a| \leq 1 \right\} \\ &= max \left\{ |(1/\sqrt{m})|.||\sum_{a \in A} \sum_{\chi \in \widehat{A}} (\lambda_a \chi(a))|| \mid 1 \geq |\lambda_a| \right\} \\ &\leq max \left\{ |\lambda_a \chi(a)| \mid \chi \in \widehat{A}, a \in A \text{ and } |\lambda_a| \leq 1 \right\} \\ &\leq 1 \quad \text{since } |\chi(a)| = 1 \text{ for all } \chi, a \end{aligned}$$

Since $||F_A(\delta_a)|| = 1$ we have $||F_A|| \ge 1$.

Consider now the special case that $A = \mathbb{Z}_m = \mathbb{Z}/m\mathbb{Z}$, (with $char(\overline{k}) \not| m$). The group k_m^* of points of order m in k^* is a cyclic group of order m. Let ξ be a fixed generator for k_m^* .

Lemma 1.4 The map $\chi : \mathbb{Z}_m \to \widehat{\mathbb{Z}_m}$ defined by $\chi(\overline{a})(\overline{b}) = \xi^{ab}$ is an isomorphism.

Proof Easy calculation.

We denote $\chi_{\overline{a}} = \chi(\overline{a})$.

Proposition 1.5 $(\chi_{\overline{a}})_{\overline{a}\in\mathbb{Z}_m}$ is an orthonormal basis for $V(\mathbb{Z}_m)$.

Proof The characters $(\chi_{\overline{a}})_{\overline{a} \in \mathbb{Z}_m}$ are linearly independent (standard algebra). Since $dim(V(\mathbb{Z}_m)) = m$ the characters form a basis.

Let $\tau = \sum_{\overline{a} \in \mathbb{Z}_m} \lambda_{\overline{a}} \chi_{\overline{a}}$ with $\lambda_{\overline{a}} \in k$. We have $||\tau|| = max \left\{ |\tau(\overline{b})| \mid \overline{b} \in \mathbb{Z}_m \right\}$. It follows that $||\chi_{\overline{a}}|| = 1$ and since

$$\begin{split} \sum_{b=0}^{m-1} \tau(\overline{b}) &= m\lambda_{\overline{0}} + \sum_{a=1}^{m-1} \lambda_{\overline{a}} \left(\sum_{b=0}^{m-1} \chi_{\overline{a}}(\overline{b}) \right) \\ &= m\lambda_{\overline{0}} + \sum_{a=1}^{m-1} \lambda_{\overline{a}} \left(\sum_{b=0}^{m-1} \xi^{ab} \right) \\ &= m\lambda_{\overline{0}} \end{split}$$

we find that

$$|\lambda_{\overline{0}}| = |m\lambda_{\overline{0}}| \le max \left\{ |\tau(\overline{b})| \mid \overline{b} \in \mathbb{Z}_m \right\} = ||\tau||$$

In a similar way we find that $|\lambda_{\overline{a}}| \leq ||\tau||$ for all $\overline{a} \in \mathbb{Z}_m$ and hence

$$max\left\{\left|\lambda_{\overline{a}}\right| \mid \overline{a} \in \mathbb{Z}_m\right\} \le \left|\left|\tau\right|\right|$$

On the other hand we have

$$||\tau|| \le \max\left\{ ||\lambda_{\overline{a}}\chi_{\overline{a}}|| \mid \overline{a} \in \mathbb{Z}_m \right\} = \max\left\{ |\lambda_{\overline{a}}| \mid \overline{a} \in \mathbb{Z}_m \right\}$$

It follows that the elements $\chi_{\overline{a}}$ are orthonormal.

Let $F_m: V(\mathbb{Z}_m) \to V(\widehat{\mathbb{Z}_m})$ be the finite Fourier transform.

Proposition 1.6 $F_m(f)(\tau) = (1/\sqrt{m}) \sum_{\overline{a} \in \mathbb{Z}_m} f(\overline{a}) \tau(\overline{a}).$

Proof Since $f = \sum_{\overline{a} \in \mathbb{Z}_m} f(\overline{a}) \delta_{\overline{a}}$ we have

$$F_m(f)(\tau) = \sum_{\overline{a} \in \mathbb{Z}_m} f(\overline{a}) F_m(\delta_{\overline{a}})(\tau) = (1/\sqrt{m}) \sum_{\overline{a} \in \mathbb{Z}_m} f(\overline{a}) \left(\sum_{\chi \in \widehat{\mathbb{Z}_m}} \chi(\overline{a}) \delta_{\chi}(\tau) \right) = (1/\sqrt{m}) \sum_{\overline{a} \in \mathbb{Z}_m} f(\overline{a}) \tau(\overline{a})$$

The isomorphism $\chi : \mathbb{Z}_m \to \widehat{\mathbb{Z}_m}$ induces an isomorphism $\psi : V(\widehat{\mathbb{Z}_m}) \to V(\mathbb{Z}_m)$. The composition

$$\psi \circ F_m : V(\mathbb{Z}_m) \to V(\widehat{\mathbb{Z}_m}) \to V(\mathbb{Z}_m)$$

is still denoted as F_m .

Proposition 1.7 $F_m(\delta_{\overline{a}}) = (1/\sqrt{m})\chi_{\overline{a}}$ and $F_m(\chi_{\overline{a}}) = \sqrt{m}\delta_{-\overline{a}}$

Proof For all $\overline{a} \in \mathbb{Z}_m$ is

$$F_m(\delta_{\overline{a}})(\overline{b}) = F_m(\delta_{\overline{a}})(\chi_{\overline{b}}) = (1/\sqrt{m}) \sum_{\overline{u} \in \mathbb{Z}_m} \chi_{\overline{b}}(\overline{u}) \delta_{\overline{a}}(\overline{u}) = (1/\sqrt{m}) \chi_{\overline{b}} = 1\sqrt{m} \chi_{\overline{a}}(\overline{b})$$

We also have

$$F_m(\chi_{\overline{a}})(\overline{b}) = (1/\sqrt{m}) \sum_{\overline{u} \in \mathbb{Z}_m} \chi_{\overline{b}}(\overline{u}) \chi_{\overline{a}}(\overline{u}) = (1/\sqrt{m}) \sum_{\overline{u} \in \mathbb{Z}_m} \chi_{\overline{a} + \overline{b}}(\overline{u})$$

This last sum equals 0 if $\overline{a} + \overline{b} \neq \overline{0}$ and equals m if $\overline{a} + \overline{b} = \overline{0}$. Hence $\sum_{\overline{u} \in \mathbb{Z}_m} \chi_{\overline{a} + \overline{b}}(\overline{u}) = \delta_{-\overline{a}}(\overline{b})$.

Corollary 1.8 $F_m^2(\delta_{\overline{a}}) = \delta_{-\overline{a}}$

As a consequence of Prop 1.2 the results for \mathbb{Z}_m can be generalized for arbitrary abelian groups.

Let A be an abelian group which is isomorphic with the product $\mathbb{Z}_{m_1} \times \ldots \times \mathbb{Z}_{m_r}$. (Where $char(\overline{k}) \not/m_i$.) Let ξ_i be a generator for the group $k_{m_i}^*$ and let $\chi^{(i)} : \mathbb{Z}_{m_i} \to \widehat{\mathbb{Z}_{m_i}}$ be the isomorphism defined by $\chi^{(i)}(\overline{a})(\overline{b}) = \xi_i^{ab}$. Let $\chi_{\overline{a}}^{(i)} = \chi^{(i)}(\overline{a})$. We have the finite Fourier transform

$$F: V(\mathbb{Z}_{m_1} \times \ldots \times \mathbb{Z}_{m_r}) \to V(\widehat{\mathbb{Z}_{m_1}} \times \ldots \times \widehat{\mathbb{Z}_{m_r}})$$

defined by

$$F(\delta_{(\overline{a_1},\ldots,\overline{a_r})}) = \sum_{\chi_i \in \widehat{\mathbb{Z}_{m_i}}} \chi_1(\overline{a_1}) \ldots \chi_r(\overline{a_r}) \delta_{(\chi_1,\ldots,\chi_r)}$$

The isomorphism $\chi : \mathbb{Z}_{m_1} \times \ldots \times \mathbb{Z}_{m_r} \to \widehat{\mathbb{Z}_{m_1}} \times \ldots \times \widehat{\mathbb{Z}_{m_r}}$, defined by

$$\chi(\overline{a_1},\ldots,\overline{a_r}) = (\chi_{\overline{a_1}}^{(1)},\ldots,\chi_{\overline{a_r}}^{(r)})$$

induces an isomorphism

$$\psi: V(\widehat{\mathbb{Z}_{m_1}} \times \ldots \times \widehat{\mathbb{Z}_{m_r}}) \to V(\mathbb{Z}_{m_1} \times \ldots \times \mathbb{Z}_{m_r})$$

The composition

$$\psi \circ F : V(\mathbb{Z}_{m_1} \times \ldots \times \mathbb{Z}_{m_r}) \to V(\mathbb{Z}_{m_1} \times \ldots \times \mathbb{Z}_{m_r})$$

is still denoted as F.

If
$$\overline{a} = (\overline{a_1}, \dots, \overline{a_r}) \in \mathbb{Z}_{m_1} \times \dots \times \mathbb{Z}_{m_r}$$
, define then $\chi_{\overline{a}} \in V(\widehat{\mathbb{Z}_{m_1}} \times \dots \times \widehat{\mathbb{Z}_{m_r}})$ by
 $\chi_{\overline{a}}(\overline{b}) = \chi_{\overline{a_1}}^{(1)}(\overline{b_1}) \dots \chi_{\overline{a_r}}^{(r)}(\overline{b_r})$

Proposition 1.9

1. $\left\{\delta_{\overline{a}} \mid \overline{a} \in \mathbb{Z}_{m_1} \times \ldots \times \mathbb{Z}_{m_r}\right\}$ and $\left\{\chi_{\overline{a}} \mid \overline{a} \in \mathbb{Z}_{m_1} \times \ldots \times \mathbb{Z}_{m_r}\right\}$ are both orthonormal bases for $V(\mathbb{Z}_{m_1} \times \ldots \times \mathbb{Z}_{m_r})$.

2.
$$F(\delta_{\overline{a}}) = (1/\sqrt{m})\chi_{\overline{a}}$$
 and $F(\chi_{\overline{a}}) = (\sqrt{m})\delta_{-\overline{a}}$ where $m = m_1 \dots m_r$.

Proof Similar calculation as for the \mathbb{Z}_m case.

2 The action of the theta group

Let A be a finite abelian group with order m such that $char(\overline{k}) \not| m$. The theta group $\mathcal{G}(A)$ is defined as $\mathcal{G}(A) = k^* \times A \times \widehat{A}$. The multiplication on $\mathcal{G}(A)$ is defined by

$$(\lambda, x, \chi).(\mu, y, \tau) = (\lambda \mu \tau(x), xy, \chi \tau)$$

Proposition 2.1 The sequence

$$1 \to k^* \xrightarrow{\nu} \mathcal{G}(A) \xrightarrow{\mu} A \to 1$$

with $\nu(\lambda) = (\lambda, 1, 1)$ and $\mu(\lambda, x, \chi) = x$ is exact.

Proof See [2].

The theta group acts on V(A) in the following way

$$f^{(\lambda,x,\chi)}(z) = \lambda \cdot \chi(z) f(xz)$$

In a similar way we have the theta group $\mathcal{G}(\hat{A}) = k^* \times \hat{A} \times A$ which acts on $V(\hat{A})$ by

$$g^{(\lambda,\chi,x)}(\tau) = \lambda \tau(x) g(\chi \tau)$$

(The bidual $\widehat{\widehat{A}}$ is canonically identified with A.)

Lemma 2.2 $\delta_b^{(\lambda,a,\chi)} = \lambda \chi(a^{-1}b) \delta_{a^{-1}b}$

Proof It is clear that $\delta_b(ax) = \delta_{a^{-1}b}(x)$ and hence

$$\delta_b^{(\lambda,a,\chi)}(x) = \lambda \chi(x) \delta_b(a^{-1}x) = \lambda \chi(a^{-1}b) \delta_{a^{-1}b}(x)$$

Proposition 2.3 The map $\alpha : \mathcal{G}(A) \to \mathcal{G}(\widehat{A})$ defined by

$$\alpha(\lambda, x, \chi) = (\lambda \chi^{-1}(x), \chi, x^{-1})$$

is an isomorphism and for all $f \in V(A)$ and $(\lambda, a, \chi) \in \mathcal{G}(A)$ we have

$$F(f^{(\lambda,a,\chi)}) = F(f)^{\alpha((\lambda,a,\chi))}$$

Proof It is clear that α is bijective and

$$\begin{aligned} \alpha\Big((\lambda, x, \chi)(\mu, y, \tau)\Big) &= \alpha(\lambda\mu\tau(x), xy, \chi\tau) \\ &= (\lambda\mu\tau(x)\tau^{-1}(x)\tau^{-1}(y)\chi^{-1}(xy), \chi\tau), xu) \\ &= (\lambda\chi^{-1}(x), \chi, x^{-1})(\mu\tau^{-1}(y), \tau, y) \\ &= \alpha(\lambda, x, \chi)\alpha(\mu, y, \tau) \end{aligned}$$

We have to prove the second assertion only for the basis functions δ_b , $(b \in A)$.

$$F\left(\delta_{b}^{(\lambda,a,\chi)}\right) = F\left(\lambda\chi(a^{-1}b)\delta_{a^{-1}b}\right)$$
$$= \lambda\chi(a^{-1}b)\sum_{\tau\in\widehat{A}}\tau(a^{-1}b)\delta_{\tau}$$

On the other hand we have

$$F(\delta_b)^{\alpha(\lambda,a,\chi)}(\nu) = \sum_{\tau \in \widehat{A}} \delta_{\tau}^{(\lambda\chi^{-1}(a),\chi,a^{-1})}(\nu)$$

= $\sum_{\tau \in \widehat{A}} \tau(b) \lambda \chi^{-1}(a) \nu(a^{-1}\delta_{\tau}(\chi\nu))$
= $\sum_{\tau \in \widehat{A}} \tau(b) \lambda \chi^{-1}(a) \chi^{-1}(a^{-1}) \tau(a^{-1}) \delta_{\chi^{-1}\tau}(\nu)$
= $\sum_{\tau' \in \widehat{A}} \lambda \chi(b) \tau'(b) \chi(a^{-1}) \tau'(a^{-1}) \delta_{\tau'}(\nu)$
= $\lambda \chi(a^{-1}b) \sum_{\tau' \in \widehat{A}} \tau(a^{-1}b) \delta_{\tau}(\nu)$

This proves the second assertion.

The following lemma will be used in the next section.

Lemma 2.4 Let $\nu : V(A) \to V(A)$ be a $\mathcal{G}(A)$ -automorphism of V(A). Then there exists a constant element $\rho \in k^*$ such that $\nu(f) = \rho f$ for all $f \in V(A)$.

Proof Let $\nu(\delta_a) = \sum_{b \in A} \gamma_{b,a} \delta_b$ with $\gamma_{b,a} \in k$.

$$\Rightarrow \nu \left(\delta_a^{(\lambda, x, \chi)} \right) = \lambda \chi(ax^{-1}) \sum_{b \in A} \gamma_{b, ax^{-1}} \delta_b$$

Furthermore we have

$$\left(\nu(\delta_a)\right)^{(\lambda,x,\chi)} = \sum_{b \in A} \lambda \gamma_{bx,a} \chi(b) \delta_b$$

Hence $\chi(ax^{-1})\gamma_{b,ax^{-1}} = \gamma_{bx,a}\chi(b)$ for all $a, b \in A$ and $\chi \in \widehat{A}$. It follows that

• $\gamma_{b,b}\chi(b) = \gamma_{a,a}$ for all $a, b \in A$ and $\chi \in \widehat{A}$.

$$\Rightarrow \forall a \in A : \gamma_{a,a} = \gamma_{1,1}$$

• $\gamma_{b,a}\chi() = \gamma b, a\chi(b)$ for all $a \neq b \in A$ and $\chi \in \widehat{A}$.

$$\Rightarrow \forall a \neq b : \gamma_{b,a} = 0$$

Let $\rho = \gamma_{1,1}$. It follows that $\nu(f) = \rho f$ for all $f \in V(A)$.

544

3 Theta functions on an analytic torus

Let $T = G/\Lambda$ be a g-dimensional analytic torus. So $G \cong (k^*)^g$ and $\Lambda \subset G$ is a free discrete subgroup of rank g.

Let H be the character group of G. So H is a free abelian group of rank g and each nowhere vanishing holomorphic function on G has a unique decomposition λu with $\lambda \in k^*$ and $u \in H$, (cf [1]).

The lattice Λ acts on $\mathcal{O}^*(G)$ in the following way :

$$\forall \gamma \in \Lambda, \alpha \in \mathcal{O}^*(G) : \alpha^{\gamma}(z) = \alpha(\gamma z)$$

A cocycle $\xi \in \mathcal{Z}^1(\Lambda, \mathcal{O}^*(G))$ has a canonical decomposition

$$\xi_{\gamma}(z) = c(\gamma) p(\gamma, \sigma(\gamma)) \sigma(\gamma)(z), \quad \gamma \in \Lambda$$

with $c \in Hom(\Lambda, k^*)$, $\sigma \in Hom(\Lambda, H)$ and $p : \Lambda \times H \to k^*$ a bihomomorphism such that $p^2(\gamma, \sigma(\delta)) = \sigma(\delta)(\gamma)$ and $p(\gamma, \sigma(\delta)) = p(\delta, \sigma(\gamma))$ for all $\gamma, \delta \in \Lambda$.

We assume that ξ is positive and non-degenerate. This means that σ is injective and $|p(\gamma, \sigma(\gamma))| < 1$ for all $\gamma \neq 1$.

Remark The fact that such a cocycle exists implies that T is analytically isomorphic with an abelian variety, (see [1]).

The cocycle ξ induces an analytic morphism $\lambda_{\xi} : G \to Hom(G, k^*)$ which is defined by $\lambda_{\xi}(x)(\gamma) = \sigma(\gamma)(x)$.

Let $\hat{G} = Hom(G, k^*)$ and let $\hat{\Lambda} = \{ u |_{\Lambda} \mid u \in H \}$. Then $\hat{G} \cong (k^*)^g$ and $\hat{\Lambda}$ is a lattice in \hat{G} .

The analytic torus $\hat{T} = \hat{G}/\hat{\Lambda}$ is called the dual torus of T and \hat{T} isomorphic with the dual abelian variety of T.

The morphism λ_{ξ} induces an isogeny $\lambda_{\overline{\xi}}: T \to \hat{T}$ of degree $[H:\sigma(\Lambda)]^2$. We assume that $char(\overline{k}) \not| [H:\sigma(\Lambda)]$. This means that $\lambda_{\overline{\xi}}$ is a separable isogeny. More details about $\lambda_{\overline{\xi}}$ can be found in [5] and [6].

If $x \in G$ determines an element $\overline{x} \in Ker(\lambda_{\overline{\xi}})$ then there exists a character $u_x \in H$ such that

$$\forall \gamma \in \Lambda : \sigma(\gamma)(x) = u_x(\gamma)$$

If $\gamma \in \Lambda$ then $\overline{\gamma} = 1$ and $u_{\gamma} = \sigma(\gamma)$.

The map $e: Ker(\lambda_{\overline{\xi}}) \times Ker(\lambda_{\overline{\xi}}) \to k^*$, defined by $e(\overline{x}, \overline{y}) = u_y(x)/u_x(y)$ is a nondegenerate, anti-symmetric pairing on $Ker(\lambda_{\overline{\xi}})$ and hence $Ker(\lambda_{\overline{\xi}}) = K_1 \oplus K_2$ where K_1 and K_2 are subgroups of order $[H:\sigma(\Lambda)]$ which are maximal with respect to the condition that e is trivial on K_i .

Let $\mathcal{L}(\xi)$ be the vectorspace of holomorphic theta functions of type ξ . An element $h \in \mathcal{L}(\xi)$ is a holomorphic function on G which satisfies the equation

$$\forall \gamma \in \Lambda : f(z) = \xi_{\gamma}(z)f(\gamma z)$$

The vectorspace $\mathcal{L}(\xi)$ has dimension $[H : \sigma(\Lambda)]$. Using the subgroups K_1 and K_2 it is possible to construct two bases for this vectorspace.

Let h_T be a fixed element in $\mathcal{L}(\xi)$ and let

$$\mathcal{G}(\xi) = \{ (\overline{x}, f) | \quad \overline{x} \in \operatorname{Ker} \lambda_{\overline{\xi}}, f \in \mathcal{M}(T), \quad \operatorname{div}(f) = \operatorname{div}(\frac{h_T(xz)}{h_T(z)}) \}$$

where $\mathcal{M}(T)$ is the space of meromorphic functions on T. $\mathcal{G}(\xi)$ is a group for the multiplication defined by $(\overline{x}, f).(\overline{y}, g) = (\overline{xy}, g(xz)f(z))$. Moreover:

$$\forall (\overline{x}, f), (\overline{y}, g) \in \mathcal{G}(\xi) : [(\overline{x}, f), (\overline{y}, g)] = e(\overline{x}, \overline{y})$$

The sequence

$$1 \to k^* \xrightarrow{\nu} \mathcal{G}(\xi) \xrightarrow{\mu} Ker(\lambda_{\overline{\xi}}) \to 1$$

with $\nu(\lambda) = (1, \lambda)$ and $\mu(\overline{x}, f) = \overline{x}$ is exact. Furthermore there exist subgroups K_1 and \tilde{K}_2 in $\mathcal{G}(\xi)$ such that $\mu : \tilde{K}_i \to K_i$ is an isomorphism.

If $\overline{x} \in K_i$ then there exists a unique element $\tilde{x} \in K_i$ such that $\mu(\tilde{x}) = \overline{x}$. It follows that each element in $\mathcal{G}(\xi)$ has two decompositions $\lambda_1 \tilde{x}_2 \tilde{x}_1 = \lambda_2 \tilde{x}_1 \tilde{x}_2$ with $\lambda_i \in k^*$ and $\tilde{x}_i \in \tilde{K}_i$. The relation between λ_1 and λ_2 is given by

$$\lambda_1 = e(\overline{x_1}, \overline{x_2})\lambda_2$$

Proposition 3.1 The maps $\alpha_i : \mathcal{G}(\xi) \to \mathcal{G}(K_i), (i = 1, 2), defined by$

$$\alpha_1(\lambda_1 \tilde{x}_2 \tilde{x}_1) = \left(\lambda_1, \overline{x_1}, e(\overline{x_2}, *)\right)$$
$$\alpha_2(\lambda_2 \tilde{x}_1 \tilde{x}_2) = \left(\lambda_2, \overline{x_2}, e(\overline{x_1}, *)\right)$$

are isomorphisms of groups.

Proof Since the pairing e is non-degenerate the map $K_2 \to \hat{K}_1$ defined by $\overline{x_2} \mapsto e(x_2, *)$ is an isomorphism. Hence α_1 is bijective. An easy calculation shows that α_1 is a homomorphism.

A similar argument holds for α_2 .

Since K_2 and \hat{K}_1 are isomorphic we have an isomorphism $\alpha : \mathcal{G}(\hat{K}_1) \to \mathcal{G}(K_2)$, (cf lemma 2.3).

Lemma 3.2 $\alpha_2^{-1} \circ \alpha \circ \alpha_1 = Id$

Proof Straightforward calculation.

Let $T_i = T/K_i$, (i = 1, 2). Then T_i is isomorphic with an analytic torus G_i/Λ_i and the canonical map $T \to T_i$ is induced by a surjective morphism $\psi_i : G \to G_i$. Furthermore there exists a cocycle $\xi_i \in \mathcal{Z}^1(\Lambda_i, \mathcal{O}^*(G_i))$ such that $\xi = \psi_i^*(\xi_i)$. The vectorspace $\mathcal{L}(\xi_i)$ of holomorphic theta functions on G_i is 1-dimensional.

Let $h_i \in \mathcal{L}(\xi_i)$ be a fixed non-zero element.

For each $\overline{a} \in K_1$ and $\overline{b} \in K_2$ we can define theta functions $h_{\overline{a}}$ and $h_{\overline{b}}$ by

$$h_{\overline{a}} = (h_2 \circ \psi_2)^{(\tilde{a})}$$
 and $h_{\overline{b}} = (h_1 \circ \psi_1)^{(\tilde{b})}$

We proved in [4] that $(h_{\overline{a}})_{\overline{a}\in K_1}$ and $(h_{\overline{b}})_{\overline{b}\in K_2}$ are bases for $\mathcal{L}(\xi)$. Using the results about the finite Fourier transform it is possible to give the relation between these bases. **Proposition 3.3** The maps $\beta_i : \mathcal{L}(\xi) \to V(K_i), (i = 1, 2), \text{ defined by } \beta_i(h_{\overline{x}}) = \delta_{\overline{x}^{-1}}$ are isomorphisms and

$$\forall h \in \mathcal{L}(\xi) \text{ and } (\overline{x}, f) \in \mathcal{G}(\xi) : \beta_i \left(h^{(\overline{x}, f)} \right) = \beta_i(h)^{\alpha_i(\overline{x}, f)}$$

If $F: V(K_1) \to V(\hat{K_1}) \cong V(K_2)$ is the finite Fourier transform then we have

$$\mathcal{L}(\xi) \xrightarrow{\beta_1} V(K_1) \xrightarrow{F} V(K_2) \xrightarrow{\beta_2^{-1}} \mathcal{L}(\xi)$$

and

$$\beta_2^{-1} \circ F \circ \beta_1(h_{\overline{a}}) = \left(1/\sqrt{[H:\sigma(\Lambda)]}\right) \sum_{\overline{b} \in K_2} e(\overline{b}, \overline{a}) h_{\overline{b}}$$

Proof For the proof of the first part we refer to [6] Furthermore we have

$$\begin{split} \beta_2^{-1} \circ F \circ \beta_1(h_{\overline{a}}) &= \beta_2^{-1} \circ F(\delta_{\overline{a}^{-1}}) = \left(1/\sqrt{[H:\sigma(\Lambda)]}\right) \beta_2^{-1} \left(\sum_{\overline{b} \in K_2} e(\overline{b}, \overline{a}^{-1}) \delta_{\overline{b}}\right) \\ &= \left(1/\sqrt{[H:\sigma(\Lambda)]}\right) \sum_{\overline{b} \in K_2} e(\overline{b}, \overline{a}^{-1}) h_{\overline{b}^{-1}} \\ &= \left(1/\sqrt{[H:\sigma(\Lambda)]}\right) \sum_{\overline{b} \in K_2} e(\overline{b}, \overline{a}) h_{\overline{b}} \end{split}$$

Since β_1 , F and β_2 are compatible with the actions of the theta groups we find that $V(K_1) \xrightarrow{\beta_1 \circ \beta_2^{-1} \circ F} V(K_1)$ is a $\mathcal{G}(K_1)$ -automorphism of $V(K_1)$ and hence there exists a constant element $\rho \in k^*$ such that $\beta_1 \circ \beta_2^{-1} \circ F(f) = \rho f$ for all $f \in V(K_1)$. It follows that $\beta_2^{-1} \circ F \circ \beta_1(h_{\overline{a}}) = \rho h_{\overline{a}}$ for all $\overline{a} \in K_1$. We can conclude :

Theorem 3.4 (Transformation formula)

$$\forall \overline{a} \in K_1 : \rho h_{\overline{a}} = \sum_{\overline{b} \in K_2} e(\overline{b}, \overline{a}) h_{\overline{b}}$$

Remark The bases $(h_{\overline{x}})_{\overline{x}\in K_i}$, (i = 1, 2), depend on the choices of the theta functions h_1 and h_2 . These theta functions are unique up to multiplication with a non-zero constant. It follows that it is not possible to get rid of the constant ρ in the transformation formula.

References

- Gerritzen L. On non-archimedean representations of abelian varieties. Math. Ann. 196, 323-346 (1972).
- [2] Mumford D. On the equations defining abelian varieties I. Inv. Math, 1, 287-354 (1966).
- [3] Opolka H. The finite Fourier transform and theta functions. Algebraic Algorithms and Error Correcting Codes (Grenoble 1985), 156-166 Lecture Notes in Comp. Sci. 229

- [4] Van Steen G. The isogeny theorem for non-archimedean theta functions. Bull.Belg Math. Soc.45,1-2 (series A), 251-259 (1993)
- [5] Van Steen G. A basis for the non-archimedean holomorphic theta functions. Bull. Belg. Math. Soc 1, 79-83 (1994)
- [6] Van Steen G. Non-archimedean analytic tori and theta functions Indag. Math 5(3), 365-374 (1994)

G. Van Steen Universiteit Antwerpen Departement Wiskunde en Informatica Groenenborgerlaan 171 2020 Antwerpen, Belgie