
The p-adic Finite Fourier Transform and Theta

Functions

G. Van Steen

A polarization on an abelian variety A induces an isogeny between A and its dual
variety Â. The kernel of this isogeny is a direct sum of two isomorphic subgroups.
If A is an analytic torus over a non-archimedean valued field then it is possible to
associate with each of these subgroups a basis for a corresponding space of theta
functions, cf. [5], [6].
The relation between these bases is given by a finite Fourier transform. Similar
results hold for complex abelian varieties, cf. [3].

The field k is algebraically closed and complete with respect to a non-archimedean
absolute value. The residue field with respect to this absolute value is k.

1 The finite Fourier transform

In this section we consider only finite abelian groups whose order is not divisible by
char(k).
For such a group A we denote by Â the group of k-characters of A, i.e. Â =
Hom(A, k∗). The vector space of k valued functions on A is denoted as V (A).

Lemma 1.1 Let A1 and A2 be finite abelian groups. Then ̂(A1 × A2) is isomorphic
with Â1 × Â2.

Proof The map θ : Â1× Â2 → Â1 × A2, defined by θ(χ, τ )(a1, a2) = χ(a1).τ (a2) is
an isomorphism. �
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The vectorspace V (A) is a banach space with respect to the norm

||f || = max
{
|f(a)|

∣∣∣ a ∈ A}
For each a ∈ A the function δa ∈ V (A) is defined by δa(b) = 0 if a 6= b and δa(a) = 1.
The functions (δa)a∈A form an orthonormal basis for V (A), i.e.{

||∑a∈A λaδa|| = max
{
|λa|

∣∣∣ a ∈ A}
||δa|| = 1 for all a ∈ A

Definition 1.1 Let m be the order of the finite group A.The finite Fourier trans-
form FA on V (A) is the linear map FA : V (A) → V (Â) defined by FA(δa) =
(1/
√
m)

∑
χ∈Â χ(a)δχ.

Proposition 1.2 Let A1 and A2 be finite abelian groups and let F1 = FA1 and
F2 = FA2 be the finite Fourier transforms.

1. The map φ : V (A1)⊗ V (A2) → V (A1 × A2), defined by φ(δa1 ⊗ δa2) = δ(a1,a2)

is an isomorphism. Furthermore φ(f1 ⊗ f2)(a1, a2) = f1(a1)f2(a2).

2. Let θ̂ : V (Â1 × A2)→ V (Â1× Â2) be the linear map induced by the homomor-

phism θ : Â1 × Â2 → Â1 × A2, (cf 1.1).
The following diagram is then commutative :

V (A1)⊗ V (A2)
φ−→ V (A1 ×A2)

F1⊗F2

y yFA1×A2

V (Â1)⊗ V (Â2)
φ̂→ V (Â1 × Â2)

θ̂−1

→ V (Â1 ×A2)

Proof Straightforward calculation. �

Proposition 1.3 The finite Fourier transform FA is a unitary operator on V (A),
i.e. ||FA|| = 1. Furthermore FA(f)(τ ) = (1/

√
m)

∑
a∈A f(a)τ (a).

Proof For f ∈ V (A) we have :

FA(f)(τ ) = FA(
∑
a∈A f(a)δa)(τ )

=
∑
a∈A f(a)

(
(1/
√
m)

∑
χ∈Â χ(a)δχ(τ )

)
= (1/

√
m)

∑
a∈A f(a)τ (a)

The norm on FA is defined by ||FA|| = max
{
||FA(f)||

∣∣∣ f ∈ V (A) and ||f || ≤ 1
}

.
Hence

||FA|| = max
{
||FA

(∑
a∈A λaδa

)
||
∣∣∣ λa ∈ k and |λa| ≤ 1

}
= max

{
|(1/√m)|.||∑a∈A

∑
χ∈Â(λaχ(a))||

∣∣∣ 1 ≥ |λa|
}

≤ max
{
|λaχ(a)|

∣∣∣ χ ∈ Â, a ∈ A and |λa| ≤ 1
}

≤ 1 since |χ(a)| = 1 for all χ, a

Since ||FA(δa)|| = 1 we have ||FA|| ≥ 1. �
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Consider now the special case that A = Zm = Z/mZ, (with char(k) 6 |m).
The group k∗m of points of order m in k∗ is a cyclic group of order m. Let ξ be a
fixed generator for k∗m.

Lemma 1.4 The map χ : Zm → Ẑm defined by χ(a)(b) = ξab is an isomorphism.

Proof Easy calculation. �

We denote χa = χ(a).

Proposition 1.5
(
χa
)
a∈Zm

is an orthonormal basis for V (Zm).

Proof The characters
(
χa
)
a∈Zm

are linearly independant (standard algebra). Since

dim
(
V (Zm)

)
= m the characters form a basis.

Let τ =
∑
a∈Zm λaχa with λa ∈ k.

We have ||τ || = max
{
|τ (b)|

∣∣∣ b ∈ Zm}. It follows that ||χa|| = 1 and since

∑m−1
b=0 τ (b) = mλ0 +

∑m−1
a=1 λa

(∑m−1
b=0 χa(b)

)
= mλ0 +

∑m−1
a=1 λa

(∑m−1
b=0 ξab

)
= mλ0

we find that

|λ0| = |mλ0| ≤ max
{
|τ (b)|

∣∣∣ b ∈ Zm} = ||τ ||

In a similar way we find that |λa| ≤ ||τ || for all a ∈ Zm and hence

max
{
|λa|

∣∣∣ a ∈ Zm} ≤ ||τ ||
On the other hand we have

||τ || ≤ max
{
||λaχa||

∣∣∣ a ∈ Zm} = max
{
|λa|

∣∣∣ a ∈ Zm}
It follows that the elements χa are orthonormal. �

Let Fm : V (Zm)→ V (Ẑm) be the finite Fourier transform.

Proposition 1.6 Fm(f)(τ ) = (1/
√
m)

∑
a∈Zm f(a)τ (a).

Proof Since f =
∑
a∈Zm f(a)δa we have

Fm(f)(τ ) =
∑
a∈Zm f(a)Fm(δa)(τ )

= (1/
√
m)

∑
a∈Zm f(a)

(∑
χ∈Ẑm χ(a)δχ(τ )

)
= (1/

√
m)

∑
a∈Zm f(a)τ (a)

�
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The isomorphism χ : Zm → Ẑm induces an isomorphism ψ : V (Ẑm)→ V (Zm). The
composition

ψ ◦ Fm : V (Zm)→ V (Ẑm)→ V (Zm)

is still denoted as Fm.

Proposition 1.7 Fm(δa) = (1/
√
m)χa and Fm(χa) =

√
mδ−a

Proof For all a ∈ Zm is

Fm(δa)(b) = Fm(δa)(χb)
= (1/

√
m)

∑
u∈Zm χb(u)δa(u)

= (1/
√
m)χb = 1

√
mχa(b)

We also have
Fm(χa)(b) = (1/

√
m)

∑
u∈Zm χb(u)χa(u)

= (1/
√
m)

∑
u∈Zm χa+b(u)

This last sum equals 0 if a + b 6= 0 and equals m if a + b = 0.
Hence

∑
u∈Zm χa+b(u) = δ−a(b). �

Corollary 1.8 F 2
m(δa) = δ−a

As a consequence of Prop 1.2 the results for Zm can be generalized for arbitrary
abelian groups.

Let A be an abelian group which is isomorphic with the product
Zm1 × . . .× Zmr .(Where char(k) 6 |mi.)
Let ξi be a generator for the group k∗mi and let χ(i) : Zmi → Ẑmi be the isomorphism

defined by χ(i)(a)(b) = ξabi . Let χ
(i)
a = χ(i)(a).

We have the finite Fourier transform

F : V (Zm1 × . . .× Zmr)→ V (Ẑm1 × . . .× Ẑmr)

defined by
F (δ(a1,...,ar)) =

∑
χi∈Ẑmi

χ1(a1) . . . χr(ar)δ(χ1,...,χr)

The isomorphism χ : Zm1 × . . .× Zmr → Ẑm1 × . . .× Ẑmr , defined by

χ(a1, . . . , ar) = (χ
(1)
a1
, . . . , χ

(r)
ar )

induces an isomorphism

ψ : V (Ẑm1 × . . .× Ẑmr)→ V (Zm1 × . . .× Zmr)

The composition

ψ ◦ F : V (Zm1 × . . .× Zmr)→ V (Zm1 × . . .× Zmr)

is still denoted as F .

If a = (a1, . . . , ar) ∈ Zm1 × . . .× Zmr , define then χa ∈ V (Ẑm1 × . . .× Ẑmr) by

χa(b) = χ
(1)
a1

(b1) . . . χ
(r)
ar (br)
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Proposition 1.9

1.
{
δa
∣∣∣ a ∈ Zm1 × . . .× Zmr

}
and

{
χa

∣∣∣ a ∈ Zm1 × . . .× Zmr
}

are both orthonor-

mal bases for V (Zm1 × . . .× Zmr).

2. F (δa) = (1/
√
m)χa and F (χa) = (

√
m)δ−a where m = m1 . . .mr.

Proof Similar calculation as for the Zm case. �

2 The action of the theta group

Let A be a finite abelian group with order m such that char(k) 6 |m.
The theta group G(A) is defined as G(A) = k∗×A×Â. The multiplication on G(A)
is defined by

(λ, x, χ).(µ, y, τ ) = (λµτ (x), xy, χτ )

Proposition 2.1 The sequence

1→ k∗
ν→ G(A)

µ→ A→ 1

with ν(λ) = (λ, 1, 1) and µ(λ, x, χ) = x is exact.

Proof See [2]. �

The theta group acts on V (A) in the following way

f (λ,x,χ)(z) = λ.χ(z)f(xz)

In a similar way we have the theta group G(Â) = k∗× Â×A which acts on V (Â) by

g(λ,χ,x)(τ ) = λτ (x)g(χτ )

(The bidual
̂̂
A is canonically identified with A.)

Lemma 2.2 δ
(λ,a,χ)
b = λχ(a−1b)δa−1b

Proof It is clear that δb(ax) = δa−1b(x) and hence

δ
(λ,a,χ)
b (x) = λχ(x)δb(a

−1x) = λχ(a−1b)δa−1b(x)

�

Proposition 2.3 The map α : G(A)→ G(Â) defined by

α(λ, x, χ) = (λχ−1(x), χ, x−1)

is an isomorphism and for all f ∈ V (A) and (λ, a, χ) ∈ G(A) we have

F (f (λ,a,χ)) = F (f)
α

(
(λ,a,χ)

)
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Proof It is clear that α is bijective and

α
(
(λ, x, χ)(µ, y, τ )

)
= α(λµτ (x), xy, χτ )

= (λµτ (x)τ−1(x)τ−1(y)χ−1(xy), χτ ), xu)
= (λχ−1(x), χ, x−1)(µτ−1(y), τ, y)
= α(λ, x, χ)α(µ, y, τ )

We have to prove the second assertion only for the basis functions δb, (b ∈ A).

F
(
δ

(λ,a,χ)
b

)
= F

(
λχ(a−1b)δa−1b

)
= λχ(a−1b)

∑
τ∈Â τ (a−1b)δτ

On the other hand we have

F (δb)
α(λ,a,χ)(ν) =

∑
τ∈Â δ

(λχ−1(a),χ,a−1)
τ (ν)

=
∑
τ∈Â τ (b)λχ−1(a)ν(a−1δτ (χν)

=
∑
τ∈Â τ (b)λχ−1(a)χ−1(a−1)τ (a−1)δχ−1τ (ν)

=
∑
τ ′∈Â λχ(b)τ ′(b)χ(a−1)τ ′(a−1)δτ ′(ν)

= λχ(a−1b)
∑
τ ′∈Â τ (a−1b)δτ(ν)

This proves the second assertion. �

The following lemma will be used in the next section.

Lemma 2.4 Let ν : V (A) → V (A) be a G(A)-automorphism of V (A). Then there
exists a constant element ρ ∈ k∗ such that ν(f) = ρf for all f ∈ V (A).

Proof Let ν(δa) =
∑
b∈A γb,aδb with γb,a ∈ k.

⇒ ν
(
δ(λ,x,χ)
a

)
= λχ(ax−1)

∑
b∈A

γb,ax−1δb

Furthermore we have (
ν(δa)

)(λ,x,χ)
=
∑
b∈A

λγbx,aχ(b)δb

Hence χ(ax−1)γb,ax−1 = γbx,aχ(b) for all a, b ∈ A and χ ∈ Â. It follows that

• γb,bχ(b) = γa,a for all a, b ∈ A and χ ∈ Â.

⇒ ∀a ∈ A : γa,a = γ1,1

• γb,aχ() = γb, aχ(b) for all a 6= b ∈ A and χ ∈ Â.

⇒ ∀a 6= b : γb,a = 0

Let ρ = γ1,1. It follows that ν(f) = ρf for all f ∈ V (A). �
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3 Theta functions on an analytic torus

Let T = G/Λ be a g-dimensional analytic torus. So G ∼= (k∗)g and Λ ⊂ G is a free
discrete subgroup of rank g.
Let H be the character group of G. So H is a free abelian group of rank g and each
nowhere vanishing holomorphic function on G has a unique decomposition λu with
λ ∈ k∗ and u ∈ H, (cf [1]).
The lattice Λ acts on O∗(G) in the following way :

∀γ ∈ Λ, α ∈ O∗(G) : αγ(z) = α(γz)

A cocycle ξ ∈ Z1
(
Λ,O∗(G)

)
has a canonical decomposition

ξγ(z) = c(γ)p
(
γ, σ(γ)

)
σ(γ)(z), γ ∈ Λ

with c ∈ Hom(Λ, k∗), σ ∈ Hom(Λ, H) and p : Λ×H → k∗ a bihomomorphism such

that p2
(
γ, σ(δ)

)
= σ(δ)(γ) and p

(
γ, σ(δ)

)
= p

(
δ, σ(γ)

)
for all γ, δ ∈ Λ.

We assume that ξ is positive and non-degenerate. This means that σ is injective
and |p

(
γ, σ(γ)

)
| < 1 for all γ 6= 1.

Remark The fact that such a cocycle exists implies that T is analytically iso-
morphic with an abelian variety, (see [1]).

The cocycle ξ induces an analytic morphism λξ : G → Hom(G, k∗) which is
defined by λξ(x)(γ) = σ(γ)(x).

Let Ĝ = Hom(G, k∗) and let Λ̂ =
{
u|Λ

∣∣∣ u ∈ H}. Then Ĝ ∼= (k∗)g and Λ̂ is a lattice

in Ĝ.
The analytic torus T̂ = Ĝ/Λ̂ is called the dual torus of T and T̂ isomorphic with
the dual abelian variety of T .

The morphism λξ induces an isogeny λξ : T → T̂ of degree [H : σ(Λ)]2. We assume

that char(k) 6 |[H : σ(Λ)]. This means that λξ is a separable isogeny.
More details about λξ can be found in [5] and [6].

If x ∈ G determines an element x ∈ Ker(λξ) then there exists a character ux ∈ H
such that

∀γ ∈ Λ : σ(γ)(x) = ux(γ)

If γ ∈ Λ then γ = 1 and uγ = σ(γ).

The map e : Ker(λξ) ×Ker(λξ) → k∗, defined by e(x, y) = uy(x)/ux(y) is a non-
degenerate, anti-symmetric pairing on Ker(λξ) and henceKer(λξ) = K1⊕K2 where
K1 and K2 are subgroups of order [H : σ(Λ)] which are maximal with respect to the
condition that e is trivial on Ki.
Let L(ξ) be the vectorspace of holomorphic theta functions of type ξ. An element
h ∈ L(ξ) is a holomorphic function on G which satisfies the equation

∀γ ∈ Λ : f(z) = ξγ(z)f(γz)

The vectorspace L(ξ) has dimension [H : σ(Λ)]. Using the subgroups K1 and K2 it
is possible to construct two bases for this vectorspace.
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Let hT be a fixed element in L(ξ) and let

G(ξ) = {(x, f)| x ∈ Kerλξ , f ∈M(T ), div(f) = div(
hT (xz)

hT (z)
)}

where M(T ) is the space of meromorphic functions on T .
G(ξ) is a group for the multiplication defined by (x, f).(y, g) = (xy, g(xz)f(z)).
Moreover:

∀(x, f), (y, g) ∈ G(ξ) : [(x, f), (y, g)] = e(x, y)

The sequence
1→ k∗

ν→ G(ξ)
µ→ Ker(λξ)→ 1

with ν(λ) = (1, λ) and µ(x, f) = x is exact. Furthermore there exist subgroups K̃1

and K̃2 in G(ξ) such that µ : K̃i → Ki is an isomorphism.
If x ∈ Ki then there exists a unique element x̃ ∈ K̃i such that µ(x̃) = x. It follows
that each element in G(ξ) has two decompositions λ1x̃2x̃1 = λ2x̃1x̃2 with λi ∈ k∗

and x̃i ∈ K̃i. The relation between λ1 and λ2 is given by

λ1 = e(x1, x2)λ2

Proposition 3.1 The maps αi : G(ξ) → G(Ki),(i = 1, 2), defined by

α1(λ1x̃2x̃1) =
(
λ1, x1, e(x2, ∗)

)
α2(λ2x̃1x̃2) =

(
λ2, x2, e(x1, ∗)

)
are isomorphisms of groups.

Proof Since the pairing e is non-degenerate the map K2 → K̂1 defined by
x2 7→ e(x2, ∗) is an isomorphism. Hence α1 is bijective. An easy calculation shows
that α1 is a homomorphism.
A similar argument holds for α2. �

Since K2 and K̂1 are isomorphic we have an isomorphism α : G(K̂1) → G(K2), (cf
lemma 2.3).

Lemma 3.2 α−1
2 ◦ α ◦ α1 = Id

Proof Straightforward calculation. �

Let Ti = T/Ki, (i = 1, 2). Then Ti is isomorphic with an analytic torus Gi/Λi

and the canonical map T → Ti is induced by a surjective morphism ψi : G → Gi.
Furthermore there exists a cocycle ξi ∈ Z1

(
Λi,O∗(Gi)

)
such that ξ = ψ∗i (ξi).

The vectorspace L(ξi) of holomorphic theta functions on Gi is 1-dimensional.
Let hi ∈ L(ξi) be a fixed non-zero element.

For each a ∈ K1 and b ∈ K2 we can define theta functions ha and hb by

ha =
(
h2 ◦ ψ2

)(ã)
and hb =

(
h1 ◦ ψ1

)(b̃)

We proved in [4] that
(
ha
)
a∈K1

and
(
hb
)
b∈K2

are bases for L(ξ).

Using the results about the finite Fourier transform it is possible to give the relation
between these bases.
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Proposition 3.3 The maps βi : L(ξ) → V (Ki), (i = 1, 2), defined by βi(hx) = δx−1

are isomorphisms and

∀h ∈ L(ξ) and (x, f) ∈ G(ξ) : βi
(
h(x,f)

)
= βi(h)αi(x,f)

If F : V (K1)→ V (K̂1) ∼= V (K2) is the finite Fourier transform then we have

L(ξ)
β1→ V (K1)

F→ V (K2)
β−1

2→ L(ξ)

and
β−1

2 ◦ F ◦ β1(ha) =
(
1/
√

[H : σ(Λ)]
) ∑
b∈K2

e(b, a)hb

Proof For the proof of the first part we refer to [6] Furthermore we have

β−1
2 ◦ F ◦ β1(ha) = β−1

2 ◦ F (δa−1) =
(
1/
√

[H : σ(Λ)]
)
β−1

2

(∑
b∈K2

e(b, a−1)δb

)
=
(
1/
√

[H : σ(Λ)]
)∑

b∈K2
e(b, a−1)h

b
−1

=
(
1/
√

[H : σ(Λ)]
)∑

b∈K2
e(b, a)hb

�

Since β1, F and β2 are compatible with the actions of the theta groups we find that

V (K1)
β1◦β−1

2 ◦F→ V (K1) is a G(K1)-automorphism of V (K1) and hence there exists a
constant element ρ ∈ k∗ such that β1 ◦ β−1

2 ◦ F (f) = ρf for all f ∈ V (K1).
It follows that β−1

2 ◦ F ◦ β1(ha) = ρha for all a ∈ K1. We can conclude :

Theorem 3.4 (Transformation formula)

∀a ∈ K1 : ρha =
∑
b∈K2

e(b, a)hb

Remark The bases
(
hx
)
x∈Ki

, (i = 1, 2), depend on the choices of the theta func-

tions h1 and h2. These theta functions are unique up to multiplication with a
non-zero constant. It follows that it is not possible to get rid of the constant ρ in
the transformation formula.
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