The p-adic Finite Fourier Transform and Theta Functions

G. Van Steen

A polarization on an abelian variety A induces an isogeny between A and its dual variety \hat{A}. The kernel of this isogeny is a direct sum of two isomorphic subgroups. If A is an analytic torus over a non-archimedean valued field then it is possible to associate with each of these subgroups a basis for a corresponding space of theta functions, cf. [5], [6].
The relation between these bases is given by a finite Fourier transform. Similar results hold for complex abelian varieties, cf. [3].

The field k is algebraically closed and complete with respect to a non-archimedean absolute value. The residue field with respect to this absolute value is \bar{k}.

1 The finite Fourier transform

In this section we consider only finite abelian groups whose order is not divisible by $\operatorname{char}(\bar{k})$.
For such a group A we denote by \widehat{A} the group of k-characters of A, i.e. $\widehat{A}=$ $\operatorname{Hom}\left(A, k^{*}\right)$. The vector space of k valued functions on A is denoted as $V(A)$.

Lemma 1.1 Let A_{1} and A_{2} be finite abelian groups. Then $\left(\widehat{A_{1} \times A_{2}}\right)$ is isomorphic with $\widehat{A_{1}} \times \widehat{A_{2}}$.

Proof The map $\theta: \widehat{A_{1}} \times \widehat{A_{2}} \rightarrow \widehat{A_{1} \times A_{2}}$, defined by $\theta(\chi, \tau)\left(a_{1}, a_{2}\right)=\chi\left(a_{1}\right) \cdot \tau\left(a_{2}\right)$ is an isomorphism.

[^0]The vectorspace $V(A)$ is a banach space with respect to the norm

$$
\|f\|=\max \{|f(a)| \mid a \in A\}
$$

For each $a \in A$ the function $\delta_{a} \in V(A)$ is defined by $\delta_{a}(b)=0$ if $a \neq b$ and $\delta_{a}(a)=1$. The functions $\left(\delta_{a}\right)_{a \in A}$ form an orthonormal basis for $V(A)$, i.e.

$$
\left\{\begin{array}{l}
\left\|\sum_{a \in A} \lambda_{a} \delta_{a}\right\|=\max \left\{\left|\lambda_{a}\right| \mid a \in A\right\} \\
\left\|\delta_{a}\right\|=1 \text { for all } a \in A
\end{array}\right.
$$

Definition 1.1 Let m be the order of the finite group A.The finite Fourier transform F_{A} on $V(A)$ is the linear map $F_{A}: V(A) \rightarrow V(\widehat{A})$ defined by $F_{A}\left(\delta_{a}\right)=$ $(1 / \sqrt{m}) \sum_{\chi \in \widehat{A}} \chi(a) \delta_{\chi}$.

Proposition 1.2 Let A_{1} and A_{2} be finite abelian groups and let $F_{1}=F_{A_{1}}$ and $F_{2}=F_{A_{2}}$ be the finite Fourier transforms.

1. The map $\phi: V\left(A_{1}\right) \otimes V\left(A_{2}\right) \rightarrow V\left(A_{1} \times A_{2}\right)$, defined by $\phi\left(\delta_{a_{1}} \otimes \delta_{a_{2}}\right)=\delta_{\left(a_{1}, a_{2}\right)}$ is an isomorphism. Furthermore $\phi\left(f_{1} \otimes f_{2}\right)\left(a_{1}, a_{2}\right)=f_{1}\left(a_{1}\right) f_{2}\left(a_{2}\right)$.
2. Let $\hat{\theta}: V\left(\widehat{A_{1} \times A_{2}}\right) \rightarrow V\left(\widehat{A}_{1} \times \widehat{A}_{2}\right)$ be the linear map induced by the homomorphism $\theta: \widehat{A}_{1} \times \widehat{A}_{2} \rightarrow \widehat{A_{1} \times A_{2}}$, (cf 1.1).
The following diagram is then commutative :

Proof Straightforward calculation.

Proposition 1.3 The finite Fourier transform F_{A} is a unitary operator on $V(A)$, i.e. $\left\|F_{A}\right\|=1$. Furthermore $F_{A}(f)(\tau)=(1 / \sqrt{m}) \sum_{a \in A} f(a) \tau(a)$.

Proof For $f \in V(A)$ we have :

$$
\begin{aligned}
F_{A}(f)(\tau) & =F_{A}\left(\sum_{a \in A} f(a) \delta_{a}\right)(\tau) \\
& =\sum_{a \in A} f(a)\left((1 / \sqrt{m}) \sum_{\chi \in \widehat{A}} \chi(a) \delta_{\chi}(\tau)\right) \\
& =(1 / \sqrt{m}) \sum_{a \in A} f(a) \tau(a)
\end{aligned}
$$

The norm on F_{A} is defined by $\left\|F_{A}\right\|=\max \left\{\left\|F_{A}(f)\right\| \mid f \in V(A)\right.$ and $\left.\|f\| \leq 1\right\}$. Hence

$$
\begin{aligned}
\left\|F_{A}\right\| & =\max \left\{\left\|F_{A}\left(\sum_{a \in A} \lambda_{a} \delta_{a}\right)\right\| \mid \lambda_{a} \in k \text { and }\left|\lambda_{a}\right| \leq 1\right\} \\
& =\max \left\{|(1 / \sqrt{m})| \cdot| | \sum_{a \in A} \sum_{\chi \in \widehat{A}}\left(\lambda_{a} \chi(a)\right)| |\left|1 \geq\left|\lambda_{a}\right|\right\}\right. \\
& \leq \max \left\{\left|\lambda_{a} \chi(a)\right| \mid \chi \in \widehat{A}, a \in A \text { and }\left|\lambda_{a}\right| \leq 1\right\} \\
& \leq 1 \text { since }|\chi(a)|=1 \text { for all } \chi, a
\end{aligned}
$$

Since $\left\|F_{A}\left(\delta_{a}\right)\right\|=1$ we have $\left\|F_{A}\right\| \geq 1$.

Consider now the special case that $A=\mathbb{Z}_{m}=\mathbb{Z} / m \mathbb{Z}$, (with $\left.\operatorname{char}(\bar{k}) \nmid m\right)$.
The group k_{m}^{*} of points of order m in k^{*} is a cyclic group of order m. Let ξ be a fixed generator for k_{m}^{*}.

Lemma 1.4 The map $\chi: \mathbb{Z}_{m} \rightarrow \widehat{\mathbb{Z}_{m}}$ defined by $\chi(\bar{a})(\bar{b})=\xi^{a b}$ is an isomorphism.

Proof Easy calculation.
We denote $\chi_{\bar{a}}=\chi(\bar{a})$.
Proposition $1.5\left(\chi_{\bar{a}}\right)_{\bar{a} \in \mathbb{Z}_{m}}$ is an orthonormal basis for $V\left(\mathbb{Z}_{m}\right)$.
Proof The characters $\left(\chi_{\bar{a}}\right)_{\bar{a} \in \mathbb{Z}_{m}}$ are linearly independant (standard algebra). Since $\operatorname{dim}\left(V\left(\mathbb{Z}_{m}\right)\right)=m$ the characters form a basis.
Let $\tau=\sum_{\bar{a} \in \mathbb{Z}_{m}} \lambda_{\bar{a}} \chi_{\bar{a}}$ with $\lambda_{\bar{a}} \in k$.
We have $\|\tau\|=\max \left\{|\tau(\bar{b})| \mid \bar{b} \in \mathbb{Z}_{m}\right\}$. It follows that $\left\|\chi_{\bar{a}}\right\|=1$ and since

$$
\begin{aligned}
\sum_{b=0}^{m-1} \tau(\bar{b}) & =m \lambda_{\overline{0}}+\sum_{a=1}^{m-1} \lambda_{\bar{a}}\left(\sum_{b=0}^{m-1} \chi_{\bar{a}}(\bar{b})\right) \\
& =m \lambda_{\overline{0}}+\sum_{a=1}^{m-1} \lambda_{\bar{a}}\left(\sum_{b=0}^{m-1} \xi^{a b}\right) \\
& =m \lambda_{\overline{0}}
\end{aligned}
$$

we find that

$$
\left|\lambda_{\overline{0}}\right|=\left|m \lambda_{\overline{0}}\right| \leq \max \left\{|\tau(\bar{b})| \mid \bar{b} \in \mathbb{Z}_{m}\right\}=\|\tau\|
$$

In a similar way we find that $\left|\lambda_{\bar{a}}\right| \leq\|\tau\|$ for all $\bar{a} \in \mathbb{Z}_{m}$ and hence

$$
\max \left\{\left|\lambda_{\bar{a}}\right| \mid \bar{a} \in \mathbb{Z}_{m}\right\} \leq\|\tau\|
$$

On the other hand we have

$$
\|\tau\| \leq \max \left\{\left\|\lambda_{\bar{a}} \chi_{\bar{a}}\right\| \mid \bar{a} \in \mathbb{Z}_{m}\right\}=\max \left\{\left|\lambda_{\bar{a}}\right| \mid \bar{a} \in \mathbb{Z}_{m}\right\}
$$

It follows that the elements $\chi_{\bar{a}}$ are orthonormal.

Let $F_{m}: V\left(\mathbb{Z}_{m}\right) \rightarrow V\left(\widehat{\mathbb{Z}_{m}}\right)$ be the finite Fourier transform.
Proposition $1.6 F_{m}(f)(\tau)=(1 / \sqrt{m}) \sum_{\bar{a} \in \mathbb{Z}_{m}} f(\bar{a}) \tau(\bar{a})$.
Proof Since $f=\sum_{\bar{a} \in \mathbb{Z}_{m}} f(\bar{a}) \delta_{\bar{a}}$ we have

$$
\begin{aligned}
F_{m}(f)(\tau) & =\sum_{\bar{a} \in \mathbb{Z}_{m}} f(\bar{a}) F_{m}\left(\delta_{\bar{a}}\right)(\tau) \\
& =(1 / \sqrt{m}) \sum_{\bar{a} \in \mathbb{Z}_{m}} f(\bar{a})\left(\sum_{\chi \in \widehat{\mathbb{Z}_{m}}} \chi(\bar{a}) \delta_{\chi}(\tau)\right) \\
& =(1 / \sqrt{m}) \sum_{\bar{a} \in \mathbb{Z}_{m}} f(\bar{a}) \tau(\bar{a})
\end{aligned}
$$

The isomorphism $\chi: \mathbb{Z}_{m} \rightarrow \widehat{\mathbb{Z}_{m}}$ induces an isomorphism $\psi: V\left(\widehat{\mathbb{Z}_{m}}\right) \rightarrow V\left(\mathbb{Z}_{m}\right)$. The composition

$$
\psi \circ F_{m}: V\left(\mathbb{Z}_{m}\right) \rightarrow V\left(\widehat{\mathbb{Z}_{m}}\right) \rightarrow V\left(\mathbb{Z}_{m}\right)
$$

is still denoted as F_{m}.
Proposition 1.7 $F_{m}\left(\delta_{\bar{a}}\right)=(1 / \sqrt{m}) \chi_{\bar{a}}$ and $F_{m}\left(\chi_{\bar{a}}\right)=\sqrt{m} \delta_{-\bar{a}}$
Proof For all $\bar{a} \in \mathbb{Z}_{m}$ is

$$
\begin{aligned}
F_{m}\left(\delta_{\bar{a}}\right)(\bar{b}) & =F_{m}\left(\delta_{\bar{a}}\right)\left(\chi_{\bar{b}}\right) \\
& =(1 / \sqrt{m}) \sum_{\bar{u} \in \mathbb{Z}_{m}} \chi_{\bar{b}}(\bar{u}) \delta_{\bar{a}}(\bar{u}) \\
& =(1 / \sqrt{m}) \chi_{\bar{b}}=1 \sqrt{m} \chi_{\bar{a}}(\bar{b})
\end{aligned}
$$

We also have

$$
\begin{aligned}
F_{m}\left(\chi_{\bar{a}}\right)(\bar{b}) & =(1 / \sqrt{m}) \sum_{\bar{u} \in \mathbb{Z}_{m}} \chi_{\bar{b}}(\bar{u}) \chi_{\bar{a}}(\bar{u}) \\
& =(1 / \sqrt{m}) \sum_{\bar{u} \in \mathbb{Z}_{m}} \chi_{\bar{a}+\bar{b}}(\bar{u})
\end{aligned}
$$

This last sum equals 0 if $\bar{a}+\bar{b} \neq \overline{0}$ and equals m if $\bar{a}+\bar{b}=\overline{0}$.
Hence $\sum_{\bar{u} \in \mathbb{Z}_{m}} \chi_{\bar{a}+\bar{b}}(\bar{u})=\delta_{-\bar{a}}(\bar{b})$.
Corollary $1.8 F_{m}^{2}\left(\delta_{\bar{a}}\right)=\delta_{-\bar{a}}$

As a consequence of Prop 1.2 the results for \mathbb{Z}_{m} can be generalized for arbitrary abelian groups.
Let A be an abelian group which is isomorphic with the product $\mathbb{Z}_{m_{1}} \times \ldots \times \mathbb{Z}_{m_{r}}$. (Where $\operatorname{char}(\bar{k}) \nmid m_{i}$.)
Let ξ_{i} be a generator for the group $k_{m_{i}}^{*}$ and let $\chi^{(i)}: \mathbb{Z}_{m_{i}} \rightarrow \widehat{\mathbb{Z}_{m_{i}}}$ be the isomorphism defined by $\chi^{(i)}(\bar{a})(\bar{b})=\xi_{i}^{a b}$. Let $\chi_{\bar{a}}^{(i)}=\chi^{(i)}(\bar{a})$.
We have the finite Fourier transform

$$
F: V\left(\mathbb{Z}_{m_{1}} \times \ldots \times \mathbb{Z}_{m_{r}}\right) \rightarrow V\left(\widehat{\mathbb{Z}_{m_{1}}} \times \ldots \times \widehat{\mathbb{Z}_{m_{r}}}\right)
$$

defined by

$$
F\left(\delta_{\left(\overline{a_{1}}, \ldots, \overline{a_{r}}\right)}\right)=\sum_{\chi_{i} \in \widehat{\mathbb{Z}_{m_{i}}}} \chi_{1}\left(\overline{a_{1}}\right) \ldots \chi_{r}\left(\overline{a_{r}}\right) \delta_{\left(\chi_{1}, \ldots, \chi_{r}\right)}
$$

The isomorphism $\chi: \mathbb{Z}_{m_{1}} \times \ldots \times \mathbb{Z}_{m_{r}} \rightarrow \widehat{\mathbb{Z}_{m_{1}}} \times \ldots \times \widehat{\mathbb{Z}_{m_{r}}}$, defined by

$$
\chi\left(\overline{a_{1}}, \ldots, \overline{a_{r}}\right)=\left(\chi \frac{(1)}{\bar{a}_{1}}, \ldots, \chi \overline{a_{r}}\right)
$$

induces an isomorphism

$$
\psi: V\left(\widehat{\mathbb{Z}_{m_{1}}} \times \ldots \times \widehat{\mathbb{Z}_{m_{r}}}\right) \rightarrow V\left(\mathbb{Z}_{m_{1}} \times \ldots \times \mathbb{Z}_{m_{r}}\right)
$$

The composition

$$
\psi \circ F: V\left(\mathbb{Z}_{m_{1}} \times \ldots \times \mathbb{Z}_{m_{r}}\right) \rightarrow V\left(\mathbb{Z}_{m_{1}} \times \ldots \times \mathbb{Z}_{m_{r}}\right)
$$

is still denoted as F.
If $\bar{a}=\left(\overline{a_{1}}, \ldots, \overline{a_{r}}\right) \in \mathbb{Z}_{m_{1}} \times \ldots \times \mathbb{Z}_{m_{r}}$, define then $\chi_{\bar{a}} \in V\left(\widehat{\mathbb{Z}_{m_{1}}} \times \ldots \times \widehat{\mathbb{Z}_{m_{r}}}\right)$ by

$$
\chi_{\bar{a}}(\bar{b})=\chi_{\bar{a}_{1}}^{(1)}\left(\bar{b}_{1}\right) \ldots \chi_{\bar{a}_{r}}^{(r)}\left(\bar{b}_{r}\right)
$$

Proposition 1.9

1. $\left\{\delta_{\bar{a}} \mid \bar{a} \in \mathbb{Z}_{m_{1}} \times \ldots \times \mathbb{Z}_{m_{r}}\right\}$ and $\left\{\chi_{\bar{a}} \mid \bar{a} \in \mathbb{Z}_{m_{1}} \times \ldots \times \mathbb{Z}_{m_{r}}\right\}$ are both orthonormal bases for $V\left(\mathbb{Z}_{m_{1}} \times \ldots \times \mathbb{Z}_{m_{r}}\right)$.
2. $F\left(\delta_{\bar{a}}\right)=(1 / \sqrt{m}) \chi_{\bar{a}}$ and $F\left(\chi_{\bar{a}}\right)=(\sqrt{m}) \delta_{-\bar{a}}$ where $m=m_{1} \ldots m_{r}$.

Proof Similar calculation as for the \mathbb{Z}_{m} case.

2 The action of the theta group

Let A be a finite abelian group with order m such that $\operatorname{char}(\bar{k}) \nmid m$.
The theta group $\mathcal{G}(A)$ is defined as $\mathcal{G}(A)=k^{*} \times A \times \widehat{A}$. The multiplication on $\mathcal{G}(A)$ is defined by

$$
(\lambda, x, \chi) \cdot(\mu, y, \tau)=(\lambda \mu \tau(x), x y, \chi \tau)
$$

Proposition 2.1 The sequence

$$
1 \rightarrow k^{*} \xrightarrow{\nu} \mathcal{G}(A) \xrightarrow{\mu} A \rightarrow 1
$$

with $\nu(\lambda)=(\lambda, 1,1)$ and $\mu(\lambda, x, \chi)=x$ is exact.
Proof See [2].
The theta group acts on $V(A)$ in the following way

$$
f^{(\lambda, x, \chi)}(z)=\lambda \cdot \chi(z) f(x z)
$$

In a similar way we have the theta group $\mathcal{G}(\widehat{A})=k^{*} \times \widehat{A} \times A$ which acts on $V(\widehat{A})$ by

$$
g^{(\lambda, \chi, x)}(\tau)=\lambda \tau(x) g(\chi \tau)
$$

(The bidual $\widehat{\hat{A}}$ is canonically identified with A.)

Lemma $2.2 \delta_{b}^{(\lambda, a, \chi)}=\lambda \chi\left(a^{-1} b\right) \delta_{a^{-1} b}$
Proof It is clear that $\delta_{b}(a x)=\delta_{a^{-1} b}(x)$ and hence

$$
\delta_{b}^{(\lambda, a, \chi)}(x)=\lambda \chi(x) \delta_{b}\left(a^{-1} x\right)=\lambda \chi\left(a^{-1} b\right) \delta_{a^{-1} b}(x)
$$

Proposition 2.3 The map $\alpha: \mathcal{G}(A) \rightarrow \mathcal{G}(\widehat{A})$ defined by

$$
\alpha(\lambda, x, \chi)=\left(\lambda \chi^{-1}(x), \chi, x^{-1}\right)
$$

is an isomorphism and for all $f \in V(A)$ and $(\lambda, a, \chi) \in \mathcal{G}(A)$ we have

$$
F\left(f^{(\lambda, a, \chi)}\right)=F(f)^{\alpha((\lambda, a, \chi))}
$$

Proof It is clear that α is bijective and

$$
\begin{aligned}
\alpha((\lambda, x, \chi)(\mu, y, \tau)) & =\alpha(\lambda \mu \tau(x), x y, \chi \tau) \\
& \left.=\left(\lambda \mu \tau(x) \tau^{-1}(x) \tau^{-1}(y) \chi^{-1}(x y), \chi \tau\right), x u\right) \\
& =\left(\lambda \chi^{-1}(x), \chi, x^{-1}\right)\left(\mu \tau^{-1}(y), \tau, y\right) \\
& =\alpha(\lambda, x, \chi) \alpha(\mu, y, \tau)
\end{aligned}
$$

We have to prove the second assertion only for the basis functions $\delta_{b},(b \in A)$.

$$
\begin{aligned}
F\left(\delta_{b}^{(\lambda, a, \chi)}\right) & =F\left(\lambda \chi\left(a^{-1} b\right) \delta_{a^{-1} b}\right) \\
& =\lambda \chi\left(a^{-1} b\right) \sum_{\tau \in \widehat{A}} \tau\left(a^{-1} b\right) \delta_{\tau}
\end{aligned}
$$

On the other hand we have

$$
\begin{aligned}
F\left(\delta_{b}\right)^{\alpha(\lambda, a, \chi)}(\nu) & =\sum_{\tau \in \widehat{A}} \delta_{\tau}^{\left(\lambda \chi^{-1}(a), \chi, a^{-1}\right)}(\nu) \\
& =\sum_{\tau \in \widehat{A}} \tau(b) \lambda \chi^{-1}(a) \nu\left(a^{-1} \delta_{\tau}(\chi \nu)\right. \\
& =\sum_{\tau \in \widehat{A}} \tau(b) \lambda \chi^{-1}(a) \chi^{-1}\left(a^{-1}\right) \tau\left(a^{-1}\right) \delta_{\chi^{-1} \tau}(\nu) \\
& =\sum_{\tau^{\prime} \in \widehat{A}} \lambda \chi(b) \tau^{\prime}(b) \chi\left(a^{-1}\right) \tau^{\prime}\left(a^{-1}\right) \delta_{\tau^{\prime}}(\nu) \\
& =\lambda \chi\left(a^{-1} b\right) \sum_{\tau^{\prime} \in \widehat{A}} \tau\left(a^{-1} b\right) \delta_{\tau}(\nu)
\end{aligned}
$$

This proves the second assertion.

The following lemma will be used in the next section.
Lemma 2.4 Let $\nu: V(A) \rightarrow V(A)$ be a $\mathcal{G}(A)$-automorphism of $V(A)$. Then there exists a constant element $\rho \in k^{*}$ such that $\nu(f)=\rho f$ for all $f \in V(A)$.

Proof Let $\nu\left(\delta_{a}\right)=\sum_{b \in A} \gamma_{b, a} \delta_{b}$ with $\gamma_{b, a} \in k$.

$$
\Rightarrow \nu\left(\delta_{a}^{(\lambda, x, \chi)}\right)=\lambda \chi\left(a x^{-1}\right) \sum_{b \in A} \gamma_{b, a x^{-1}} \delta_{b}
$$

Furthermore we have

$$
\left(\nu\left(\delta_{a}\right)\right)^{(\lambda, x, \chi)}=\sum_{b \in A} \lambda \gamma_{b x, a} \chi(b) \delta_{b}
$$

Hence $\chi\left(a x^{-1}\right) \gamma_{b, a x^{-1}}=\gamma_{b x, a} \chi(b)$ for all $a, b \in A$ and $\chi \in \widehat{A}$. It follows that

- $\gamma_{b, b} \chi(b)=\gamma_{a, a}$ for all $a, b \in A$ and $\chi \in \widehat{A}$.

$$
\Rightarrow \forall a \in A: \gamma_{a, a}=\gamma_{1,1}
$$

- $\gamma_{b, a} \chi()=\gamma b, a \chi(b)$ for all $a \neq b \in A$ and $\chi \in \widehat{A}$.

$$
\Rightarrow \forall a \neq b: \gamma_{b, a}=0
$$

Let $\rho=\gamma_{1,1}$. It follows that $\nu(f)=\rho f$ for all $f \in V(A)$.

3 Theta functions on an analytic torus

Let $T=G / \Lambda$ be a g-dimensional analytic torus. So $G \cong\left(k^{*}\right)^{g}$ and $\Lambda \subset G$ is a free discrete subgroup of rank g.
Let H be the character group of G. So H is a free abelian group of rank g and each nowhere vanishing holomorphic function on G has a unique decomposition λu with $\lambda \in k^{*}$ and $u \in H,(\operatorname{cf}[1])$.
The lattice Λ acts on $\mathcal{O}^{*}(G)$ in the following way :

$$
\forall \gamma \in \Lambda, \alpha \in \mathcal{O}^{*}(G): \alpha^{\gamma}(z)=\alpha(\gamma z)
$$

A cocycle $\xi \in \mathcal{Z}^{1}\left(\Lambda, \mathcal{O}^{*}(G)\right)$ has a canonical decomposition

$$
\xi_{\gamma}(z)=c(\gamma) p(\gamma, \sigma(\gamma)) \sigma(\gamma)(z), \quad \gamma \in \Lambda
$$

with $c \in \operatorname{Hom}\left(\Lambda, k^{*}\right), \sigma \in \operatorname{Hom}(\Lambda, H)$ and $p: \Lambda \times H \rightarrow k^{*}$ a bihomomorphism such that $p^{2}(\gamma, \sigma(\delta))=\sigma(\delta)(\gamma)$ and $p(\gamma, \sigma(\delta))=p(\delta, \sigma(\gamma))$ for all $\gamma, \delta \in \Lambda$.
We assume that ξ is positive and non-degenerate. This means that σ is injective and $|p(\gamma, \sigma(\gamma))|<1$ for all $\gamma \neq 1$.
Remark The fact that such a cocycle exists implies that T is analytically isomorphic with an abelian variety, (see [1]).

The cocycle ξ induces an analytic morphism $\lambda_{\xi}: G \rightarrow \operatorname{Hom}\left(G, k^{*}\right)$ which is defined by $\lambda_{\xi}(x)(\gamma)=\sigma(\gamma)(x)$.
Let $\hat{G}=\operatorname{Hom}\left(G, k^{*}\right)$ and let $\hat{\Lambda}=\left\{\left.u\right|_{\Lambda} \mid u \in H\right\}$. Then $\hat{G} \cong\left(k^{*}\right)^{g}$ and $\hat{\Lambda}$ is a lattice in \hat{G}.
The analytic torus $\hat{T}=\hat{G} / \hat{\Lambda}$ is called the dual torus of T and \hat{T} isomorphic with the dual abelian variety of T.
The morphism λ_{ξ} induces an isogeny $\lambda_{\bar{\xi}}: T \rightarrow \hat{T}$ of degree $[H: \sigma(\Lambda)]^{2}$. We assume that $\operatorname{char}(\bar{k}) X[H: \sigma(\Lambda)]$. This means that $\lambda_{\bar{\xi}}$ is a separable isogeny.
More details about $\lambda_{\bar{\xi}}$ can be found in [5] and [6].
If $x \in G$ determines an element $\bar{x} \in \operatorname{Ker}\left(\lambda_{\bar{\xi}}\right)$ then there exists a character $u_{x} \in H$ such that

$$
\forall \gamma \in \Lambda: \sigma(\gamma)(x)=u_{x}(\gamma)
$$

If $\gamma \in \Lambda$ then $\bar{\gamma}=1$ and $u_{\gamma}=\sigma(\gamma)$.
The map $e: \operatorname{Ker}\left(\lambda_{\bar{\xi}}\right) \times \operatorname{Ker}\left(\lambda_{\bar{\xi}}\right) \rightarrow k^{*}$, defined by $e(\bar{x}, \bar{y})=u_{y}(x) / u_{x}(y)$ is a nondegenerate, anti-symmetric pairing on $\operatorname{Ker}\left(\lambda_{\bar{\xi}}\right)$ and hence $\operatorname{Ker}\left(\lambda_{\bar{\xi}}\right)=K_{1} \oplus K_{2}$ where K_{1} and K_{2} are subgroups of order $[H: \sigma(\Lambda)]$ which are maximal with respect to the condition that e is trivial on K_{i}.
Let $\mathcal{L}(\xi)$ be the vectorspace of holomorphic theta functions of type ξ. An element $h \in \mathcal{L}(\xi)$ is a holomorphic function on G which satisfies the equation

$$
\forall \gamma \in \Lambda: f(z)=\xi_{\gamma}(z) f(\gamma z)
$$

The vectorspace $\mathcal{L}(\xi)$ has dimension $[H: \sigma(\Lambda)]$. Using the subgroups K_{1} and K_{2} it is possible to construct two bases for this vectorspace.

Let h_{T} be a fixed element in $\mathcal{L}(\xi)$ and let

$$
\mathcal{G}(\xi)=\left\{(\bar{x}, f) \mid \quad \bar{x} \in \operatorname{Ker} \lambda_{\bar{\xi}}, f \in \mathcal{M}(T), \quad \operatorname{div}(f)=\operatorname{div}\left(\frac{h_{T}(x z)}{h_{T}(z)}\right)\right\}
$$

where $\mathcal{M}(T)$ is the space of meromorphic functions on T.
$\mathcal{G}(\xi)$ is a group for the multiplication defined by $(\bar{x}, f) \cdot(\bar{y}, g)=(\overline{x y}, g(x z) f(z))$. Moreover:

$$
\forall(\bar{x}, f),(\bar{y}, g) \in \mathcal{G}(\xi):[(\bar{x}, f),(\bar{y}, g)]=e(\bar{x}, \bar{y})
$$

The sequence

$$
1 \rightarrow k^{*} \xrightarrow{\nu} \mathcal{G}(\xi) \xrightarrow{\mu} \operatorname{Ker}\left(\lambda_{\bar{\xi}}\right) \rightarrow 1
$$

with $\nu(\lambda)=(1, \lambda)$ and $\mu(\bar{x}, f)_{\tilde{K}}=\bar{x}$ is exact. Furthermore there exist subgroups \tilde{K}_{1} and \tilde{K}_{2} in $\mathcal{G}(\xi)$ such that $\mu: \tilde{K}_{i} \rightarrow K_{i}$ is an isomorphism.
If $\bar{x} \in K_{i}$ then there exists a unique element $\tilde{x} \in \tilde{K}_{i}$ such that $\mu(\tilde{x})=\bar{x}$. It follows that each element in $\mathcal{G}(\xi)$ has two decompositions $\lambda_{1} \tilde{x}_{2} \tilde{x}_{1}=\lambda_{2} \tilde{x}_{1} \tilde{x}_{2}$ with $\lambda_{i} \in k^{*}$ and $\tilde{x}_{i} \in \tilde{K}_{i}$. The relation between λ_{1} and λ_{2} is given by

$$
\lambda_{1}=e\left(\overline{x_{1}}, \overline{x_{2}}\right) \lambda_{2}
$$

Proposition 3.1 The maps $\alpha_{i}: \mathcal{G}(\xi) \rightarrow \mathcal{G}\left(K_{i}\right),(i=1,2)$, defined by

$$
\begin{aligned}
& \alpha_{1}\left(\lambda_{1} \tilde{x}_{2} \tilde{x}_{1}\right)=\left(\lambda_{1}, \overline{x_{1}}, e\left(\overline{x_{2}}, *\right)\right) \\
& \alpha_{2}\left(\lambda_{2} \tilde{x}_{1} \tilde{x}_{2}\right)=\left(\lambda_{2}, \overline{x_{2}}, e\left(\overline{x_{1}}, *\right)\right)
\end{aligned}
$$

are isomorphisms of groups.
Proof Since the pairing e is non-degenerate the map $K_{2} \rightarrow \hat{K}_{1}$ defined by $\overline{x_{2}} \mapsto e\left(x_{2}, *\right)$ is an isomorphism. Hence α_{1} is bijective. An easy calculation shows that α_{1} is a homomorphism.
A similar argument holds for α_{2}.
Since K_{2} and \hat{K}_{1} are isomorphic we have an isomorphism $\alpha: \mathcal{G}\left(\hat{K}_{1}\right) \rightarrow \mathcal{G}\left(K_{2}\right)$, (cf lemma 2.3).

Lemma 3.2 $\alpha_{2}^{-1} \circ \alpha \circ \alpha_{1}=I d$
Proof Straightforward calculation.
Let $T_{i}=T / K_{i},(i=1,2)$. Then T_{i} is isomorphic with an analytic torus G_{i} / Λ_{i} and the canonical map $T \rightarrow T_{i}$ is induced by a surjective morphism $\psi_{i}: G \rightarrow G_{i}$. Furthermore there exists a cocycle $\xi_{i} \in \mathcal{Z}^{1}\left(\Lambda_{i}, \mathcal{O}^{*}\left(G_{i}\right)\right)$ such that $\xi=\psi_{i}^{*}\left(\xi_{i}\right)$.
The vectorspace $\mathcal{L}\left(\xi_{i}\right)$ of holomorphic theta functions on G_{i} is 1-dimensional.
Let $h_{i} \in \mathcal{L}\left(\xi_{i}\right)$ be a fixed non-zero element.
For each $\bar{a} \in K_{1}$ and $\bar{b} \in K_{2}$ we can define theta functions $h_{\bar{a}}$ and $h_{\bar{b}}$ by

$$
h_{\bar{a}}=\left(h_{2} \circ \psi_{2}\right)^{(\tilde{a})} \text { and } h_{\bar{b}}=\left(h_{1} \circ \psi_{1}\right)^{(\tilde{b})}
$$

We proved in [4] that $\left(h_{\bar{a}}\right)_{\bar{a} \in K_{1}}$ and $\left(h_{\bar{b}}\right)_{\bar{b} \in K_{2}}$ are bases for $\mathcal{L}(\xi)$.
Using the results about the finite Fourier transform it is possible to give the relation between these bases.

Proposition 3.3 The maps $\beta_{i}: \mathcal{L}(\xi) \rightarrow V\left(K_{i}\right),(i=1,2)$, defined by $\beta_{i}\left(h_{\bar{x}}\right)=\delta_{\bar{x}^{-1}}$ are isomorphisms and

$$
\forall h \in \mathcal{L}(\xi) \text { and }(\bar{x}, f) \in \mathcal{G}(\xi): \beta_{i}\left(h^{(\bar{x}, f)}\right)=\beta_{i}(h)^{\alpha_{i}(\bar{x}, f)}
$$

If $F: V\left(K_{1}\right) \rightarrow V\left(\hat{K}_{1}\right) \cong V\left(K_{2}\right)$ is the finite Fourier transform then we have

$$
\mathcal{L}(\xi) \xrightarrow{\beta_{1}} V\left(K_{1}\right) \xrightarrow{F} V\left(K_{2}\right) \xrightarrow{\beta_{2}^{-1}} \mathcal{L}(\xi)
$$

and

$$
\beta_{2}^{-1} \circ F \circ \beta_{1}\left(h_{\bar{a}}\right)=(1 / \sqrt{[H: \sigma(\Lambda)]}) \sum_{\bar{b} \in K_{2}} e(\bar{b}, \bar{a}) h_{\bar{b}}
$$

Proof For the proof of the first part we refer to [6] Furthermore we have

$$
\begin{aligned}
\beta_{2}^{-1} \circ F \circ \beta_{1}\left(h_{\bar{a})}\right. & =\beta_{2}^{-1} \circ F\left(\delta_{\bar{a}^{-1}}\right)=(1 / \sqrt{[H: \sigma(\Lambda)]}) \beta_{2}^{-1}\left(\sum_{\bar{b} \in K_{2}} e\left(\bar{b}, \bar{a}^{-1}\right) \delta_{\bar{b}}\right) \\
& =(1 / \sqrt{[H: \sigma(\Lambda)]}) \sum_{\bar{b} \in K_{2}} e\left(\bar{b}, \bar{a}^{-1}\right) h_{\bar{b}^{-1}} \\
& =(1 / \sqrt{[H: \sigma(\Lambda)]}) \sum_{\bar{b} \in K_{2}} e(\bar{b}, \bar{a}) h_{\bar{b}}
\end{aligned}
$$

Since β_{1}, F and β_{2} are compatible with the actions of the theta groups we find that $V\left(K_{1}\right) \xrightarrow{\beta_{1} \circ \beta_{2}^{-1} \circ F} V\left(K_{1}\right)$ is a $\mathcal{G}\left(K_{1}\right)$-automorphism of $V\left(K_{1}\right)$ and hence there exists a constant element $\rho \in k^{*}$ such that $\beta_{1} \circ \beta_{2}^{-1} \circ F(f)=\rho f$ for all $f \in V\left(K_{1}\right)$. It follows that $\beta_{2}^{-1} \circ F \circ \beta_{1}\left(h_{\bar{a}}\right)=\rho h_{\bar{a}}$ for all $\bar{a} \in K_{1}$. We can conclude :

Theorem 3.4 (Transformation formula)

$$
\forall \bar{a} \in K_{1}: \rho h_{\bar{a}}=\sum_{\bar{b} \in K_{2}} e(\bar{b}, \bar{a}) h_{\bar{b}}
$$

Remark The bases $\left(h_{\bar{x}}\right)_{\bar{x} \in K_{i}},(i=1,2)$, depend on the choices of the theta functions h_{1} and h_{2}. These theta functions are unique up to multiplication with a non-zero constant. It follows that it is not possible to get rid of the constant ρ in the transformation formula.

References

[1] Gerritzen L. - On non-archimedean representations of abelian varieties. Math. Ann. 196, 323-346 (1972).
[2] Mumford D. - On the equations defining abelian varieties I. Inv. Math, 1, 287354 (1966).
[3] Opolka H. - The finite Fourier transform and theta functions. Algebraic Algorithms and Error Correcting Codes (Grenoble 1985), 156-166 Lecture Notes in Comp. Sci. 229
[4] Van Steen G. - The isogeny theorem for non-archimedean theta functions. Bull.Belg Math. Soc.45,1-2 (series A), 251-259 (1993)
[5] Van Steen G. - A basis for the non-archimedean holomorphic theta functions. Bull. Belg. Math. Soc 1, 79-83 (1994)
[6] Van Steen G. - Non-archimedean analytic tori and theta functions Indag. Math 5(3), 365-374 (1994)

G. Van Steen
Universiteit Antwerpen
Departement Wiskunde en Informatica
Groenenborgerlaan 171
2020 Antwerpen, Belgie

[^0]: Received by the editors January 1996.
 Communicated by A. Verschoren.
 1991 Mathematics Subject Classification : 14K25,14G20.
 Key words and phrases : theta functions, p-adic.

