The closeness of the range of a probability on a certain system of random events — an elementary proof

Vladimír Balek

Ivan Mizera

Abstract

An elementary combinatorial method is presented which can be used for proving the closeness of the range of a probability on specific systems, like the set of all linear or affine subsets of a Euclidean space.

The motivation for this note came from the second author's research in statistics: high breakdown point estimation in linear regression. By a probability distribution P, defined on the Borel σ -field of \mathbb{R}^p , a collection of regression design points is represented; then, a system \mathcal{V} of Borel subsets of \mathbb{R}^p is considered. Typical examples of \mathcal{V} are, for instance, the system \mathcal{V}_1 of all linear, or \mathcal{V}_2 of all affine proper subspaces of \mathbb{R}^p . The question (of some interest in statistical theory) is:

Is there an
$$E_0 \in \mathcal{V}$$
 such that $P(E_0) = \sup\{P(E) \colon E \in \mathcal{V}\}$? (1)

For some of \mathcal{V} , the existence of a desired E_0 can be established using that (a) \mathcal{V} is compact in an appropriate topology; (b) P is lower semicontinuous with respect to the same topology. The construction of the topology may be sometimes tedious; moreover the method does not work if, possibly, certain parts of \mathcal{V} are omitted, making \mathcal{V} noncompact. Also, a more general problem can be considered:

Is the range
$$\{P(E) \colon E \in \mathcal{V}\}$$
 closed? (2)

The positive answer to (2) implies the positive one to (1). The method outlined by (a) and (b) cannot answer (2) — we have only lower semicontinuity, not full continuity.

Bull. Belg. Math. Soc. 4 (1997), 621-624

Received by the editors November 1996.

Communicated by M. Hallin.

Nevertheless, an elementary method provides the desired answer, for general P and \mathcal{V} . The method does not require a topologization of \mathcal{V} , and it works also for various, possibly noncompact, subsets of \mathcal{V} . The main idea can be regarded as an extension of a simple fact that the probabilities of pairwise disjoint events cannot form a strictly increasing sequence. Linear subspaces are not disjoint; however, the intersection of two distinct ones with the same dimension is a subspace with a lower dimension. Iterating this process further, we arrive to the unique null-dimensional subspace. If, say, instead of linear subspaces the affine ones are considered, the method works in a similar way — only the terminal level is slightly different.

A well-known related property — to be found, for instance, in [1], Ch. II, Ex. 48–50 — says that the range $\{P(E): E \in S\}$ is closed for every probability space (Ω, S, P) . However, here the background is different: probabilities of general events can form an increasing sequence — this is not true in our setting.

Theorem. Let (Ω, S, P) be a probability space. If $A_0 \subseteq A_1 \subseteq \cdots \subseteq A_n$ are sets of events such that card $A_0 = 1$ and for every $k = 1, 2, \ldots, n$, the intersection of two distinct events from A_k belongs to A_{k-1} , then the set $\{P(E) : E \in A_n\}$ is closed.

Corollary. Under the assumptions of Theorem, (1) is true with $\mathcal{V} = \mathcal{A}_n$.

Applying Theorem for $\mathcal{V} = \mathcal{V}_1$, we set n = p - 1; \mathcal{A}_k consists of all proper subspaces of dimension less or equal to k. Note that $\mathcal{A}_n = \mathcal{V}_1$ and $\mathcal{A}_0 = \{\mathbf{0}\}$; the other assumptions hold as well. According to Theorem, the range of P on \mathcal{A}_n is closed and the supremum is attained. The cases of other \mathcal{V} are treated in an analogous way.

We shall call a system $\mathcal{A}_0, \mathcal{A}_1, \ldots, \mathcal{A}_n$ satisfying the assumptions of Theorem an *intersection system*. Suppose that \mathcal{B} is a set of events such that $\mathcal{B} \subseteq \mathcal{A}_n$. If $\mathcal{A}'_0, \mathcal{A}'_1, \ldots, \mathcal{A}'_{\nu}$ is another intersection system such that $\mathcal{B} \subseteq \mathcal{A}'_{\nu}$, we can form an intersection system $\mathcal{A}''_0, \mathcal{A}''_1, \ldots, \mathcal{A}''_m$ by taking consecutively $\mathcal{A}''_m = \mathcal{A}_n \cap \mathcal{A}'_{\nu}, \mathcal{A}''_{m-1} =$ $\mathcal{A}_{n-1} \cap \mathcal{A}'_{\nu-1}, \ldots$, identifying \mathcal{A}''_0 with the first set with cardinality 1 obtained in this process. As a result, we have $m \leq \min(n, \nu)$ and $\mathcal{B} \subseteq \mathcal{A}''_m$. The similar construction can be carried out with more than two intersection systems; if there is any intersection system $\mathcal{A}_0, \mathcal{A}_1, \ldots, \mathcal{A}_n$ such that $\mathcal{B} \subseteq \mathcal{A}_n$, then the intersection of all intersection systems with this property will be called the *intersection system generated by* \mathcal{B} . Note that for all k, the set \mathcal{A}_{k-1} contains exactly all pairwise intersections of events from \mathcal{A}_k . Hence if \mathcal{A}_k is finite, so is \mathcal{A}_{k-1} . If \mathcal{A}_k is (at most) countable, so is \mathcal{A}_{k-1} .

Let $1 \leq k \leq n$. An intersection system is said to satisfy a *finiteness condition at level* k, if any event from \mathcal{A}_{k-1} is a subset of at most a finite number of events from \mathcal{A}_k . Note that if the finiteness condition is satisfied at level k and \mathcal{A}_k is infinite, so is \mathcal{A}_{k-1} . As a consequence, an intersection system with infinite \mathcal{A}_n cannot satisfy the finiteness condition at all levels k = 1, 2, ..., n.

Lemma. Suppose that the intersection system $\mathcal{A}_0, \mathcal{A}_1, \ldots, \mathcal{A}_n$ generated by $\{E_1, E_2, \ldots\}$ satisfies the finiteness condition at levels $k = 2, \ldots, n$ and $\mathcal{A}_0 = \{\emptyset\}$. Then $\lim_{i\to\infty} P(E_i) = 0$.

Proof. By assumptions, $\mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_n$ are countably infinite. For any $F \in \mathcal{A}_k$, $k = 1, 2, \ldots, n$, let $\tilde{F} = F \setminus \bigcup \mathcal{A}_{k-1}$. Note that $\tilde{F} = F$ for $F \in \mathcal{A}_1$, since $\mathcal{A}_0 = \{\emptyset\}$.

For all k, the elements of $\{F \colon F \in \mathcal{A}_k\}$ are pairwise disjoint. Fix $\varepsilon > 0$. Pick $\mathcal{B}_1 \subseteq \mathcal{A}_1$ such that $\mathcal{A}_1 \smallsetminus \mathcal{B}_1$ is finite and

$$P\left(\bigcup_{F\in\mathcal{B}_1}F\right) = P\left(\bigcup_{F\in\mathcal{B}_1}\tilde{F}\right) = \sum_{F\in\mathcal{B}_1}P(\tilde{F}) \le \varepsilon.$$
(3)

Given \mathcal{B}_{k-1} , and assuming that $\mathcal{A}_{k-1} \setminus \mathcal{B}_{k-1}$ is finite, we construct inductively a set \mathcal{C}_k to be the set of all $F \in \mathcal{A}_k$ such that there is no $G \in \mathcal{A}_{k-1} \setminus \mathcal{B}_{k-1}$ which is a subset of F; then $\mathcal{B}_k \subseteq \mathcal{C}_k$ is picked in a way that $\mathcal{C}_k \setminus \mathcal{B}_k$ is finite and

$$P\left(\bigcup_{F\in\mathcal{B}_k}\tilde{F}\right) = \sum_{F\in\mathcal{B}_k} P(\tilde{F}) \le \varepsilon.$$
(4)

Since $\mathcal{A}_{k-1} \smallsetminus \mathcal{B}_{k-1}$ is finite, by the finiteness condition (at level k) also $\mathcal{A}_k \smallsetminus \mathcal{C}_k$ and hence $\mathcal{A}_k \smallsetminus \mathcal{B}_k$ are finite. Starting from (3), we proceed inductively, using (4):

$$P\left(\bigcup_{F\in\mathcal{B}_{k}}F\right) \leq P\left(\bigcup_{F\in\mathcal{B}_{k}}\left(F\smallsetminus\bigcup_{G\in\mathcal{B}_{k-1}}G\right)\cup\bigcup_{G\in\mathcal{B}_{k-1}}G\right)$$
$$=P\left(\bigcup_{F\in\mathcal{B}_{k}}\left(F\smallsetminus\bigcup_{G\in\mathcal{A}_{k-1}}G\right)\right)+P\left(\bigcup_{G\in\mathcal{B}_{k-1}}G\right)$$
$$=P\left(\bigcup_{F\in\mathcal{B}_{k}}\tilde{F}\right)+P\left(\bigcup_{G\in\mathcal{B}_{k-1}}G\right)\leq\varepsilon+(k-1)\varepsilon=k\varepsilon,$$
(5)

the first equality due to the fact that $\mathcal{B}_k \subseteq \mathcal{C}_k$. Since (5) holds also for k = n and ε was arbitrary, the statement follows: given $\delta > 0$, there is only a finite number of E_i for which

$$P(E_i) \le P\left(\bigcup_{E_i \in \mathcal{B}_n} E_i\right) \le \delta$$

does not hold.

Proof of Theorem. The statement holds if \mathcal{A}_n is finite. Suppose that \mathcal{A}_n is infinite. Fix a sequence E_1, E_2, \ldots of events from \mathcal{A}_n such that $P(E_i)$ is convergent. Proving that there is an $E_0 \in \mathcal{B}$ such that $\lim_{i\to\infty} P(E_i) = P(E_0)$ is a trivial task if $\{E_1, E_2, \ldots\}$ is finite; suppose that the events E_i are pairwise distinct. Let $\mathcal{B}_0, \mathcal{B}_1, \ldots, \mathcal{B}_{\nu}$ be the intersection system generated by $\{E_1, E_2, \ldots\}$. There is an $m \geq 1, m \leq \nu$, such that the finiteness condition holds for $k = \nu, \nu - 1, \ldots, m + 1$ and fails for k = m. Consequently, an infinite number of pairwise intersections of elements of \mathcal{B}_m coincide — let the corresponding element of \mathcal{B}_{m-1} be denoted by E_0 . Let $\mathcal{C}_0, \mathcal{C}_1, \ldots, \mathcal{C}_{\nu-m+1}$ be the intersection system generated by the set $\{F_1, F_2, \ldots\} \subseteq \{E_1, E_2, \ldots\}$ consisting of those events from \mathcal{B}_n which contain E_0 as a subset. By the choice of E_0, \mathcal{C}_1 is countably infinite; hence so are $\mathcal{C}_2, \ldots, \mathcal{C}_{\nu-m+1}$. Let $\mathcal{D}_k = \{F \setminus E_0: F \in \mathcal{C}_k\}$. The system $\mathcal{D}_0, \mathcal{D}_1, \ldots, \mathcal{D}_{\nu-m+1}$ satisfies all assumptions of Lemma. Hence,

$$\lim_{i \to \infty} P(E_i) = \lim_{i \to \infty} P(F_i) = P(E_0) + \lim_{i \to \infty} P(F_i \setminus E_0) = P(E_0).$$

The statement follows, since $E_0 \in \mathcal{B}_{m-1} \subseteq \mathcal{A}_n$.

Reference

[1] A. Rényi: Probability Theory, Budapest, Akadémiai Kiadó, 1970.

Department of Theoretical Physics and Department of Probability and Statistics Comenius University, Bratislava Slovakia email : balek@fmph.uniba.sk, mizera@fmph.uniba.sk