The closeness of the range of a probability on a certain system of random events - an elementary proof

Vladimír Balek
Ivan Mizera

Abstract

An elementary combinatorial method is presented which can be used for proving the closeness of the range of a probability on specific systems, like the set of all linear or affine subsets of a Euclidean space.

The motivation for this note came from the second author's research in statistics: high breakdown point estimation in linear regression. By a probability distribution P, defined on the Borel σ-field of \mathbb{R}^{p}, a collection of regression design points is represented; then, a system \mathcal{V} of Borel subsets of \mathbb{R}^{p} is considered. Typical examples of \mathcal{V} are, for instance, the system \mathcal{V}_{1} of all linear, or \mathcal{V}_{2} of all affine proper subspaces of \mathbb{R}^{p}. The question (of some interest in statistical theory) is:

$$
\begin{equation*}
\text { Is there an } E_{0} \in \mathcal{V} \text { such that } P\left(E_{0}\right)=\sup \{P(E): E \in \mathcal{V}\} \text { ? } \tag{1}
\end{equation*}
$$

For some of \mathcal{V}, the existence of a desired E_{0} can be established using that (a) \mathcal{V} is compact in an appropriate topology; (b) P is lower semicontinuous with respect to the same topology. The construction of the topology may be sometimes tedious; moreover the method does not work if, possibly, certain parts of \mathcal{V} are omitted, making \mathcal{V} noncompact. Also, a more general problem can be considered:

Is the range $\{P(E): E \in \mathcal{V}\}$ closed?
The positive answer to (2) implies the positive one to (1). The method outlined by (a) and (b) cannot answer (2) - we have only lower semicontinuity, not full continuity.

Received by the editors November 1996.
Communicated by M. Hallin.

Nevertheless, an elementary method provides the desired answer, for general P and \mathcal{V}. The method does not require a topologization of \mathcal{V}, and it works also for various, possibly noncompact, subsets of \mathcal{V}. The main idea can be regarded as an extension of a simple fact that the probabilities of pairwise disjoint events cannot form a strictly increasing sequence. Linear subspaces are not disjoint; however, the intersection of two distinct ones with the same dimension is a subspace with a lower dimension. Iterating this process further, we arrive to the unique null-dimensional subspace. If, say, instead of linear subspaces the affine ones are considered, the method works in a similar way - only the terminal level is slightly different.

A well-known related property - to be found, for instance, in [1], Ch. II, Ex. 48-50 - says that the range $\{P(E): E \in \mathcal{S}\}$ is closed for every probability space (Ω, \mathcal{S}, P). However, here the background is different: probabilities of general events can form an increasing sequence - this is not true in our setting.

Theorem. Let (Ω, \mathcal{S}, P) be a probability space. If $\mathcal{A}_{0} \subseteq \mathcal{A}_{1} \subseteq \cdots \subseteq \mathcal{A}_{n}$ are sets of events such that $\operatorname{card} \mathcal{A}_{0}=1$ and for every $k=1,2, \ldots, n$, the intersection of two distinct events from \mathcal{A}_{k} belongs to \mathcal{A}_{k-1}, then the set $\left\{P(E): E \in \mathcal{A}_{n}\right\}$ is closed.

Corollary. Under the assumptions of Theorem, (1) is true with $\mathcal{V}=\mathcal{A}_{n}$.
Applying Theorem for $\mathcal{V}=\mathcal{V}_{1}$, we set $n=p-1 ; \mathcal{A}_{k}$ consists of all proper subspaces of dimension less or equal to k. Note that $\mathcal{A}_{n}=\mathcal{V}_{1}$ and $\mathcal{A}_{0}=\{\mathbf{0}\}$; the other assumptions hold as well. According to Theorem, the range of P on \mathcal{A}_{n} is closed and the supremum is attained. The cases of other \mathcal{V} are treated in an analogous way.

We shall call a system $\mathcal{A}_{0}, \mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$ satisfying the assumptions of Theorem an intersection system. Suppose that \mathcal{B} is a set of events such that $\mathcal{B} \subseteq \mathcal{A}_{n}$. If $\mathcal{A}_{0}^{\prime}, \mathcal{A}_{1}^{\prime}, \ldots, \mathcal{A}_{\nu}^{\prime}$ is another intersection system such that $\mathcal{B} \subseteq \mathcal{A}_{\nu}^{\prime}$, we can form an intersection system $\mathcal{A}_{0}^{\prime \prime}, \mathcal{A}_{1}^{\prime \prime}, \ldots, \mathcal{A}_{m}^{\prime \prime}$ by taking consecutively $\mathcal{A}_{m}^{\prime \prime}=\mathcal{A}_{n} \cap \mathcal{A}_{\nu}^{\prime}, \mathcal{A}_{m-1}^{\prime \prime}=$ $\mathcal{A}_{n-1} \cap \mathcal{A}_{\nu-1}^{\prime}, \ldots$, identifying $\mathcal{A}_{0}^{\prime \prime}$ with the first set with cardinality 1 obtained in this process. As a result, we have $m \leq \min (n, \nu)$ and $\mathcal{B} \subseteq \mathcal{A}_{m}^{\prime \prime}$. The similar construction can be carried out with more than two intersection systems; if there is any intersection system $\mathcal{A}_{0}, \mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$ such that $\mathcal{B} \subseteq \mathcal{A}_{n}$, then the intersection of all intersection systems with this property will be called the intersection system generated by \mathcal{B}. Note that for all k, the set \mathcal{A}_{k-1} contains exactly all pairwise intersections of events from \mathcal{A}_{k}. Hence if \mathcal{A}_{k} is finite, so is \mathcal{A}_{k-1}. If \mathcal{A}_{k} is (at most) countable, so is \mathcal{A}_{k-1}.

Let $1 \leq k \leq n$. An intersection system is said to satisfy a finiteness condition at level k, if any event from \mathcal{A}_{k-1} is a subset of at most a finite number of events from \mathcal{A}_{k}. Note that if the finiteness condition is satisfied at level k and \mathcal{A}_{k} is infinite, so is \mathcal{A}_{k-1}. As a consequence, an intersection system with infinite \mathcal{A}_{n} cannot satisfy the finiteness condition at all levels $k=1,2, \ldots, n$.

Lemma. Suppose that the intersection system $\mathcal{A}_{0}, \mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$ generated by $\left\{E_{1}, E_{2}, \ldots\right\}$ satisfies the finiteness condition at levels $k=2, \ldots, n$ and $\mathcal{A}_{0}=\{\emptyset\}$. Then $\lim _{i \rightarrow \infty} P\left(E_{i}\right)=0$.

Proof. By assumptions, $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n}$ are countably infinite. For any $F \in \mathcal{A}_{k}$, $k=1,2, \ldots, n$, let $\tilde{F}=F \backslash \cup \mathcal{A}_{k-1}$. Note that $\tilde{F}=F$ for $F \in \mathcal{A}_{1}$, since $\mathcal{A}_{0}=\{\emptyset\}$.

For all k, the elements of $\left\{\tilde{F}: F \in \mathcal{A}_{k}\right\}$ are pairwise disjoint. Fix $\varepsilon>0$. Pick $\mathcal{B}_{1} \subseteq \mathcal{A}_{1}$ such that $\mathcal{A}_{1} \backslash \mathcal{B}_{1}$ is finite and

$$
\begin{equation*}
P\left(\bigcup_{F \in \mathcal{B}_{1}} F\right)=P\left(\bigcup_{F \in \mathcal{B}_{1}} \tilde{F}\right)=\sum_{F \in \mathcal{B}_{1}} P(\tilde{F}) \leq \varepsilon . \tag{3}
\end{equation*}
$$

Given \mathcal{B}_{k-1}, and assuming that $\mathcal{A}_{k-1} \backslash \mathcal{B}_{k-1}$ is finite, we construct inductively a set \mathcal{C}_{k} to be the set of all $F \in \mathcal{A}_{k}$ such that there is no $G \in \mathcal{A}_{k-1} \backslash \mathcal{B}_{k-1}$ which is a subset of F; then $\mathcal{B}_{k} \subseteq \mathcal{C}_{k}$ is picked in a way that $\mathcal{C}_{k} \backslash \mathcal{B}_{k}$ is finite and

$$
\begin{equation*}
P\left(\bigcup_{F \in \mathcal{B}_{k}} \tilde{F}\right)=\sum_{F \in \mathcal{B}_{k}} P(\tilde{F}) \leq \varepsilon . \tag{4}
\end{equation*}
$$

Since $\mathcal{A}_{k-1} \backslash \mathcal{B}_{k-1}$ is finite, by the finiteness condition (at level k) also $\mathcal{A}_{k} \backslash \mathcal{C}_{k}$ and hence $\mathcal{A}_{k} \backslash \mathcal{B}_{k}$ are finite. Starting from (3), we proceed inductively, using (4):

$$
\begin{align*}
& P\left(\bigcup_{F \in \mathcal{B}_{k}} F\right) \leq P\left(\bigcup_{F \in \mathcal{B}_{k}}\left(F \backslash \bigcup_{G \in \mathcal{B}_{k-1}} G\right) \cup \bigcup_{G \in \mathcal{B}_{k-1}} G\right) \\
& \quad=P\left(\bigcup_{F \in \mathcal{B}_{k}}\left(F \backslash \bigcup_{G \in \mathcal{A}_{k-1}} G\right)\right)+P\left(\bigcup_{G \in \mathcal{B}_{k-1}} G\right) \tag{5}\\
& =P\left(\bigcup_{F \in \mathcal{B}_{k}} \tilde{F}\right)+P\left(\bigcup_{G \in \mathcal{B}_{k-1}} G\right) \leq \varepsilon+(k-1) \varepsilon=k \varepsilon
\end{align*}
$$

the first equality due to the fact that $\mathcal{B}_{k} \subseteq \mathcal{C}_{k}$. Since (5) holds also for $k=n$ and ε was arbitrary, the statement follows: given $\delta>0$, there is only a finite number of E_{i} for which

$$
P\left(E_{i}\right) \leq P\left(\bigcup_{E_{i} \in \mathcal{B}_{n}} E_{i}\right) \leq \delta
$$

does not hold.

Proof of Theorem. The statement holds if \mathcal{A}_{n} is finite. Suppose that \mathcal{A}_{n} is infinite. Fix a sequence E_{1}, E_{2}, \ldots of events from \mathcal{A}_{n} such that $P\left(E_{i}\right)$ is convergent. Proving that there is an $E_{0} \in \mathcal{B}$ such that $\lim _{i \rightarrow \infty} P\left(E_{i}\right)=P\left(E_{0}\right)$ is a trivial task if $\left\{E_{1}, E_{2}, \ldots\right\}$ is finite; suppose that the events E_{i} are pairwise distinct. Let $\mathcal{B}_{0}, \mathcal{B}_{1}, \ldots, \mathcal{B}_{\nu}$ be the intersection system generated by $\left\{E_{1}, E_{2}, \ldots\right\}$. There is an $m \geq 1, m \leq \nu$, such that the finiteness condition holds for $k=\nu, \nu-1, \ldots, m+1$ and fails for $k=m$. Consequently, an infinite number of pairwise intersections of elements of \mathcal{B}_{m} coincide - let the corresponding element of \mathcal{B}_{m-1} be denoted by E_{0}. Let $\mathcal{C}_{0}, \mathcal{C}_{1}, \ldots, \mathcal{C}_{\nu-m+1}$ be the intersection system generated by the set $\left\{F_{1}, F_{2}, \ldots\right\} \subseteq\left\{E_{1}, E_{2}, \ldots\right\}$ consisting of those events from \mathcal{B}_{n} which contain E_{0} as a subset. Note that $\mathcal{C}_{0}=\left\{E_{0}\right\}$ and \mathcal{C}_{k} for $k \geq 1$ is the set of all events from \mathcal{B}_{m+k-1} which contain E_{0} as a subset. By the choice of E_{0}, \mathcal{C}_{1} is countably infinite; hence so are $\mathcal{C}_{2}, \ldots, \mathcal{C}_{\nu-m+1}$. Let $\mathcal{D}_{k}=\left\{F \backslash E_{0}: F \in \mathcal{C}_{k}\right\}$. The system $\mathcal{D}_{0}, \mathcal{D}_{1}, \ldots, \mathcal{D}_{\nu-m+1}$ satisfies all assumptions of Lemma. Hence,

$$
\lim _{i \rightarrow \infty} P\left(E_{i}\right)=\lim _{i \rightarrow \infty} P\left(F_{i}\right)=P\left(E_{0}\right)+\lim _{i \rightarrow \infty} P\left(F_{i} \backslash E_{0}\right)=P\left(E_{0}\right) .
$$

The statement follows, since $E_{0} \in \mathcal{B}_{m-1} \subseteq \mathcal{A}_{n}$.

Reference

[1] A. Rényi: Probability Theory, Budapest, Akadémiai Kiadó, 1970.

Department of Theoretical Physics and
Department of Probability and Statistics
Comenius University, Bratislava
Slovakia
email : balek@fmph.uniba.sk, mizera@fmph.uniba.sk

