Extending the dual of the Petersen graph

Thomas Meixner

1 Introduction

We are interested in geometries with a lot of symmetry. To be precise, we consider geometries Γ with the following properties:

- (a) every flag is contained in a flag of maximal cardinality (called chamber),
- (b) Γ is residually connected,
- (c) a subgroup $G \leq \operatorname{Aut}(\Gamma)$ acts transitively on the set of chambers of Γ .

The cardinality of the chambers (which we assume to be finite) is called the rank of Γ . So what we are looking at are residually connected chamber-transitive chamber geometries Γ of finite rank. And we will use the word geometry from now on in this sense.

By hypotheses (a) and (c), if $\{i, j\}$ is a 2-element subset of the type set I of Γ , then there are flags F of co-type $\{i, j\}$, such that $\operatorname{res}(F)$ is a rank 2 geometry over the type set $\{i, j\}$, and all such $\{i, j\}$ -residues are isomorphic. Hence, such a geometry Γ can be described by a diagram, in which the types (or even the exact isomorphism types) of all rank-2-residues are listed; this is often done in a graphical way. A graph D is drawn having vertices $i \in I$, one vertex for every type of objects in a hypothetical geometry belonging to the diagram, and the way two vertices $i, j \in I$ are connected in the diagram reflects the type D_{ij} of some rank 2 geometry.

Bull. Belg. Math. Soc. 4 (1997), 689-700

Received by the editors March 1996.

Communicated by J. Doyen.

¹⁹⁹¹ Mathematics Subject Classification : 05C25 Graphs and Groups, 51E99 Finite geometry, 05B25 F. geometries .

Key words and phrases : diagram geometry, flag-transitive group, Petersen graph .

A geometry Γ is said to belong to (or to have) a diagram D, if the types of its objects can be indexed by the elements $i \in I$ such that all $\{i, j\}$ - residues of Γ are of type D_{ij} . The types D_{ij} can hereby stand for a whole class of rank 2 geometries, such as projective planes, but can also denote just a single rank 2 geometry.

Since we are mainly interested in finite geometries and finite groups (maybe possessing an infinite universal cover, though), we assume that all rank 2 residues are finite.

Quite naturally, one is led to try and classify geometries Γ in terms of the diagram they have, maybe together with the group G acting. The following question arises.

For which diagrams \mathcal{D} is it interesting to have a classification of all (simply connected) geometries belonging to \mathcal{D} ?

Most interesting are, of course, the Coxeter diagrams - here all rank 2-residues are assumed to be finite generalized polygons - because here buildings arise and one gets geometries for the finite simple groups of Lie type and rank at least 2, and for some sporadic groups.

To get more geometries, and in particular also more sporadic groups into the picture, the range of rank 2 residues allowed in the diagrams was widened by Buekenhout ([B1]). In particular, he introduced the 'circle geometries' into the world of gen-

с eralized polygons, where a circle geometry, with rank 2 diagram 0 -0 is nothing else but the geometry of vertices and edges of a finite complete graph. In fact circle geometries are 'line-thin' analogues of projective planes, as they are precisely the linear spaces with thin lines. In the literature, many more rank 2 residues are discussed - for instance from inspection of the sporadic simple groups ([RS],[B3]). For a long time, it was not quite clear, however, what class of diagrams one should consider as the natural extension of the class of Coxeter diagrams. The set of rank 2 geometries allowed as rank 2 residues should be large enough such that the diagrams considered provide descriptions of many (all) known interesting geometries of higher rank, but again should be small enough to make classification theorems possible. Recall that these give characterizations of the corresponding groups as well, which are also interesting.

Only recently, work by Buekenhout and Van Maldeghem suggests what could be the 'natural generalization' of the class of flag-transitive generalized polygons (see [BV]).

Usually, in the diagrams considered, the rank 2 residues have at least three numerical parameters connected with them (which coincide in the case of Coxeter diagrams): the point-diameter d_p , the line diameter d_l and the girth g.

And the class of rank 2 geometries with a given triple of parameters (g, d_p, d_l) is called a (g, d_p, d_l) -gon (see [B2], [BV]). Such (g, d_p, d_l) -gons generalize polygons in a moderate and, seemingly, interesting way, if $g \leq d_p$, $d_l \leq g + 1$ (see [BV]).

As an interesting example, we take the Petersen geometry P with points (resp. lines) the set of vertices (edges) of the Petersen graph, and natural incidence. (To see that the automorphism group of the Petersen graph is isomorphic to Σ_5 , identify vertices of it with 2-sets of $\{1, 2, 3, 4, 5\}$; then two vertices are adjacent if and only if the corresponding 2-sets are disjoint.)

This rank 2 geometry P appears in a lot of geometries for sporadic groups (see [IS]), and also comes up in the list of interesting (g, d_p, d_l) -gons in [BV] Theorem 1. Here, $d_p = 5$, $d_l = 6$, and g = 5. Hence this geometry belongs to the class of (5, 5, 6)-gons;

as an individual, it is usually denoted by the diagram $\bigcirc \bigcirc \bigcirc (P)$. The 'dual' of it, the geometry on the same set of objects with the same incidence relation, but

Ρ

the roles of points and lines interchanged, is then given the diagram (P^*) .

Geometries, whose rank 2 residues are (g, d_p, d_l) -gons, we call Buekenhout-Titsgeometries (BT-geometries), and their diagrams BT-diagrams. In their graphical description, to the edge representing a rank 2 residue, which is some (g, d_p, d_l) -gon, will be attached the three parameters g, d_p, d_l . As usual, to the node *i* of the diagram there will be attached the *local parameter*, which describes, how many chambers lie on a flag of co-type *i*.

Sometimes, as with the Petersen geometry above, rank 2 residues are prescribed as indivuduals, then clearly there is no need to note the local parameters.

In this paper, we will treat the diagram

which is called (c.P*). Here, the local parameters of the circle geometry are determined by the local parameters in the Petersen geometry, hence are 1 and 2.

If interest is focussed on the girth, one gets a 'derived' diagram of the 'Coxeter type' again: a set of numbers m_{ij} 's, one for each rank 2 residue; this is the minimal circuit diagram. Of course, just like in Coxeter diagrams, we can define sphericity for minimal circuit diagrams. So far it is known that for rank 3 geometries with non-spherical minimal circuit diagram the simply connected ones are infinite ([Ro],[GS]). It is not clear for what class of diagrams (properly containing the class of Coxeter diagrams) the converse holds.

In this paper, we classify simply connected (c.P*)-geometries: see the theorem below.

The interest in the particular BT-diagram $(c.P^*)$ comes from the fact that it is 'close' to being a Coxeter diagram, that its minimal circuit diagram is spherical, but, as will be shown, simply connected geometries having this diagram are infinite. It is maybe worth noting that there are finite simply connected geometries with

 P^*

 P^*

 \mathbf{c}

diagram (c*.P) (see [Me],[IS]). Hence for a possible definition of sphericity of BTdiagrams not only the set of all rank 2 residues must be used, but also the way they are amalgamated.

By 'close', we mean that all parameters (also the local ones) of the rank 2 geometries in this diagram differ only slightly from the ones in some generalized polygon.

Rank 2 residues in (c.P*)-geometries are indeed close to generalized polygons of order 2: the circle geometry on 4 points can be viewed as an affine plane of order 2, and the (dual) Petersen geometry can be viewed as an affine part of the $Sp_4(2)$ -quadrangle.

Theorem. Let Γ be a connected geometry with diagram (c.P^{*}) and flag-transitive automorphism group Γ . Then Γ is a quotient of the universal 2-cover of one of the two examples Δ_1 and Δ_2 below. These universal 2-covers are not isomorphic, and they are both infinite.

The two examples mentioned in the theorem are given in the following. They will be given in a slightly different setting once more as examples (8) in section 2.

Examples:

(1) Let V be an elementary abelian 2-group of order 2^4 , viewed as a 2-dimensional GF(4)-space. Consider $X = \Sigma_5$ as a subgroup of $\Gamma L_2(4)$ acting naturally on V. Let W be an affine space with translation group V, and consider the semi-direct product G = V.X as a subgroup of $\operatorname{Aut}(W)$. Then G acts 2-transitively on points of W and some Sylow 2-subgroup S of X equals the stabilizer of two points (the pointwise stabilizer in G of a line of W) in W; moreover these two are the only fixed points of S on W. The group G has precisely three classes of involutions, one of which contains the transpositions of X. Let t be one such transposition of X. Then t has precisely four fixed points on W, which form a plane π in W, whose pointwise stabilizer in G is again $\langle t \rangle$. The setwise stabilizer T of this line l in G is isomorphic to $Z_2 \times \Sigma_4$ and acts 4-transitively on points of l. Consider the geometry Δ_1 , whose points are the points of W, whose lines are the lines of W and whose planes are the planes in the G-orbit of π . Take over incidence from W. Then Δ_1 is a

geometry, on which G = V X acts flag-transitively, and Δ_1 has diagram \bigcirc

The residues of planes and lines have obviously the indicated types. Consider the residue of the point p fixed by X. Then X is the stabilizer of p in G, and if π' is a plane in res(p), then the pointwise stabilizer $\langle t' \rangle$ of π' is a transposition in X and the setwise stabilizer of π' in $X = G_p$ is $C_X(t')$. Let L be a line in res(p). Then the stabilizer in G_p of L is a Sylow 2-subgroup S of X, and L is contained in π' if and only if t' is contained in S. Now it is clear that res(p) is isomorphic to the dual of the Petersen geometry.

(2) Consider the set $\Psi = \{1, 2, 3, 4, 5, 6\}$. Let points of the geometry Δ_2 be the elements of Ψ , planes the 4-subsets of Ψ , and lines the pairs (l, π) of a 2-set l of Ψ

and a 4-set π of Ψ containing l. Let incidence be defined in the natural way. Then Δ_2 has the diagram $(c.P^*)$ and Σ_6 acts flag-transitively on Δ_2 . Note that the geometry Δ_2 fails to satisfy condition (LL), whereas (LL) is satisfied in the geometry Δ_1 .

2 The proof of the theorem.

Let in this whole section Γ be a $(c.P^*)$ geometry with chamber transitive group of automorphisms G. For any vertex y in Γ , let G_y be the stabilizer of y in G, and let K_y denote the kernel of the group G_y acting on res(y). Let $c = \{p, l, x\}$ be a chamber, where p is a point, l a line and x a hyperline (plane). Then we denote $B = G_c, X_0 = G_{lx}, X_1 = G_{px}$ and $X_2 = G_{pl}$.

We determine the structure of the groups B, X_0, X_1 , and X_2 , and the way they are amalgamated, in a number of steps.

(1) $G_p/K_p = \text{Alt}(5) \text{ or } \Sigma_5.$

Proof. The automorphism group of the Petersen graph is isomorphic to Σ_5 , flagtransitivity implies that a group whose order is divisible by 3 and 5 is induced by G_p on res(p), hence the statement follows.

We refer to the two possibilities as to the cases (A) and (Σ) . It will turn out, that the geometries arising in the two cases coincide, i.e. for every simply connected $(c.P^*)$ -geometry on res(p) there is Σ_5 induced by the stabilizer of p in the full automorphism group, and also there is a chamber transitive subgroup inducing only Alt(5) on it.

(2) $G_{pl}/K_p = Z_2 \times Z_2$, $G_{px}/K_p = \Sigma_3$, and $B/K_p = Z_2$ in case (A), while $G_{pl}/K_p = D_8$, $G_{px}/K_p = \Sigma_3 \times Z_2$ and $B/K_p = Z_2 \times Z_2$ in case (Σ). *Proof.* This follows from (1).

(3) $G_x/K_x = \Sigma_4$, $B/K_x = Z_2$, $G_{lx}/K_x = Z_2 \times Z_2$ and $G_{px}/K_x = \Sigma_3$. *Proof.* By (2), $G_{px}/K_p = \Sigma_3$ resp. $\Sigma_3 \times Z_2$ in the case (A) resp. (Σ). In both cases, $|G_{px}: B| = 3$. Since $K_x \leq B$, G_{px} induces Σ_3 on res $(p) \cap \text{res}(x)$ in both cases. Now the statement follows.

(4) $K_p = 1$.

Proof. Assume case (A). Then K_x is a normal subgroup of G_{px} contained in B, hence $K_x \leq K_p$. Now $K_p = K_x$ is a subgroup of B invariant under G_p and G_x . But by connectedness of Γ these two parabolics generate G, hence K_p is G-invariant and therefore $K_p = 1$.

Assume therefore we are in case (Σ) . Let p and a be the two points in the residue of l. Then $K_a K_p$ is normal in G_l and also contained in B. Moreover, $K_p \leq K_x$ and $K_a \leq K_x$ by (3). But B/K_p has order 4. Hence one of the following holds: - $K_a K_p = K_p$, then $K_p = K_a$ is invariant under G_p and G_l , hence is a normal subgroup of G contained in B, and therefore equals 1.

- $K_a K_p/K_p$ is a nontrivial normal subgroup of G_{pl}/K_p contained in K_x/K_p , which is of order 2 by (2) and (3). Hence $K_a K_p = K_x$ is invariant under $\langle G_l, G_x \rangle = G$, and $K_a K_p = 1$, a contradiction.

We have now determined the structures of B, X_1 and X_2 completely in both cases. But the structure of X_0 and $\langle X_0, X_1 \rangle$ and $\langle X_0, X_2 \rangle$ is still to be described. At least, we have the following.

(5) $G_l = G_{pl}.G_{lx}.$ *Proof.* This follows since res(l) is a generalized digon.

Let us introduce the chamber system C of Γ . Its chambers are the chambers (maximal flags) of Γ and two chambers are *i*-adjacent, if they are contained in a residue of co-type *i*. Clearly, the flag-transitive group G acts chamber transitively on C.

We treat the cases (A) and (Σ) now separately and turn to the case (A) first.

(6) Lemma. Assume we are in case (A). Then we find elements a, b, c, d of order 2 in G such that $G = \langle a, b, c, d \rangle$ and one of the following sets of relations hold:

(A1)
$$(ab)^3 = (bc)^5 = (bac)^5 = (ac)^2 = (bd)^3 = (ad)^2 = a(cd)^2 = 1.$$

$$(A2) \ (ab)^3 = (bc)^5 = (bac)^5 = (ac)^2 = (bd)^3 = (ad)^2 = (cd)^2 = 1.$$

Furthermore, C is isomorphic to $C(G; \langle a \rangle; \langle a, b \rangle, \langle a, c \rangle, \langle a, d \rangle)$ in both cases.

Proof. Let $B = \langle a \rangle$. Then *a* is an involution by (2) and (4). Moreover $G_{px} = \Sigma_3$, hence we can pick another involution *b* in G_{px} different from *a* and get the relation $(ab)^3 = 1$. Again by (2) and (4), $G_{lx} = Z_2 \times Z_2$, and we pick an involution $c \in G_{pl}$ different from *a*. Clearly $(ac)^2 = 1$. Now in the group $G_p = \text{Alt}(5)$ we verify that the relations $(bc)^5 = (bac)^5 = 1$ hold.

Since $G_x = \Sigma_4$, and $G_{px} = \Sigma_3$, we see that *a* corresponds to some transposition in $G_x = \Sigma_4$. Also, $G_{lx} = Z_2 \times Z_2$ contains exactly two transpositions of $G_x = \Sigma_4$. Hence we may pick the second transposition different from *a* in G_{lx} , and call it *d*. Clearly, the relations $(ad)^2 = (bd)^3 = 1$ hold.

Now $G_l = G_{pl}.G_{lx}$ and $B = G_{pl} \cap G_{lx}$ by (5), and therefore $(cd)^2 = [c, d]$ is contained in $B = \langle a \rangle$. This gives two possibilities for the last relation, and (6) is proved.

Let us turn to the case (Σ) now.

(7) Assume we are in case (Σ). Then we can find involutions a, b, c, w and t in G such that $G = \langle a, b, c, w, t \rangle$ and one of the following sets of relations hold:

(I)
$$(ab)^2 = (ac)^3 = (at)^2 = (bc)^3 = [b, w]^{bt} = (bt)^2 = [t, w]^{bt} = (ct)^2 = (cw)^6 = w^{bcb}w^{cw}bcw = [a, w] = 1.$$

(II)
$$(ab)^2 = (ac)^3 = (at)^2 = (bc)^3 = [b, w]^{bt} = (bt)^2 = [t, w]^{bt} = (ct)^2 = (cw)^6 = w^{bcb}w^{cw}bcw = [a, w]^{bt} = 1.$$

Note that these two sets of relation differ only in the relation [a, w] = 1 or bt. Furthermore, C is isomorphic to $C(G; \langle b, t \rangle; \langle b, t, a \rangle, \langle b, t, c \rangle, \langle b, t, w \rangle)$ in both cases.

Proof. We recall, how $G_p = \Sigma_5$ acts on res(p), which isomorphic to the Petersen graph. Here hyperlines correspond to 2-sets of $\{1, 2, 3, 4, 5\}$, whereas lines can be identified with the 2-sets of disjoint 2-sets of $\{1, 2, 3, 4, 5\}$. Hence we may assume that x corresponds to $\{4, 5\}$, and l corresponds to $\{\{1, 2\}, \{4, 5\}\}$, and so $B = \langle (1, 2), (4, 5) \rangle$, $G_{pl} = \langle B, (1, 4)(2, 5) \rangle$ and $G_{px} = \langle B, (2, 3) \rangle$ in the natural representation of $G_p = \Sigma_5$. Pick elements b, c, w and t corresponding to (1, 2), (2, 3),(1, 4)(2, 5) and (4, 5) respectively.

Then they are all involutions, and we have the relations $(bc)^3 = (bt)^2 = (ct)^2 = [b, w]^{bt} = 1$. To make it clear: $B = \langle b, t \rangle$, $G_{pl} = \langle b, w, t \rangle$, $G_{px} = \langle b, c, t \rangle$.

Clearly also [t, w] = bt, and one can easily verify in Σ_5 that $(cw)^6 = w^{bcb}w^{cw}bcw = 1$. Clearly, t lies in the center of G_{px} , and since $G_x/K_x = \Sigma_4$, $|K_x| = 2$, we have $\langle t \rangle = K_x$. Moreover, by the action of G_x on res(x), G_{lx}/K_x is the centralizer of B/K_x in $G_x/K_x = \Sigma_4$. Hence we can take some conjugate a of b in G_x , which together with B generates G_{lx} and satisfies modulo K_x the relations $(ac)^3 = (ab)^2 = 1$. Clearly [a, t] = 1 holds.

In G this implies relations $a^2 = 1$, and $(ab)^2, (ac)^3 \in \langle t \rangle$.

By (5), we get $[a, w] \in B$. Hence we have 16 possibilities for the triples of elements $((ab)^2, (ac)^3, [a, w])$.

Coset enumeration using CAYLEY gives that only four sets of relations do not force the group to collapse:

if we put $(ab)^2 = t^i$, $(ac)^3 = t^j$, $[a, w] = b^u t^v$, these are the cases:

$$(i, j, u, v) \in \{(2, 2, 2, 2), (2, 2, 1, 1), (2, 1, 2, 2), (2, 1, 1, 1)\}.$$

As we can see, $(ab)^2 = 1$ holds in any case, and by replacing *a* by *at*, we can identify the cases (i, j, u, v) = (2, 2, 2, 2) and (i, j, u, v) = (2, 1, 1, 1), and the cases (i, j, u, v) = (2, 1, 2, 2), (i, j, u, v) = (2, 2, 1, 1).

Hence we end up with the two possible sets of relations:

(I):
$$a^2 = b^2 = c^2 = w^2 = t^2 = (ab)^2 = (ac)^3 = (at)^2 = (cb)^3 = (ct)^2 = (bt)^2 = b^w t = (cw)^6 = w^{bcb} w^{cw} bcw = [a, w] = 1 > 0$$

(II):
$$a^2 = b^2 = c^2 = w^2 = t^2 = (ab)^2 = (ac)^3 = (at)^2 = (cb)^3 = (ct)^2 = (bt)^2 = bwt = (cw)^6 = w^{bcb}w^{cw}bcw = [a, w]bt = 1 > bwt = 0$$

This proves (7).

The first case lives in some group of type $2^4\Sigma_5$, the second case lives in the group Σ_6 , as we shall see in the following example. In fact, the geometries (chamber systems) in example (8) are the same as the ones given in section 1.

(8) Examples.

- (i) Consider in G = Σ₆ the following elements: a = (1,2), c = (2,3), b = (3,4), w = (3,5)(4,6), t = (5,6). Then obviously, G = ⟨a,b,c,w,t⟩, and it is easily verified that the relations (I) hold between these elements.
- (ii) Consider in $G = \Sigma_{16}$ the following elements: a = (1, 2)(5, 6)(7, 9)(8, 12)(10, 11)(13, 14), b = (3, 4)(7, 10)(8, 13)(9, 11)(12, 14)(15, 16), c = (2, 3)(5, 7)(6, 8)(9, 12)(11, 15)(14, 16), w = (3, 5)(4, 6)(7, 11)(8, 9)(10, 14)(12, 13),t = (5, 6)(7, 8)(9, 12)(10, 13)(11, 14)(15, 16).

Then $N = \langle ab, (ab)^c, (ab)^{cw}, (ab)^{cwc} \rangle$ is an elementary abelian normal subgroup of order 16 of G, and it is easily seen, that b, c, c^{wt}, t generate a subgroup isomorphic Σ_5 , containing w.

Hence G is isomorphic to $2^4\Sigma_5$, and the relations (II) are easily verified.

Let us consider the following groups.

$$G_I = \langle a, b, c, w, t : a^2 = b^2 = c^2 = w^2 = t^2 = (ab)^2 = (ac)^3 = (at)^2 = (cb)^3 = (ct)^2 = (bt)^2 = b^w t = (cw)^6 = w^{bcb} w^{cw} bcw = [a, w] = 1 \rangle,$$

 $\begin{array}{ll} G_{II} = \ \langle a,b,c,w,t:a^2 = b^2 = c^2 = w^2 = t^2 = (ab)^2 = (ac)^3 = (at)^2 = (cb)^3 = (ct)^2 = (bt)^2 = b^w t = (cw)^6 = w^{bcb} w^{cw} b cw = [a,w]^{bt} = 1 \rangle. \end{array}$

And denote by A_I (resp. A_{II}) the subgroup of G_I (resp. G_{II}) generated by at, bt, ct and w.

(9) Lemma. The following holds:

- (a) The chamber systems $C_I = C(G_I; \langle b, t \rangle; \langle b, t, a \rangle, \langle b, c, t \rangle, \langle b, w, t \rangle), C_{II} = C(G_{II}; \langle b, t \rangle; \langle b, t, a \rangle, \langle b, c, t \rangle, \langle b, w, t \rangle)$ have diagram (c.P*).
- (b) The group A_I (respectively A_{II}) is a chamber transitive subgroup of G_I (respectively G_{II}).
- (c) The chamber systems C_I and C_{II} are simply 2-connected.
- (d) The groups A_I and A_{II} have presentations (A1) and (A2) respectively, and the chamber systems C_I and C_{II} are isomorphic to the chamber systems described in (6).
- (e) C_I and C_{II} are not isomorphic.

Proof. It is left to the reader to verify that the given relations not only hold in the parabolic subgroups of the so presented groups, but also define the corresponding parabolic subgroup. And, by (8), since there is no collapsing in the finite quotients $2^4\Sigma_5$ and Σ_6 , there is no collapsing in the groups G_I and G_{II} either, and the parabolics in G_I and G_{II} look as follows:

 $\langle b, c, w, t \rangle = \Sigma_5, \langle a, b, c, t \rangle = \Sigma_4 \times Z_2, \langle a, b, w, t \rangle$ is a group of order 16, $\langle b, c, t \rangle = \Sigma_3 \times Z_2, \langle a, b, t \rangle = Z_2 \times Z_2 \times Z_2$, and $\langle w, b, t \rangle$ is dihedral of order 8, $\langle b, t \rangle = Z_2 \times Z_2$. Hence (a) follows.

Obviously, the groups $\langle bt, ct, w \rangle$, $\langle at, bt, ct \rangle$ and $\langle at, bt, w \rangle$ are isomorphic to Alt(5), Σ_4 and a group of order 8 respectively, and act transitively on the corresponding residues.

This implies (b).

The automorphism group G_I (resp. G_{II}) of the chamber system C_I (resp. C_{II}) lifts to a group of automorphisms of the universal 2-cover of the chamber system C_I (resp. C_{II}). This group has to is generated by the generators of G_I (resp. G_{II}), and satisfies the defining relations. Hence it equals G_I (resp. G_{II}). Obviously, (c) follows.

Now we know the simply 2-connected (c.P^{*}) chamber systems C_I (resp. C_{II}) with transitive group of automorphisms A_I (resp. A_{II}), such that Alt(5) is induced on the corresponding residues. By (6), A_I (resp. A_{II}) are quotients of the groups presented by (A2) or (A1). These quotients must not be proper quotients, as C_I and C_{II} are simply 2-connected. (d) follows.

By (7), the automorphism group of the chamber system of any (c.P*) geometry has 'point' stabilizer isomorphic to Alt(5) or Σ_5 , hence the Frattini argument tells that G_I is the full automorphism group of C_I (G_{II} is the full automorphism group of C_{II} respectively). Since line stabilizers are not isomorphic in the groups G_I respectively G_{II} , the two chamber systems can not be isomorphic to each other. The same argument applies to the chamber-transitive subgroups of index 2, A_I , A_{II} of the groups G_I , G_{II} respectively. Moreover, the isomorphism type of the chamber system it acts on is determined by the structure of the line stabilizer. Hence the group presented by (A1) is a subgroup of G_I , while the group presented by (A2) is a subgroup of G_{II} . This implies (e).

(10) Lemma. The groups G_I and G_{II} (and equivalently the chamber systems C_I and C_{II}) are infinite.

 $\Sigma_6: N = \langle (x_{12} \times x_{25})^3, (x_{12} \times x_{26})^3, (x_{13} \times x_{25})^2, (x_{13} \times x_{26})^2, (x_{14} \times x_{25})^2, (x_{14} \times x_{26})^3, (x_{15} \times x_{23})^2 \rangle, \text{ where the elements } x_{ij} \text{ are involutions (the conjugates } a, a^c, a^{cb}, a^{cw}, c, c^w, c^{wt}) \text{ that project onto the transposition } (i, j) \text{ in } \Sigma_6 = G_I/N, ((ij) = (12), (13), (14), (15), (23), (25), (26)).$

Still, $|G_I : N| = 720$ is rather big for the abelian quotients algorithm. But for the subgroup $U = \langle a, b, t, N \rangle$ with index 90 in G_I , the algorithm works well, and shows

that the invariants of U/U' are (2, 2, 2, 0), which immediately tells that U/U' and hence U and hence G_I are infinite.

For the proof that C_{II} is infinite we turn to the chamber transitive subgroup of A_{II} of G_{II} , which has the rather nice presentation (A2).

Clearly, the group A_{II} with the presentation (A2) is the quotient of the Coxeter

group $W(s_0, s_1, s_2, s_3)$ of type \diamond modulo the relation that factors out the central involution in the parabolic subgroup $\langle s_0, s_1, s_2 \rangle$ of type H_3 (compare also remark (13)). We will construct an infinite group having four involutory generators that satisfy these relations.

Consider the free Z-module V with basis $\{e_1, e_2, e_3, e_4, e_5, e_6\}$. And consider the linear transformations of V:

$$a := (e_1, e_2)(e_5, e_6)$$
 $b := (e_2, e_3)(e_4, e_5)$ $c := (e_3, e_4)(e_5, e_6)$ $d := (e_1, -e_2)(e_5, -e_6).$

Then the elements a, b, c, d (are involutions and) satisfy the relations of the above Coxeter diagram.

Moreover, the group $\langle a, b, c \rangle$ is isomorphic to A_5 , and hence $(bac)^5 = 1$. Note, however, that the relation $(bdc)^5 = 1$ does not hold: $\langle b, d, c \rangle$ is isomorphic to $Z_2 \times A_5$. Then the vector $v := e_1 - e_2$ (and hence the translation T_v of V) is centralized by cand d, and is sent onto its negative by a. Furthermore, the equation $v - v^b + v^{ba} = 0$ holds.

Now it is easily checked that the elements $A = a.T_v$, B = b, C = c, D = d still satisfy the relations of the diagram together with $(BAC)^5 = 1$: if not, the group $\langle A, B, C \rangle$ would be a group of type $Z_2 \times A_5$ as well, and the central involution would be a translation, which is clearly impossible. And the subgroup $G := \langle A, B, C, D \rangle$ of the affine group on V is infinite: G contains the group $\langle B, C, D \rangle$ which is isomorphic to $Z_2 \times A_5$, and hence has a unique fixed point on V, namely the zero vector. As A does not fix the zero vector, G has no fixed point on V, not even on V when tensored with the reals. But a finite subgroup of Aff(6, R) must have a fixed point.

The above group is an infinite quotient of X, the Coxeter group $W(s_0, s_1, s_4, s_3)$ modulo the relation $(s_1s_0s_2)^5 = 1$. Hence X itself is infinite. Note that there are obvious examples (of affine types) where the corresponding quotients are finite.

(11) Lemma. Let C be a chamber system of type $(c.P^*)$ with flag-transitive group of automorphisms G. Then the geometry G(C), which equals the group geometry on cosets of the stabilizers G_p, G_l and G_x of the rank 2 residues of C containing a given chamber, has type $(c.P^*)$ and G acts flag-transitively on it.

Proof. We know that G_p induces at least A_5 on res(p), and G_x induces Σ_4 on res(x). Further, G_l is flag-transitive on the residue of l, which contains just four elements. The lemma follows from application of either [MT] or [As]. We decided to apply a result by Aschbacher ([As]). Obviously, G can not be written as a product of two of the stabilizers, as G'_p does not fix all points. And $G_{lx} = G_l \cap G_x$ has at most two orbits on G_l/G_{pl} and G_x/G_{px} . Now [As] gives the result.

(12) Proof of the theorem.

By (4), we are in case (A) or (Σ). Hence, by (6), (7) and (9), the chamber system $C(\Gamma)$ is isomorphic to C_I or C_{II} . By (11), G is isomorphic to $\Gamma(C_I)$ or $\Gamma(C_{II})$, and by (10), these are infinite.

By (9), G is isomorphic to the universal 2-cover of one of the two examples of (8).

(13) Remark. Consider the Coxeter W group with diagram

in its reflection representation on the real vector space of dimension n + 1. The generating involutions s_i are reflections in basis vectors e_i with respect to the symmetric bilinear form B, which has Gram matrix $M = (-\cos(\pi/m(i, j))_{i,j})$ on the basis $E = \{e_0, \dots, e_n\}$. Note that in 2M, entries are 0, -1, 2 and φ , where φ is the negative real solution of $X^2 + X - 1 = 0$. $(-\varphi - 1)$ is the positive one.) Let R be the subring of the reals generated by 1 and φ . Clearly, if I is the ideal of R generated by the prime 2, then R/I is a field k with 4 elements.

Then the group W leaves invariant the R-module L generated by E, and acts on the k-space V := L/I.L which carries the symmetric bilinear form $\langle \cdot, \cdot \rangle$ induced from 2M. Identify the basis E with its image in V.

The radical V_0 of this space is spanned by the vector $e_0 + \varphi \cdot e_1$, if n is even (resp. by $e_0 + \varphi \cdot e_1$ and $e_1 + e_3 + \cdots + e_n$, if n is odd).

Hence V/V_0 is a nondegenerate symplectic space of dimension n (resp. n-1) and obviously W induces $Sp_n(k)$ (resp. $Sp_{n-1}(k)$) on V/V_0 .

The relation $(s_2s_1s_0)^5 = 1$ holds in $X := W/C_W(V)$, as clearly for n = 2 just $Sp_2(4) = A_5$ is induced on V.

Consider in X the 'parabolic subgroups' $X_i = \langle s_j, j \text{ different from } i \rangle, i = 0, 1, \dots, n$. Then the group geometry on cosets of $X_0, X_2, X_3, \dots, X_n$ is a geometry of type $(c^{n-1}.P^*)$.

Acknowledgement. The author is indepted to Antonio Pasini for pointing out a mistake in the description of example Δ_1 . Computing was done on a SUN workstation using the group theoretic programming language CAYLEY.

References

- [As] M.Aschbacher: Flag structures on Tits geometries, Geo. Ded. 14 (1983), 21-32.
- [B1] F.Buekenhout: Diagrams for geometries and groups, J.Comb.Th. (A) 27 (1979),121-151.
- [B2] F.Buekenhout: (g,d*,d)-gons, in Finite Geometries (eds. N. Johnson et al.) (1983), 93-112.
- [B3] F.Buekenhout: Diagram geometries for sporadic groups, in 'Finite Groups Coming of Age', Contemp. Math. 45 (1985), 1-32.
- [BK] F.Buekenhout, O.King: Geometries with diagram (L.P*), (preprint).
- [BV] F.Buekenhout, H.Van Maldeghem: A characterization of some rank 2 incidence geometries by their automorphism group; (preprint).
- [GS] S.Gersten, J.Stallings: Groups acting on hyperbolic 2-complexes, (preprint).
- [IS] A.A.Ivanov, S.Shpectorov: Geometries and groups related to the Petersen graph I. Commun. Alg. 16 (1988), 925-953.
- [KP] O.King, A.Pasini: On Some Flag-Transitive Extensions of the Dual Petersen Graph, (preprint).
- [Me] Th.Meixner: Buekenhout geometries of rank 3 which involve the Petersen graph, (preprint).
- [MT] Th.Meixner, F.Timmesfeld: Chamber systems with string diagrams, Geo. Ded. 15 (1983), 115-123.
- [Ro] M.Ronan: On the second homotopy group of certain simplicial complexes and some combinatorial applications, Quarterly J. Math. Oxford **32** (1981), 225-233.
- [RS] M.Ronan, G.Stroth: Minimal parabolic geometries for the sporadic groups, Europ. J. Comb. 5 (1984), 59-91.

Math. Institut der JLU Gießen Arndtstraße 2 35392 Gießen BR Deutschland e-mail : Thomas.Meixner@math.uni-giessen.de