Solutions to the mean curvature equation by fixed point methods

M. C. Mariani
D. F. Rial

Abstract

We give conditions on the boundary data, in order to obtain at least one solution for the problem (1) below, with H a smooth function. Our motivation is a better understanding of the Plateau's problem for the prescribed mean curvature equation.

1 Introduction

We consider the Dirichlet problem in the unit disc $B=\left\{(u, v) \in \mathbf{R}^{\mathbf{2}} ; u^{2}+v^{2}<1\right\}$ for a vector function $X: \bar{B} \longrightarrow \mathbf{R}^{3}$ which satisfies the equation of prescribed mean curvature

$$
\left\{\begin{array}{l}
\Delta X=2 H(X) X_{u} \wedge X_{v} \text { in } B \tag{1}\\
X=g \text { on } \partial B
\end{array}\right.
$$

where $X_{u}=\frac{\partial X}{\partial u}, X_{v}=\frac{\partial X}{\partial v}, \wedge$ denotes the exterior product in \mathbf{R}^{3} and $H: \mathbf{R}^{3} \longrightarrow$ \mathbf{R} is a given continuous function. For $H \equiv H_{0} \in \mathbf{R}$ and g non constant with $0<\left|H_{0}\right|\|g\|_{\infty}<1$ there are two variational solutions ([1], [3]). For H near H_{0} in certain cases there exist also two solutions to the Dirichlet problem ([2], [6]). For H far from H_{0}, under appropriated conditions on g and H it is possible to obtain more than two solutions ([4]).

[^0]We will consider prescribed smooth H and giving conditions on the boundary data g, we will prove the existence of a solution to (1) by fixed point theorems.

The main result is the following theorem
Theorem 1. Let be $H \in C^{1}\left(\mathbf{R}^{\mathbf{3}}\right)$ and $g \in W^{2, p}\left(B, \mathbf{R}^{\mathbf{3}}\right)$ small enough, there exists a solution $X \in W^{2, p}\left(B, \mathbf{R}^{\mathbf{3}}\right)$ with $p>2$ of (1).

Finally, we recall that (1) is motivated for a better understanding of the Plateau's problem of finding a surface with prescribed mean curvature H which is supported by a given curve in \mathbf{R}^{3}.

2 Solution by fixed point methods

The systems (2) and (3) below are equivalent to (1) with $X=X_{0}+Y$

$$
\begin{gather*}
\begin{cases}\Delta X_{0}=0 & \text { in } B \\
X_{0}=g & \text { on } \partial B\end{cases} \tag{2}\\
\begin{cases}\Delta Y=F\left(X_{0}, Y\right) & \text { in } B \\
Y=0 & \text { on } \partial B\end{cases} \tag{3}
\end{gather*}
$$

and F defined as

$$
F\left(X_{0}, Y\right)=2 H\left(X_{0}+Y\right)\left(X_{0 u} \wedge Y_{v}+Y_{u} \wedge X_{0 v}+Y_{u} \wedge Y_{v}+X_{0 u} \wedge X_{0 v}\right)
$$

Searching a fixed point of (3), we find it thanks to a variant of the Schauder theorem. We will work in a specific convex subset of the Sobolev space $W^{1, p}\left(B, \mathbf{R}^{\mathbf{3}}\right)$. We can write (3) in the following way :

$$
\begin{cases}L\left(X_{0}\right) Y=\sum_{i=1}^{2} F_{i}\left(X_{0}, Y\right) & \text { in } B \tag{4}\\ Y=0 & \text { on } \partial B\end{cases}
$$

where $L\left(X_{0}\right)$ is the linear elliptic operator

$$
\begin{gathered}
L\left(X_{0}\right) Y=\Delta Y-2\left(A_{1}\left(X_{0}\right) Y_{u}+A_{2}\left(X_{0}\right) Y_{v}\right) \\
A_{1}\left(X_{0}\right) Y_{u}=H\left(X_{0}\right) Y_{u} \wedge X_{0 v} \\
A_{2}\left(X_{0}\right) Y_{v}=H\left(X_{0}\right) X_{0 u} \wedge Y_{v}
\end{gathered}
$$

and $F_{i}\left(X_{0}, Y\right)$ defined by

$$
\begin{gathered}
F_{1}\left(X_{0}, Y\right)=2\left(H\left(X_{0}+Y\right)-H\left(X_{0}\right)\right)\left(X_{0 u} \wedge Y_{v}+Y_{u} \wedge X_{0 v}\right) \\
F_{2}\left(X_{0}, Y\right)=2 H\left(X_{0}+Y\right)\left(X_{0 u} \wedge X_{0 v}+Y_{u} \wedge Y_{v}\right)
\end{gathered}
$$

To prove Theorem 1, we will use the following technical lemmas:

Lemma 2. Let be $X_{0} \in W^{2, p}\left(B, \mathbf{R}^{\mathbf{3}}\right)$ with $p>2$, then there exists $C>0$ such that for any $R \in(0,1), \delta>0$

1. $\left\|F_{i}\left(X_{0}, Y_{1}\right)\right\|_{p / 2} \leq C\left(\left\|X_{0}\right\|_{1, p}^{2}+\left\|Y_{1}\right\|_{1, p}^{2}\right)$.
2. $\left\|F_{i}\left(X_{0}, Y_{1}\right)-F_{i}\left(X_{0}, Y_{2}\right)\right\|_{p / 2} \leq C\left(\left\|Y_{1}-Y_{2}\right\|_{1, p}\right)$

$$
Y_{j} \in W_{0}^{1, p}\left(B, \mathbf{R}^{\mathbf{3}}\right) \quad\left\|Y_{j}\right\|_{1, p} \leq R \quad j=1,2
$$

Proof. As $H \in C^{1}\left(\mathbf{R}^{\mathbf{3}}\right), X_{0} \in W^{1, \infty}\left(B, \mathbf{R}^{\mathbf{3}}\right), Y_{j} \in L^{\infty}\left(B, \mathbf{R}^{\mathbf{3}}\right)$ and $Y_{j u}, Y_{j v} \in$ $L^{p}\left(B, \mathbf{R}^{\mathbf{3}}\right)$ the proof follows.

Lemma 3. Let be $X_{0} \in W^{2, p}\left(B, \mathbf{R}^{\mathbf{3}}\right)$ with $p>2$, then there exists $C>0$ such that

$$
\left\|A_{i}\left(X_{0}\right)\right\|_{\infty} \leq C .
$$

Proof. As $H \in C^{1}\left(\mathbf{R}^{\mathbf{3}}\right)$ and $X_{0} \in W^{1, \infty}\left(B, \mathbf{R}^{\mathbf{3}}\right)$, the proof follows immediately.

Proposition 4. Let be $X_{0} \in W^{2, p}\left(B, \mathbf{R}^{\mathbf{3}}\right)$ with $p>2$ small enough, then there exist $R \in(0,1)$ such that the following problem

$$
\begin{cases}L\left(X_{0}\right) Y=\sum_{i=1}^{4} F_{i}\left(X_{0}, \bar{Y}\right) & \text { in } B \tag{5}\\ Y=0 & \text { on } \partial B\end{cases}
$$

define a continuous map $\bar{Y} \rightarrow Y$ in the closed ball with radio R of $W_{0}^{1, p}\left(B, \mathbf{R}^{\mathbf{3}}\right)$. Furthermore its range is a compact set.

Proof. Let $\bar{Y} \in W_{0}^{1, p}\left(B, \mathbf{R}^{3}\right)$ with $\|\bar{Y}\|_{1, p} \leq R$. From (1), using theorem 9.15 and lemma 9.17 in [5], we have

$$
\|Y\|_{2, p / 2} \leq C\left(\left\|X_{0}\right\|_{1, p}^{2}+\|\bar{Y}\|_{1, p}^{2}\right),
$$

and Sobolev immersions imply that

$$
\|Y\|_{1, p} \leq C\left(\left\|X_{0}\right\|_{1, p}^{2}+\|\bar{Y}\|_{1, p}^{2}\right) \leq C\left(\left\|X_{0}\right\|_{1, p}^{2}+R^{2}\right) .
$$

Choice $\left\|X_{0}\right\|_{1, p}^{2}$ and R small enough, we obtain

$$
\begin{equation*}
\|Y\|_{1, p} \leq R \tag{6}
\end{equation*}
$$

From lemma 2, it follows that the map is continuous in \bar{Y} and from (6), using compact Sobolev immersions, we conclude that its range is a compact set.

In order to prove the theorem, it is necessary to show that a fixed point Y $\in W^{2, p}\left(B, \mathbf{R}^{\mathbf{3}}\right)$.

Proof of theorem 1 Let be $Y \in W_{0}^{1, p}\left(B, \mathbf{R}^{\mathbf{3}}\right)$ a fixed point of (5), then $Y \in$ $W^{2, p}\left(B, \mathbf{R}^{3}\right)$. It is easy to see that $Y \in W^{2, p / 2}\left(B, \mathbf{R}^{\mathbf{3}}\right)$, and then we obtain that $F_{i}\left(X_{0}, Y\right) \in L^{r}\left(B, \mathbf{R}^{3}\right)$, with $\mathrm{p} / 2<r \leq p$. In the same way, we conclude that $Y \in W^{2, r}\left(B, \mathbf{R}^{\mathbf{3}}\right)$ and the proof follows.

References

[1] Brezis, H. Coron, J. M. : Multiple solutions of H systems and Rellich 's conjeture, Comm. Pure Appl. Math. 37 (1984), 149-187.
[2] Wang Guofang : The Dirichlet problem for the equation of prescribed mean curvature, Analyse Nonlinéaire 9 (1992), 643 - 655.
[3] Struwe, M. : Plateau's problem and the calculus of variations, Lecture Notes Princeton Univ. Press 35 (1989).
[4] Lami Dozo, E. Mariani, M. C. : A Dirichlet problem for an H system with variable H. Manuscripta Math. 81 (1993), 1-14.
[5] Gilbard, D. Trudinger, N. S. : Elliptic partial differential equations of second order, Springer- Verlag, Berlin-New York (1983).
[6] Struwe, M. : Multiple solutions to the Dirichlet problem for the equation of prescribed mean curvature, Preprint.

M. C. Mariani
Carlos Calvo 4198 - Piso 4 - Departamento M
(1230) Capital
Argentina
D. F. Rial
Dpto. de Matemática
Fac. de Cs. Exactas y Naturales, UBA
Cdad. Universitaria, 1428
Capital,
Argentina

[^0]: Received by the editors November 1996.
 Communicated by J. Mawhin.
 1991 Mathematics Subject Classification : Primary 35, Secondary 35J60.
 Key words and phrases : Mean curvature, Dirichlet problem, Fixed points.

