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Abstract

We give conditions on the boundary data, in order to obtain at least one
solution for the problem (1) below, withH a smooth function. Our motivation
is a better understanding of the Plateau’s problem for the prescribed mean
curvature equation.

1 Introduction

We consider the Dirichlet problem in the unit disc B = {(u, v) ∈ R2; u2 + v2 < 1}
for a vector function X : B −→ R3 which satisfies the equation of prescribed mean
curvature 

∆X = 2H (X)Xu ∧Xv in B

X = g on ∂B
(1)

where Xu =
∂X

∂u
, Xv =

∂X

∂v
,∧ denotes the exterior product in R3 and H : R3 −→

R is a given continuous function. For H ≡ H0 ∈ R and g non constant with
0 < |H0| ‖g‖∞ < 1 there are two variational solutions ([1], [3]). For H near H0 in
certain cases there exist also two solutions to the Dirichlet problem ([2], [6]). For
H far from H0 , under appropriated conditions on g and H it is possible to obtain
more than two solutions ([4]).
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We will consider prescribed smooth H and giving conditions on the boundary
data g, we will prove the existence of a solution to (1) by fixed point theorems.

The main result is the following theorem

Theorem 1. Let be H ∈ C1 (R3)and g ∈W 2,p (B,R3) small enough, there exists a
solution X ∈W 2,p (B,R3) with p > 2 of (1).

Finally, we recall that (1) is motivated for a better understanding of the Plateau’s
problem of finding a surface with prescribed mean curvature H which is supported
by a given curve in R3.

2 Solution by fixed point methods

The systems (2) and (3) below are equivalent to (1) with X = X0 + Y
∆X0 = 0 in B

X0 = g on ∂B
(2)


∆Y = F (X0, Y ) in B

Y = 0 on ∂B
(3)

and F defined as

F (X0, Y ) = 2H (X0 + Y ) (X0u ∧ Yv + Yu ∧X0v + Yu ∧ Yv +X0u ∧X0v) .

Searching a fixed point of (3), we find it thanks to a variant of the Schauder theorem.
We will work in a specific convex subset of the Sobolev space W 1,p (B,R3). We can
write (3) in the following way :

L (X0) Y =
2∑
i=1

Fi (X0, Y ) in B

Y = 0 on ∂B

(4)

where L (X0) is the linear elliptic operator

L (X0) Y = ∆Y − 2 (A1 (X0)Yu + A2 (X0) Yv) ,

A1 (X0)Yu = H (X0) Yu ∧X0v

A2 (X0)Yv = H (X0)X0u ∧ Yv,
and Fi (X0, Y ) defined by

F1 (X0, Y ) = 2 (H (X0 + Y )−H (X0)) (X0u ∧ Yv + Yu ∧X0v)

F2 (X0, Y ) = 2H (X0 + Y ) (X0u ∧X0v + Yu ∧ Yv) .
To prove Theorem 1, we will use the following technical lemmas :
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Lemma 2. Let be X0 ∈W 2,p (B,R3) with p > 2, then there exists C > 0 such that
for any R ∈ (0, 1), δ > 0

1. ‖Fi (X0, Y1)‖p/2 ≤ C
(
‖X0‖2

1,p + ‖Y1‖2
1,p

)
.

2. ‖Fi (X0, Y1)− Fi (X0, Y2)‖p/2 ≤ C
(
‖Y1 − Y2‖1,p

)
Yj ∈W 1,p

0 (B,R3) ‖Yj‖1,p ≤ R j = 1, 2.

Proof. As H ∈ C1 (R3) , X0 ∈ W 1,∞ (B,R3) , Yj ∈ L∞ (B,R3) and Yju, Yjv ∈
Lp (B,R3) the proof follows. �

Lemma 3. Let be X0 ∈W 2,p (B,R3) with p > 2, then there exists C > 0 such that

‖Ai (X0)‖∞ ≤ C.

Proof. As H ∈ C1 (R3) and X0 ∈W 1,∞ (B,R3), the proof follows immediately. �

Proposition 4. Let be X0 ∈W 2,p (B,R3) with p > 2 small enough, then there exist
R ∈ (0, 1) such that the following problem

L (X0)Y =
4∑
i=1

Fi
(
X0, Y

)
in B

Y = 0 on ∂B

(5)

define a continuous map Y → Y in the closed ball with radio R of W 1,p
0 (B,R3).

Furthermore its range is a compact set.

Proof. Let Y ∈ W 1,p
0 (B,R3) with

∥∥∥Y ∥∥∥
1,p
≤ R. From (1), using theorem 9.15 and

lemma 9.17 in [5], we have

‖Y ‖2,p/2 ≤ C
(
‖X0‖2

1,p +
∥∥∥Y ∥∥∥2

1,p

)
,

and Sobolev immersions imply that

‖Y ‖1,p ≤ C
(
‖X0‖2

1,p +
∥∥∥Y ∥∥∥2

1,p

)
≤ C

(
‖X0‖2

1,p +R2
)
.

Choice ‖X0‖2
1,p and R small enough, we obtain

‖Y ‖1,p ≤ R. (6)

From lemma 2, it follows that the map is continuous in Y and from (6), using
compact Sobolev immersions, we conclude that its range is a compact set. �
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In order to prove the theorem, it is necessary to show that a fixed point Y
∈W 2,p (B,R3) .

Proof of theorem 1 Let be Y ∈ W 1,p
0 (B,R3) a fixed point of (5), then Y ∈

W 2,p (B,R3). It is easy to see that Y ∈ W 2,p/2 (B,R3) , and then we obtain that
Fi (X0, Y ) ∈ Lr (B,R3) , with p/2< r ≤ p. In the same way, we conclude that
Y ∈W 2,r (B,R3) and the proof follows.
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